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Abstract— The promise of increased road safety is a key
motivator for the development of automated vehicles (AV). Yet,
demonstrating that an AV is as safe as, or even safer than,
a human-driven vehicle has proven to be challenging. Should
an AV be examined purely virtually, allowing large numbers
of fully controllable tests? Or should it be tested under real
environmental conditions on a proving ground? Since different
test setups have different strengths and weaknesses, it is still an
open question how virtual and real tests should be combined.
On the way to answer this question, this paper proposes transfer
importance sampling (TIS), a risk estimation method linking
different test setups. Fusing the concepts of transfer learning
and importance sampling, TIS uses a scalable, cost-effective test
setup to comprehensively explore an AV’s behavior. The insights
gained then allow parameterizing tests in a more trustworthy
test setup accurately reflecting risks. We show that when using a
trustworthy test setup alone is prohibitively expensive, linking
it to a scalable test setup can increase efficiency – without
sacrificing the result’s validity. Thus, the test setups’ individual
deficiencies are compensated for by their systematic linkage.

I. INTRODUCTION

It is both a promise of the developers and a requirement
of society that automated vehicles (AV) do not negatively
affect road safety. In this context, ISO 21448 [1] requires
that explicit acceptance criteria (AC) be defined regarding the
risks posed by an AV’s actions. In line with society’s mandate
to protect human life, a popular AC is that an AV may not
cause more fatalities than a human-driven vehicle. However,
fulfilling the AC requires estimating (an upper bound of) the
fatality rate of an AV, which is quite challenging.

Since accidents are rare, estimating a fatality rate using
naturalistic-field operational tests (N-FOT), where an AV
replicates human drivers’ routes in real-world traffic, would
require billions of kilometers to reach statistical signifi-
cance [2]. Thereby, the deficiencies of N-FOTs are versatile:
tests can not be controlled and are real-time, other road users
would be endangered, and parallelization requires additional
vehicles and safety drivers. Hence, scenario-based testing [3]
aims to accelerate risk estimation by focusing on hazardous
scenarios such as jaywalking, which can be examined in
different test setups [4]. Each test setup can overcome various
disadvantages of N-FOTs [5]. For example, 3D simulations
are well suited for investigating the influences of weather
conditions at a reasonable cost. Conversely, highly dynamic
maneuvers can be better investigated on proving grounds.
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The test setups’ deficiencies influence the validity of test
results and hence pose a key challenge when gathering
evidence for an AV’s safety [6]. Therefore, great effort is
made to mitigate test setups’ deficiencies, e.g., by creating
more realistic simulations. Nevertheless, it can be assumed
that there will always be scalable but abstract (e.g., purely
virtual) test setups on the one hand and trustworthy but costly
(e.g., proving ground) test setups on the other hand. We,
therefore, compensate for the deficiencies of different test
setups by linking them using an approach fusing the concepts
of transfer learning (TL) and importance sampling (IS).

In this paper, we introduce transfer importance sampling
(TIS), a method for efficient risk estimation. In our demon-
stration, we derive an understanding of an AV’s behavior
from a scalable 2D simulation and use this understanding
to evaluate risks in a more trustworthy 3D simulation. The
3D simulation ensures the validity of the results, while the
insights gained from the 2D simulation increase efficiency.
Specifically, we apply TIS to a jaywalking scenario with
varying weather conditions, where the 2D simulation can not
model all influences examined in the 3D simulation. As such,
the method is also applicable for linking other test setups,
for example, 3D simulations to proving ground tests.

II. RELATED WORK

When estimating risks, the choice of test setup is of great
importance. With reference to N-FOTs, a test setup is a
modelM allowing closed-loop testing of an AV (see Fig. 1).
The proportion of modeled components and the quality of the
models influence a risk estimate’s bias (the systematic error
between the risk estimated in tests and the risk observed after
release). The scalability of a test setup influences the number
of possible test runs and thus the variance (the confidence
interval’s width) of a risk estimate. However, the variance
also depends on how test runs are parameterized.

In scenario-based testing, test runs are parameterized by a
vector x containing parameters such as distances and weather
conditions. Accordingly, p(x) describes the likelihood of
parameterizations expected in the AV’s operational domain.

A. Monte Carlo Sampling
For Monte Carlo (MC) sampling, N` test runs are param-

eterized with samples from p(x). The expected likelihood
of occurrence `EM of the event E (e.g., a collision) based
on the model M is calculated using Eq. (1). The indicator
function J returns 1 if E occurs and 0 otherwise.

`EM =
1

N`

N∑̀

i=1

J(E|M,xi) (1)
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Fig. 1. Examples of closed-loop test setups for AV. While for proving
ground tests, the AV, including all of its components, can be tested, most
test setups use models of the environment and AV’s components. A typical
3D simulation uses models of the environment, sensors, and dynamics. A 2D
simulation further represents the AV’s perception components as a model.
Purely virtual tests (without the AV’s hardware) can easily be parallelized.

Here, Eq. (2) shows that the relative standard deviation σ` rel

increases with decreasing `EM and reduces with
√

1/N`,
indicating that estimating small `EM requires many test runs.

σ` rel =

√
var{`EM}
`2EM

=

√
1− `EM
`EM N`

(2)

Accordingly, [7] simulates more than 14 billion kilometers
and [8] 1.5 million test runs to assess collision warning
systems. In both cases, generating such amounts of data was
made possible by using very abstract, equation-based models.

B. Importance Sampling

To efficiently estimate risks even in the case of small
`EM, IS does not sample from p(x) but from a proposal
density q(x), under which E occurs more frequently. The
observations are then scaled to p(x) using Eq. (3).

`EM =
1

N`

N∑̀

i=1

J(E|M,xi)
p(xi)

q(xi)
(3)

The estimate is unbiased if q(x) > 0 ∀ p(x) J(E|M,x) > 0.
Using the optimal proposal density q∗(x) in Eq. (4), an exact
risk estimate could be achieved with a single test run.

q∗(x) =
P (E|M,x) p(x)∫
P (E|M,x) p(x) dx

=
P (E|M,x) p(x)

`EM
(4)

However, since in q∗(x), `EM appears (the very quantity
that is to be determined), q∗(x) is unknown. Nevertheless,
a sufficiently good q(x) can often be defined by experts.
This can involve manipulating p(x) through shifting [9] or
the exclusion of frequently occurring parameterizations [10].
Alternatively, the initial parameters of test runs can be used to
anticipate the risk [11] and exclude uncritical test runs [12].

For complex scenarios, however, experts may not be able
to anticipate which test runs are critical or come up with test
runs critical for humans, but not the actual AV under test.

C. Adaptive Importance Sampling

By linking q(x) to the scenario and AV under test, adaptive
importance sampling (AIS) can be applied to complex sce-
narios and often follows the cross-entropy (CE) method [13]:
First, a family of distributions for q(x) is chosen, which can
be parametric, mixture, or non-parametric depending on the
desired flexibility. Next, test runs are performed to derive
q(x)’s parameters. Finally, the actual risk estimation is done.

TABLE I
ADAPTIVE IMPORTANCE SAMPLING APPROACHES

q(x) Scenario Test Setup Nq N` Src.

parametric
Lane-Change equation-based 30k 12k [14]
Multi-Vehicle 3D (distributed) 20k 50k [15]

mixture
Lane-Change equation-based 24k 7840 [16]
Multi-Vehicle equation-based 40k 2928 [17]

non-
Car-Following equation-based 4782 547 [18]

parametric
Emergency Brake equation-based 10k 10k [19]
Multi-Vehicle 3D (cloud) n/a n/a [20]

Table I shows that AIS can be applied to complex scenar-
ios. A direct comparison of the approaches is difficult due to
differences in scenarios, risk levels, and termination criteria.
Yet, the test setups are either very abstract or parallelized,
most likely due to the high numbers of test runs.

However, since the number of test runs Nq spent to derive
q(x) is mostly larger than the number of test runs N` spent
for the actual risk estimation, there is room for improvement:
The derivation of q(x) and the actual estimation of `EM can
involve two models,Mq andM`, instead of one modelM.
To ensure low bias, only M` must accurately reflect risks.

III. TRANSFER IMPORTANCE SAMPLING

In the following, we present the steps that TIS uses to
distribute risk estimation across two test setups, thereby com-
pensating for the deficiencies of the individual test setups.

A. Metamodel-Based Importance Sampling

To derive the process for TIS, we first introduce
metamodel-based IS [21], a form of AIS. Based on q∗(x) in
Eq. (4), M is substituted by its metamodel M̃.

qM̃(x) =
P (E|M̃,x) p(x)∫
P (E|M̃,x) p(x) dx

=
P (E|M̃,x) p(x)

`EM̃
(5)

While qM̃(x) is not optimal, metamodels’ high computa-
tional efficiency allows estimating the integral in Eq. (5)
using MC sampling. Here, M̃ may be a classification model
which predicts the event’s (e.g., a collision’s) probability
after being trained with a set of test results; to ensure an
unbiased estimate (see Section II-B), a constant value can
be added to P (E|M̃,x). M̃ can also be a regression model
predicting some measure correlating with J(E) (e.g., the
minimum distance between two potentially colliding ob-
jects). Here, models like Gaussian processes (GP) naturally
ensure P (E|M̃,x) > 0 since the cumulative density function
used for calculating P (E|M̃,x) is strictly greater than 0.

To sample from the “non-parametric multidimensional
pseudo-PDF”, [21, p. 11] uses slice sampling. For TIS, we
use a different procedure: Since qM̃(x) ∝ P (E|M̃,x) p(x),
we sample from qM̃(x) by first sampling from p(x) and
accepting the sample with P (E|M̃,x). No likelihoods have
to be calculated. Thus, with good availability of data, p(x)
can simply be a database of scenario parameterizations (e.g.,
from field studies) whose content does not have to be
approximated by density estimation (a source of bias).
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Fig. 2. Depiction of the process for transfer importance sampling, explained
in detail in Section III-B. If Mq and M` use different parameters, there
must be a transfer between the models, which is explained in Section III-C.

For risk estimation, we insert Eq. (5) into Eq. (3) resulting
in Eq. (6). For a detailed discussion of the variance of this
estimator, we refer to [21]. Practically, a high correlation of
J and P leads to a low variance, which would vanish to 0
if J(E|M,xi)/P (E|M̃,xi) = constant ∀ i ∈ N≤N` .

`EM =

∫
P (E|M̃,x) p(x) dx

1

N`

N∑̀

i=1

J(E|M,xi)

P (E|M̃,xi)
(6)

B. Risk Estimation Linking Two Test Setups

TIS builds on the idea of metamodel-based IS and involves
the following steps illustrated in Fig. 2: Firstly, a metamodel
M̃q is built based on Nq test runs in Mq (e.g., a scalable
2D simulation) and used for an MC estimation of `EM̃q

.
Secondly, N` test parameterizations xi ∀ i ∈ N≤N` are

drawn from the proposal density in Eq. (7) and carried out
in M` (e.g., a detailed but costly 3D simulation).

qM̃q
(x) =

P (E|M̃q,x) p(x)∫
P (E|M̃q,x) p(x) dx

=
P (E|M̃q,x) p(x)

`EM̃q

(7)
Analogous to Section III-A, P (E|M̃q,x) > 0 can be easily
ensured. Yet, already P (E|M̃q,x) close to 0 can cause an IS
estimate to initially converge to some value and later increase
significantly (e.g. if there is a cluster of accidents inM` not
occurring in Mq). To hedge against this case, P (E|M̃q,x)
can be skewed by increasing small values. However, this
increases the frequency of non-critical test runs, resulting in
a tradeoff between reliability and performance. To assess this
tradeoff, we refrain from skewing in our experiments.

Finally, Eq. (8) links M̃q andM` for the IS risk estimate.

`EM`
=

∫
P (E|M̃q,x) p(x) dx

1

N`

N∑̀

i=1

J(E|M`,xi)

P (E|M̃q,xi)
(8)

C. Homogeneous and Heterogeneous Transfer

Using two test setups, there is an important consideration:
In the field of transfer learning [22], homogeneous TL
describes applications where different data sources share the
same representation, i.e., a scenario is described using the
same parameters in M` and Mq . In heterogeneous TL, the
representations differ. For example, weather conditions in
M` might be represented by sensor noise inMq . As shown
in Fig. 2, we can handle heterogeneous cases in two ways,
which we explain in detail in Section IV-C and Section IV-D:

𝑣av

𝑑0

4 m

𝑣ped

𝑑
Environmental Conditions:

(𝑡day,𝑤fog, 𝑤rain, 𝑤wind)

Fig. 3. Depiction of the jaywalking scenario. The AV starts from standstill
and accelerates to vav. As soon as the AV arrives at a triggering point (at
which it has reached vav), an initially occluded pedestrian at a longitudinal
distance of d0 starts moving towards the road with a velocity of vped. All
variables’ units, ranges, and the environmental conditions are described in
Section IV-A. The distance d is used for criticality assessment (see Eq. (9)).

1) Pre-Metamodel Transfer is applicable in a verification
& validation phase, where the parameters x` to be varied
in M` are known. Here, before building M̃q , Mq can be
extended so that its test runs are parameterized by x`.

2) Post-Metamodel Transfer allows using test results from
a concept phase, where the parameters x` to be varied inM`

might be unknown. Here, M̃q is built based on parameters
xq . To let M̃q predict test runs x`, these are first passed
through a transfer function T , i.e., xq = T (x`).

IV. EXPERIMENTS

The goal of the experiments is to demonstrate the proposed
method while exploring its limits of applicability. Below, we
describe the components of our experimental setup.

A. The Jaywalking Scenario

We investigate the jaywalking scenario in Fig. 3. To pa-
rameterize the environmental conditions, we fused pedestrian
counting data [23] with weather data. As a result, we have
hourly pedestrian counts and weather conditions over a pe-
riod of 8.5 years. Assuming that the probability of jaywalking
is proportional to the pedestrian volume, the conditions
drawn from the dataset mostly correspond to daylight and
clear weather. Since the pedestrian counts are aggregated
over full hours, we choose a specific time of day uniformly
distributed within the bins. To apply the weather conditions
in simulation, we norm wfog, wwind, and wrain to [0, 1].
The tire-road friction is µfric(wrain) = 0.5 + 0.4 e−20 wrain ,
resulting in µfric(0) = 0.9 for dry conditions and converging
to µfric(1) = 0.5 for the most intense rain over the data
collection period of 8.5 years.

Regardless of the environmental conditions, the AV has
a defensive target velocity of vav ∼ N (6 m/s, 0.2 m/s).
A model describing at which traffic gaps pedestrians jay-
walk [24] is used to determine d0; we use the parameters for
young pedestrians. Following [25], the pedestrian’s velocity
vped depends on wrain; the mean and standard deviation for
female pedestrians are interpolated linearly based on wrain.

Although we have enough data to assess the scenario with-
out density estimation (see Section III-A), we consider the
usual case of limited data. Hence, we drew 10,000 samples
from our dataset and optimized a multivariate kernel density
estimate (KDE) using maximum likelihood cross-validation.
Sampling from the KDE, we discard both invalid test runs
(there may be slightly negative values, e.g., for wfog) and
test runs with d0 > 50 m, since with the given distribution,
collisions above that distance are almost impossible.



The criticality of test runs is assessed using Eq. (9), where
dmin is the minimum of all frames’ d. Thereby, the AV is
approximated by a rectangle and the pedestrian by a circle.
Since for all collisions, dmin = 0, we treat this case by
calculating the theoretically remaining braking distance after
the collision. Accordingly, vav col is the AV’s velocity at the
initial collision and g is Earth’s gravity. As a result, a smooth
transition between non-collisions and collisions is achieved.

d∗min =

{
dmin, if dmin > 0.

−v2av col/(2 g µfric), otherwise.
(9)

B. 3D Software in the Loop for the Actual Risk Estimation
In our demonstration, M` involves the modular AV stack

Pylot [26] and the 3D simulation tool CARLA [27]. In
this setup, we use Pylot’s perception, planning, and control
components. We hence denote the setup as 3D SiL (Software
in the Loop). In CARLA, tday influences the angle of the
sun and we directly apply (wfog, wwind, wrain, µfric). Using
an NVIDIA GeForce RTX 2080 Ti, one test run takes about
90 seconds. Test results and videos are available online3.

To use AIS (metamodel-based IS) as a baseline, we meta-
model the AV’s behavior in the 3D SiL. We use a GP model
with the hyperparameters stated in our own prior work [28],
where GPs achieved reliable uncertainties. The GP is trained
with Nq = 200 test runs from the Sobol sequence [29],
distributed over a parameter space encompassing the largest
part of the KDE’s samples; training takes about 5 s. Based
on Eq. (9), P (E|M̃,x) is chosen as P (d∗min < 0|M̃,x). The
metamodels are built the same way for the other test setups.

C. Transfer Based on 2D Software in the Loop
To examine pre-metamodel transfer, Mq involves the 2D

simulation tool IAV Scene Suite and the planning and control
components of Pylot (compare Fig. 1). We supply Pylot with
an OpenDrive map, a pose, and an object list containing
object types and (perceived) positions. We denote this setup
as 2D SiL and the overall use-case as 2D SiL TIS.

To create a perception model, we used CARLA to render
images with a pedestrian and varying weather conditions and
evaluated if and where Pylot detects the pedestrian. An extra-
trees [30] classification model predicts if the pedestrian is
detected based on the relative position of the pedestrian with
respect to the AV and (tday, wfog, wrain). If the pedestrian
is detected, an extra-trees regression model uses the same
features to determine the perceived position. Since extra-
trees’ predictions are discrete distributions, we choose a
random detection and regression model per frame, increasing
efficiency and allowing to handle non-Gaussian sensor noise.

We also metamodeled CARLA’s dynamics model: We
used the velocity, acceleration, throttle, and brake values of
4 consecutive time steps to build an extra-trees regression
model predicting the acceleration in the next time step. Here,
we use the mean of the ensemble’s predictions. The previous
steps are obsolete if suitable component models (data- or
knowledge-based) are available (e.g., in large AV projects).

3https://github.com/wnklmx/DSIOD/tree/main/data/
202202 Jaywalking
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Fig. 4. Comparison of the 3D SiL’s outcomes to the metamodels’
predictions. The samples are drawn from p(x) and colored based on the
predicted probability of a collision. The 2D SiL’s metamodel reflects the
trend of criticality quite well. The 2D CiL’s metamodel predicts more critical
outcomes, which, however, leads to a better weighted CE (Cross-Entropy).

D. Transfer Based on 2D Concept in the Loop
To examine post-metamodel transfer, Mq again involves

IAV Scene Suite, but none of Pylot’s components. The
perception model has a frame-wise detection probability
Pdetect ∈ [0.4, 1] decreasing with the pedestrian’s dis-
tance [31], a reaction time of 0.4 s, and the pedestrian’s
true relative distance is multiplied with N (1, σnoise), where
σnoise ∈ [0, 0.05]. A simple planning module is used: The
AV’s target speed is set to 0 whenever a pedestrian is detected
in or moving towards the AV’s lane. The controller is a PID
controller. The dynamics model limits the AV’s deceleration
so that it linearly approaches the minimum of −g µfric over
0.2 s, where µfric ∈ [0.5, 1]. We denote this setup as 2D CiL
(Concept in the Loop) and the use-case as 2D CiL TIS.

According to above models, the metamodel is built using
xq = (d0, vav, vped, Pdetect, σnoise, µfric); the parameteriza-
tions are distributed evenly within the stated ranges. We
simply guess the transfer function T : (d0, vav, vped) is not
modified, Pdetect = 1−0.4 wfog−0.4 wrain−0.2 |tday−12 h|

12 h ,
σnoise = 0.03, and µfric = 0.5 + 0.4 e−20 wrain .

V. RESULTS

Below, we evaluate the quality of the metamodels as well
as the convergence and efficiency of the risk estimation.

A. Predictive Performance of the Metamodels
Fig. 4 compares the metamodels’ predictions to the out-

comes of the 3D SiL. The mean error indicates that the
2D SiL metamodel’s predictions are more accurate; the CE,
assessing the metamodels’ classification of the 3D SiL’s
outcomes as collision or collision-free, is lower (better) as
well. However, the bias of the 2D CiL’s metamodel towards
more critical outcomes leads to a better weighted CE (which
weights the correct prediction of the 3D SiL’s collisions
higher than the correct predictions of collision-free test runs).

From these results, we expect that with the 2D CiL’s
metamodel, a higher number of collision-free test parame-
terizations will be sampled. With the 2D SiL’s metamodel,
the fraction of collision-free samples will be lower but there
might be surprising collisions (see Section III-B).

https://github.com/wnklmx/DSIOD/tree/main/data/202202_Jaywalking
https://github.com/wnklmx/DSIOD/tree/main/data/202202_Jaywalking
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B. Convergence of the Risk Estimates

As explained in Section III-A, the metamodels are used
for an MC estimation of the expected risk. Here, the 2D
SiL’s metamodel leads to `EM̃q

≈ 2.4 % and the 2D CiL’s
metamodel leads to `EM̃q

≈ 26.4 %. Despite these different
values, Fig. 5 shows that for the 3D SiL, all approaches’
estimates converge to an expected risk of `EM`

≈ 0.45 %.
On closer inspection, Fig. 5 reveals what was expected in

Section V-A. 2D CiL TIS converges slowly (since there are
many collision-free test runs). 2D SiL TIS converges faster
– until an unexpected collision leads to a large quotient of
J(E|M`,xi)/P (E|M̃q,xi) in Eq. (8) and a sudden increase
of the expected risk and variance. The 3D SiL’s results
can explain this: about 70 % of the collisions occur for
tday ∈ [19 h, 21 h], where the sun is low and blinds the AV’s
camera. Such collisions, which depend to a large extent on a
phenomenon that mainly occurs in the 3D SiL, are difficult
to predict based on the 2D SiL and 2D CiL. Still, 2D SiL
TIS leads to frequent collisions and converges the fastest.

At its minimum at 495 test runs, the upper confidence
interval of the 2D SiL TIS estimate is about 30 % below
the true risk. Clearly, such a bias is undesirable and hedging
against small P (E|M̃q,x) can be crucial to prevent early
convergence (see Section III-B). Nevertheless, the alternative
of evaluating risks only in cost-effective test setups would
often be much worse: In our case, using only the 2D SiL or
2D CiL would result in a bias of factor 5 or 59, respectively.

C. Comparison of the Approaches’ Efficiency

To compare the approaches’ efficiency, we aim for a 1 %
chance that the true `EM`

is more than 50 % larger than the
estimated `EM`

. Fig. 5 shows the number N` of required 3D
SiL test runs, but the Nq test runs used to derive q(x) must be
considered as well. A test run in the 3D SiL, 2D SiL, and 2D
CiL takes 90 s, 75 s, and 27 s, respectively. Using an Amazon
Web Services (AWS) g4dn.2xlarge instance (0.752 $/h, with
GPU) for the 3D SiL and an AWS t4g.2xlarge instance
(0.2688 $/h, without GPU) for the 2D SiL and 2D CiL, the
costs correspond to Table II (prices4 from February 2022).
2D SiL TIS results in the lowest costs, AIS is 7.8 times, and

4https://aws.amazon.com/ec2/pricing/on-demand/

2D CiL TIS is 9.2 times as expensive. Such a comparison
depends on the scenario, its risk level, the similarity of the
results in the two test setups, and the test setups’ difference
in cost. For other test setups, pure time savings may also
be more important. Hence, the potential savings increase for
homogeneous transfer or if, e.g., a parallelized 3D SiL is
linked to costly and time-consuming proving ground tests.

Overall, it shows that using only the 2D SiL or 2D CiL
would lead to a biased estimate and that the AIS estimation
using only the 3D SiL is not the cheapest option. Hence, 2D
SiL TIS (linking the 2D SiL and 3D SiL) performs best.

TABLE II
EFFICIENCY COMPARISON (Nq = 200)

Approach Cost Nq N` Cost N` Total Cost Factor
3D SiL MC 0 $ 5326 100.13 $ 100.13 $ 27.4
3D SiL AIS 3.76 $ 1318 24.78 $ 28.54 $ 7.8
2D SiL TIS 1.08 $ 137 2.57 $ 3.65 $ 1
2D CiL TIS 0.40 $ 1765 33.19 $ 33.59 $ 9.2

VI. CONCLUSION

This paper presented transfer importance sampling, a risk
estimation method linking different test setups. While exist-
ing methods from the field of (adaptive) importance sampling
reduce a risk estimate’s variance, they sometimes require
so many test runs that scalable, purely virtual test setups
must be used – which may lead to biased risk estimates.
Transfer importance sampling uses a scalable test setup for
an exploratory analysis and can then estimate risks with a
small number of test runs in a more trustworthy, possibly
costly test setup. This way, bias and variance can be reduced.

In our experiments, we examined two use-cases where the
risk estimation (in a 3D simulation) involved influences that
could not simply be modeled in the preceding exploratory
analysis (using a 2D simulation). Transfer importance sam-
pling outperforms adaptive importance sampling if the used
test setups show similar behavior. Conversely, it performs
worse if the used test setups differ too much in their behavior.
Hence, we aim to extend our approach to incorporate the test
runs of the actual risk estimation into the metamodel. This
could increase efficiency and further avoid early convergence

https://aws.amazon.com/ec2/pricing/on-demand/


of a risk estimate due to the results of the cost-effective
(potentially abstract) test setup putting the risk estimation
process on the wrong track (see Section V-B).

Applying transfer importance sampling is particularly rea-
sonable for scenarios with higher risk levels, where biased
risk estimates can have fatal consequences. Thereby, it is
usually not obvious which test setup leads to low bias. Not
without reason, ISO 21448 [1] requires that risks must be
continuously monitored during an AV’s operation phase. Yet,
a sheer comparison of the results of different test setups
can be valuable in itself. The ultimate challenge is the
transition from an AV’s verification & validation phase to its
operations phase. This transition will be easier if transitions
between 2D simulations, 3D simulations, and real tests have
been mastered before. The concepts presented are valuable
for making such transitions. Here, besides standards for
scenarios (e.g., OpenDRIVE, OpenSCENARIO, OpenODD),
standards for AV component models could reduce the over-
head of investigating scenarios in multiple test setups.

Conclusively, it can be said that transfer importance sam-
pling can help to estimate risks posed by AV more accurately
and efficiently. With our method, we take an important step in
uniting test setups and results along the development process
to support the creation of evidence for an AV’s release.
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