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Abstract—Nowadays, the security of Global Navigation 
Satellite System (GNSS) has raised much more concerns due to 
the reliance on its position, velocity, and timing (PVT) 
information, which is of vital importance to various Internet of 
Things (IoT) systems, robotics, 5G technology and many 
applications of Intelligent Transportation Systems (ITSC). It has 
been shown that GNSS system can be easily spoofed and 
masqueraded to provide ill intent payload damages. This paper 
proposes a novel algorithm based on unsupervised machine 
learning Gaussian Mixture Models (GMM) to provide anti-
spoofing capability of GNSS signal such as GPS signal. It 
segregates GPS signals that are not under spoofing, from 
spoofed GPS signals that will result in malicious changes of 
pseudo-range measurements. It has been found out that the 
proposed GMM clustering algorithm is able to cluster the 
positions generated by the un-spoofed GPS signals properly and 
return the PRN (pseudo-range noise) codes of the satellites 
without spoofing effectively. The proposed GMM clustering 
algorithm could cluster the position points generated by non-
spoofed signals properly by more than 90% and 77% accuracy 
for one and three spoofed satellites respectively. 

I. INTRODUCTION 

Currently, position, velocity and timing (PVT) information 
of Global Navigation Satellite System (GNSS) has been 
utilized by various Internet of Things (IoT) systems, robotics, 
autonomous vehicle (AV) and 5G technology applications [1]. 
With the rapid development of applications with GNSS 
positioning, the concerns have been raised on the security of 
GNSS signals which are used to provide PVT information [2]. 
For example, robots used for logistics could be spoofed and 
misled to another target position, which is likely to be utilized 
as a place to make illegal behaviors such as robbery or 
smuggling. Apart from that, autonomous driving requires the 
integrity and reliability of the position information, otherwise 
it will cause serious accidents by a spoofed PVT information 
without detection[3].  

On top of that, more concerns have been raised on the 
security and integrity of GNSS signals especially by research 
community in Intelligent Transportation Systems (ITSC). To 
be specific, there are various applications in ITSC that require 
reliability and integrity in the accuracy and security of PVT 
information, such as vehicle-to-everything (V2X) 
communication [4], pedestrian detection based on GNSS 
sensors [5], collision avoidance for automotive based on 
navigation satellites [6]. For these applications that have high 
reliance in positioning solution, it is of vital importance to 
make sure the PVT information such as the position that the 
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GNSS receivers acquire from satellites are not only highly 
accurate but also trustable. 

In this paper, we propose an machine learning algorithm 
based on Gaussian Mixture Model (GMM) and least squares 
method for localization, to detect and exclude false GNSS 
signals of which pseudo-range measurements have been 
altered for malicious intent. The GMM algorithm pivots on 
finding the mean value and variance of each cluster, which is 
quite suitable to detect false signals, due to the differences of 
the mean and variance between the positions generated by 
spoofed signals and non-spoofed signals. We also find a 
general rule to obtain essential parameters of the GMM as the 
number of clusters in different scenarios, which is to ensure 
optimality in clustering performance. 

This paper provides a brief introduction of the GNSS ant-
spoofing aims and presents the proposed algorithm to achieve 
the goals. Section II gives the literature review on related 
works about GNSS anti-spoofing methods which are mainly 
for attacks on altering pseudo-range measurements in a 
malicious way. Section III outlines the details of positioning 
algorithm based on GPS observation and navigation data from 
NASA. The proposed GMM model is also depicted. Section 
IV evaluates the performance of our proposed GMM 
clustering algorithm compared with other clustering 
algorithms. Finally, conclusion and discussion on the proposed 
GMM algorithm in the typical scenarios are provided in 
Section V. 

II. RELATED WORKS 

A. GNSS vulnerability to spoofing 
In general, the vulnerability of GNSS for spoofing is 

classified into three main categories from the perspectives of 
GNSS receivers: (a) the GNSS navigation message (NM) data 
bits, (b) GNSS signal processing, and (c) the position and 
navigation solution [7,8]. 

For the GNSS NM data bits that are transmitted from the 
respective satellite to receivers, its structure is openly available 
to public. Therefore, it is quite easy to get the common 
structure of each GNSS satellite’s NM publicly and regenerate 
a similar one to mislead the GNSS receivers. The navigation 
data is composed of various parameters such as satellite 
ephemeris, almanac, time, telemetry information, and 
authentication keys [9]. Most of the information in navigation 
messages do not change very often or not fast enough. For 
example, the satellite ephemeris usually changes for every 
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12.5 minutes [7]. As a result, the spoofer can forge the 
GNSS signal with this feature, and change navigation 
information that is essential for computing PVT solutions to 
apply a spoofing effect on the GNSS receivers. 

Similarly, for GNSS signal processing, the structure of 
most GNSS signals are published as the common frame, which 
includes pseudo-random noise (PRN) signals, the modulation 
type, transmit frequency, signal bandwidth, Doppler range, 
and signal strength [7]. Therefore, it is not difficult for 
spoofers to generate fake signals with the general structure of 
GNSS signals and implement malicious spoofing for ill intent. 

For solution of position and navigation, the pseudo-range 
measurements could be changed in several ways, including 
jamming the authentic satellite signals, injecting fake pseudo-
range measurements by spoofers [7], or altering the time-
offsets of a signal [9]. There are various methods used to 
change the pseudo-range measurements, which lead to the 
deviations from the right PVT solutions in assorted ways. In 
this paper, we will focus on the impact and extent due to the 
changes in pseudo-range measurement rather than the methods 
of the attacks that lead to the changes in pseudo-range 
measurements. 

B. GNSS spoofing and anti-spoofing with ML algorithms 
(1) Spoofing simulation by ML 

Nowadays, a few of studies have been made on spoofing 
simulation by machine learning. For example, a GNSS 
spoofing method with adversary attacks model as a deep 
learning model was reported [10], which can mislead the 
GNSS receiver to a malicious target position without being 
detected by the receiver autonomous integrity monitoring 
(RAIM) algorithm. The paper [10] applies GAN to generate 
forged signals with its generator and train its discriminator to 
detect forged signals from original signals in order to 
counterfeit fake signals that can’t be detected easily. However, 
it can only work within a limited range if the spoofing goal is 
to mislead the victim to a targeted position. 

(2) Anti-spoofing methods by ML algorithms 

Anti-spoofing against satellite NM and signal attack have 
been well-researched through authentication of the NM and 
signal [8]. This paper will focus on attack that cannot be 
protected through authentication. Such research focusses on 
anti-spoofing methods with ML algorithms. A possible 
solution that utilizes Support Vector machines (SVM) to 
classify the spoofed signals and original signals was 
introduced in [11]. The results were robust with the validation 
on the unintentional spoofed subsets. However, it was also 
reported in [11] that the separation of spoofed signals and 
original signals based on different multiple measurements of 
GNSS signals using SVM is very complicated and thus 
difficult to be deployed. Apart from that, a method to detect 
spoofed signals based on an improved RAIM algorithm was 
introduced in [12], which combined Density-Based Spatial 
Clustering of Applications and Noise (DBSCAN) algorithm 
for single constellation. Nevertheless, RAIM algorithm 
combined with DBSCAN get poor performance very often 
when it comes to data sets in high dimensions especially with 
varying density clusters [12]. What’s more, A clustering-based 
solution separation algorithm (CSSA) has been presented in [1] 

to detect spoofing in multi-constellation as well as single 
constellation. The CSSA can identify the small changes of 
pseudo-range measurements generated by spoofer. However, 
CSSA is not customized for single constellation anti-spoofing, 
especially when there is only one GNSS system. 

In this paper, we propose a novel anti-spoofing algorithm 
that overcomes the above-mentioned limitations. We use the 
Gaussian Mixture Models (GMM) to cluster original signals 
from spoofed signals. As such, the mean and the variance of 
the original signals can be taken into account and thus make it 
more likely to sort out the original signals among spoofed 
signals. 

III. GNSS POSITIONING ALGORITHM AND GMM 

A.  GNSS Positioning Algorithm 
GNSS receivers use measurement observations that are 

received from GNSS satellites and satellites orbital position 
information to calculate the positions of GNSS receivers. The 
observations mainly contain three main components: phase, 
time and pseudo-range. These values are stored in the 
Observation data file [13]. These observations should be 
corrected to avoid the external effects such as atmospheric 
refraction, clock offsets, etc. [13]. The positions of satellites 
can be computed with navigation messages sent from GNSS 
satellites, which are stored in Navigation file. The time of 
observations represent the time of the GNSS signals received 
by the receiver, which can be affected by clock offsets between 
satellites time stamp and that of receivers. Pseudo-range of 
observations is defined as the distance between the receiver 
and the satellite with the consideration of clock offsets and 
other biases such as atmospheric delays [13]. The equation of 
pseudo-range is shown in Eq. (1) as follows.	

ρ!=#$p!"# − p"$'
% + $p!&# − p&$'

% + $p!'# − p'$'
%
+c(∆t +

other	biases)                                                              					 (1) 
 
where6p!"# p!&# p!'# 7 and ρ! represent the three- dimensional 
position of i()  satellite and its pseudo-range respectively, 
where the position of satellites can be computed with the 
observation data.6p"$ p&$ p'$7 represents three-dimensional 
position of the receiver [10], 𝑐 is the speed of light in vacuum, 
and ∆𝑡	 is the clock offsets [13]. In this paper, to get the 
position of the receiver, the least-square method is used to 
calculate the position iteratively with pseudo-range 
measurements and clock offsets [14,15]. There are four 
unknown variables, namely 6p"$ p&$ p'$7  and the clock 
offset ∆𝑡 [16]. As such, there should be at least four satellites’ 
pseudo-range being used to calculate the position of receiver. 
The least squares method implemented on calculation of 
positions of the receiver can be decomposed into several steps, 
the core steps can be written in Eq. (2), Eq. (3), Eq. (5) and Eq. 
(6). Because pseudo-range measurements of i()  satellite 
ρ*! 	can be extracted from observation data, and the pseudo-
range measurements of i()  satellite i.e., ρ! , can also be 
calculated in Eq. (1), there are always differences between 
these two pseudo-range measurements. The equation of the 
differences can be written as in Eq. (2):  

       																								 r! =	ρ*! − ρ!                                     (2) 
 



  

where r! is the difference between these two kinds of pseudo-
range measurements of i()satellite, where i = 1⋯ I.		; I is the 
number of all available satellites used to calculate positions of 
the receiver. And the difference can also be written in the 
matrix form in Eq. (3): 
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	where  r∈ RI×1 = [r, ⋯ r-].. The	subscript q refers 
to the iteration number where q=1⋯Q ,p+"$  represents the 
position of receiver in x coordinate in the q() iteration; ∆z∈ 
R4x1 = 6∆p"$ Δp&$ Δp'$ ∆t7. is the difference of receiver 
state between two iterations of the least square method. ε ∈ 
RIx1 is the biases such as Gaussian measurement noise [10]. 
The solution of Eq. (3) can be written in Eq. (5): 

                       ∆z = (HTH)
/,

HTr                                   (5) 

And a new state of the receiver is updated based on the 
solution of Eq. (5) as follows: 

 																															z+ = z+/,+ ∆z                               (6) 
where	z∈ R4x1 = 6p"$ p&$ p'$ ∆t7..The value of receiver 
position in 	z, is initialized to be zero Eq. (5) and Eq. (6) will 
go through q()  iteration till ∆z is below a certain threshold 
[17]. In this paper, the threshold is set as 0.001. The differences 
between real position and averaged position of positions 
calculated by this positioning algorithm are [0.0432 m, 0.5336 
m, 2.7406 m] in three dimensions, which is the best 
performance in our experiments. 

B. Gaussian Mixture Models 
The GMM is a typical unsupervised machine learning 

algorithm used as a clustering algorithm for data points that 
can be clustered into multiple Gaussian distributions. In the 
GMM, data points are considered to be generated by 
multivariate Gaussian distributions with relative mean and 
variance [17]. Additionally, GMM is a probabilistic model to 
predict the distribution each data point arises. The probability 
of each data point is calculated by Eq. (7). 

                    P(x!) = ∑ π0N$x!Tµ0, Σ0'1
02,                           (7) 

where N$x!Tµ0, Σ0'  is the Gaussian distribution of  xi 
conditioned on μj and Σj.  xi	is the i()	data point and K is the 
number of Gaussian clusters. It is assumed that the total 
number of all data points is S, and μj and Σ0 are the mean and 
the covariance matrix of j() cluster respectively [18]. πj is the 
weight of j()	cluster to be learnt by GMM algorithm where the 
sum of all weights is equal to 1. Furthermore, {πj, μj, Σ0} are 
estimated by maximizing log-likelihood function in Eq. (8). 

ln P(x1,x2,...xS|π, μ, 𝚺 )=∑ ln {∑ πjN(xi|μj,Σ0)
K
j=1 }S

i=1      (8) 
 

Expectation-Maximization (EM) algorithm is used to 
maximize Eq. (8) [19]. The EM algorithm begins with an 
initialization of the parameters πj, μj, Σ0	for j()	cluster with a 
predefined number of clusters, i.e., K. The EM algorithm 
consists of the E-step and M-step.  

E-step: 

                           Ei,j=
πjN(xi|μj,4!)

∑ πjN(xi|μj,4!)
K
j=1

                            (9) 

As shown in Eq. (7), the E-step aims to estimate how likely 
each data point will be assigned into a particular cluster. The 
probability of ith data point being assigned into j() cluster is 
calculated with 𝑁$x!Tµ0, Σ0'.  

M-step: 

The M-step is mainly for updating parameters π, μ, Σ based 
on maximizing Eq. (8). For example, the new weight of each 
cluster (πj) is calculated in Eq. (10). 

                                    πj=
6
#

                                      (10)                                      

where 𝑆  is the number of all data points and 𝑀  is the 
number of data points assigned to j() cluster. The mean and 
covariance matrix are also updated with data points in each 
cluster, which is also updated by maximization of Eq. (8) [20]. 
After the updates of these parameters, it will turn into the E-
step again for the next iteration. This iterative process will stop 
until the log-likelihood function reaches the maximum, which 
means the EM algorithm converges. In this paper, we cluster 
the data of combinations of positions by using GMM package 
in scikit-learn [21]. 

IV. IMPLEMENTATION AND EVALUATION 

A. Simulation setup 
We use the GPS navigation data and observation data of a 

GNSS receiver downloaded from NASA’s archive of Space 
Geodesy Data in RINEX format [22] to compute the position 
of this receiver with the positioning model. We choose a static 
position to experiment, at which one of the GNSS receiver 
stations (i.e., ZIMM00CHE, Switzerland) of International 
GNSS Service (IGS) locates. The data contains the GPS 
navigation data and observation data on 4th March 2021 with 
30 seconds interval. 

There are 10 visible satellites for this part of recorded data 
of which the PRN sequence is {1, 31, 3, 6, 21, 9, 17, 22, 19, 
4}. We simulate the attacks by manipulating pseudo-range 
measurements of different numbers of satellites that are 
randomly chosen as being spoofed. The changes in pseudo-
range measurement are set as various values of {30, 40, 50, 
100, 200} meters. For instance, if we have three spoofed 
satellites, {1, 31, 3} can be the PRN of spoofed satellites in 
one run, and {31, 6, 21} is possible to be selected as the PRN 
of spoofed satellites in another run. In this scenario, we 
combine five satellites for each positioning, by which we 
generate  three-dimensional position data points. The 
clustering is based on the data points of positions generated by 
the combinations. It is easy to calculate that the number of all 



  

possible combinations is C10
5 . The reason for the combination 

size of five satellites are as follows: First, the least number of 
satellites required to generate a position is four. Secondly, we 
have compared the root mean square error (RMSE), mean 
deviation and variance performance between the calculated 
positions and real positions with combination size of 5, 6 and 
7 satellites, as shown in Fig. 1. It is observed that the 
performance knee point is satellite size of 5. As such, in order 
to improve the ability of anti-spoofing, i.e. the number of 
spoofed satellites can be detected, 5 satellites is chosen as the 
size of combination.  

 

 

 

 

 

 

Fig. 1. Performance of different combination size (Units of 
Mean_deviation and RMSE are in meters, Variance is in 

square meters) 

B. GMM implementation 
The number of spoofed satellites is unknown in the real 

spoofing attack is made. Therefore, the number of spoofed 
satellites is chosen to be one at the beginning, and then it’s 
added one until the algorithm converges. The metric used to 
evaluate the performance of clustering is mainly RMSE, with 
the mean deviation and variance as the supplement, where the 
mean deviation represents differences between the real 
position and the mean of calculated positions in one dimension 
on average. The cluster number is firstly set to 2. Then, we 
check if the smallest RMSE of all the clusters is below 10, 
where 10 is the threshold to determine whether we have found 
the clean cluster. If the smallest RMSE doesn’t meet the 
threshold, the process will be iterative with adding one to the 
cluster number till we find a cluster that meets the threshold.  

It is observed from the experiments that the number of 
clusters is highly relative to the number of spoofed satellites. 
It can be proven that when the number of clusters  is equal to 
2n or larger around 2n, where n is also the number of spoofed 
satellites, the algorithm converges faster. For example, if we 
have two spoofed satellites, PRN of which is {1, 31}, C2

0 
represents there are no spoofed satellites in the combination of 
satellites like {3, 6, 21, 9, 17}. C2

1  represents there are two 
kinds of spoofed satellites, for example, {1, 3, 6, 21, 9}. C2

2 
represents the combination contains these two spoofed 
satellites, such as {1, 31, 6, 21, 17}. It’s been proved by our 
experiments that GMM always groups the position data points 
generated by combinations of satellites with the same number 
of spoofed satellites into the same cluster. Therefore, by 
computing C2

0+C2
1+C2

2 =22= 4, there should be four clusters in 
ideal conditions. For other scenarios that the number of 
spoofed satellites is not 2, the number of clusters still meets 
the rule. In our experiments, sometimes the number of clusters 
should be set larger than 2n to make our algorithm converge  

faster. There might be one or two more categories than ours in 
the perspective of ML, therefore, we usually first set the 
number of clusters into 2n and add by 1 to check for  
convergence. The ceiling is usually less than 2n+1. The rule is 
to make it convenient to set the number of clusters at the 
beginning in a roughly proper range. Therefore, in this paper, 
it helps a lot to make our method more efficient to get a great 
performance. 

C. Simulation results and analysis 
We simulate the spoofing attacks by manipulating pseudo-

range measurements with additional different numeric values: 
{30, 40, 50, 100, 200} meters. In the experiment, three 
satellites are manipulated by changing pseudo-range 
measurements from a set of clean satellites signals. Therefore, 
there are three situations in the experiment: (1) One spoofed 
satellite, (2) Two spoofed satellites, (3) Three spoofed 
satellites. 

Taking the three spoofed satellites as an example, the 
results of clustering based on the GMM in two-dimensional 
(2D) vision applied with PCA projection are shown in Fig. 2. 
They clearly show that the cluster with purple color is more 
compact than other clusters and thus it’s the clean cluster. We 
separate out the clean cluster by comparing the RMSE of 
different clusters with mean deviation and variance as 
supplement. Fig. 3 shows the performance of the clustering 
result of the example with three spoofed satellites. 

 

 

 

 

 

Fig. 2. GMM clustering results for 3 spoofed satellites, with 
pseudo range measurements changed by 50 meters 2D vision 

(PCA projection) 

 

 

 

 
 

 

Fig. 3.  Clustering performance of the example with 3 
spoofed satellites (Mean_deviation and RMSE are in meters, 

Variance is in square meters 

Because there are 3 spoofed satellites, it is observed that 
eight clusters are achieved convergent, which meets the rule of 
setting the number of clusters. What is presented vividly in the 
bar chart is that the clean cluster (cluster 0) has the smallest 
RMSE among these clusters, which is below 10 meters. It’s 
relatively hard to see RMSE of cluster 0 in the chart, so is the  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
mean deviation of clean Cluster 0. But its variance value is 
non-zero which is shown in Fig. 3. The mean deviation and 
variance of clean cluster 0 are also the smallest, compared to 
other clusters. 

In the experiments, the spoofing attacks have been tested 
in these three situations with different pseudo-range 
measurements manipulations. The most quickly convergent 
clustering performance of the proposed GMM are shown in 
Fig. 4, while those of the K-Means are shown in Fig. 5. 

It is observed that the performance of GMM with changes 
in pseudo-range measurements by 30 meters in all three 
situations are relatively worse than others. So when the 
pseudo-range measurements are manipulated by more than 30 
meters, GMM can achieve a good performance. The variances 
in all circumstances are always below 60, while the mean 
deviation in all conditions are always below 5 meters and 
sometimes under 2 meters. The RMSE must be under 10 
because the algorithm converges once RMSE is below 10, and 
thus RMSE is always close to 10. 

What’s more, there might be some prediction errors in 
clean cluster, such as missing clean data points or outliers. To 
be specific, some clean data points might be assigned into  
spoofed clusters instead of the clean cluster due to common 
predict errors of GMM, therefore, the issue of missing clean 
data points occurs in all circumstances and it’s the main source 
of prediction errors when more than 50 meters pseudo-range 
measurements are manipulated. Outliers refers to some 
spoofed data points are assigned into the clean cluster by 
mistakes, which leads to a more serious prediction error than 
missing data points. A clean cluster should be composed of 
clean data points that give arises to correct receiver position. 
Outlier data points will affect the originality of the receiver 
position. As such, we put more weight on the number of 
outliers than that of missing clean data points especially when 
comparing performance of two algorithms in the same 
experimental condition.  

Furthermore,  we define the accuracy as the proportion of 
position data points generated by clean satellites in the clean 
cluster. The accuracy is directly affected by the number of  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

missing clean data points and outliers. When the accuracy of 
two situations are equivalent, we will compare the number of 
outliers, which are shown in parentheses in Table I. 

D. Comparisons with K-means 
It is shown that K-means has a comparable performance 

with GMM from the perspective of RMSE and mean deviation. 
However, if there are a huge number of missing points, it 
might degrade the effectiveness of original GNSS signals. 
What’s more, if there are too many outliers in the clean cluster, 
it can disable the detection of  PRN of satellites without 
spoofing. It will also be affected with too many lost clean data 
points in the clean cluster. However, there are always many 
outliers and missing data points at the same time in the clean 
cluster generated by K-means. In this circumstance, though the 
mean, the RMSE and variance of the clean cluster are 
relatively good, the spoofed signals are recognized as the clean 
signals based on K-means, which might cause failed detection. 
The accuracy and number of outliers shown in Table II clearly 
demonstrate this feature of K-means. It is observed from Table 
I and II that GMM has a higher average accuracy in situations 
with one spoofed satellite with same amount of outliers on 
average. Although the GMM averaged accuracies of situations 
with two or three spoofed satellites are slightly lower than 
those of K-means, the amounts of outliers of the proposed 
GMM are much smaller than those of K-means. 

In addition, if the size of clean cluster is equal or larger 
than the value of CK+2

K , and (K + 2) are the number of satellites 
without being spoofed, K is the lower bound number of 
satellites, our method is always effective. In summary, GMM 
is a more effective method of anti-spoofing for GNSS signals 
than K-means. Meanwhile, the proposed GMM method is 
easily implemented without equipment of anti-spoofing 
technique, which decreases the complexity of anti-spoofing 
and makes it widely used in many appropriate scenarios. 

V. DISCUSSION AND CONCLUSION 

This paper proposes a novel algorithm to detect spoofing 
GNSS signals, especially for manipulations of pseudo-range  

Fig. 5. K-means performance of the clean cluster in situations with 1,2,3 spoofed satellites  (Mean_deviation 
and RMSE are in meters, Variance is in square meters) 

Fig. 4. GMM performance in situations with 1,2,3 spoofed satellites (Mean_deviation and RMSE 
are in meters, Variance is in square meters) 



  

TABLE I.            ACCURACY OF GMM IN SITUATIONS WITH 1,2,3 SPOOFED SATELLITES 

TABLE II.            ACCURACY OF K-MEANS IN SITUATIONS WITH 1,2,3 SPOOFED SATELLITES 

 

 

measurements based on the GMM, which is a widely used 
unsupervised machine learning clustering algorithm. Several 
spoofing attack scenarios have been evaluated with different 
amount of spoofed satellites and various degrees of pseudo-
range measurements manipulations. It has also been found out 
the GMM clustering algorithm could cluster the position 
points generated by clean signals properly with more than 90% 
accuracy on average when there is one spoofed satellite. We 
also validate the proposed algorithm by comparing with 
another clustering algorithm K-means. The performance of the 
K-means is worse with several problems, especially when the 
changes of pseudo-range measurements are no more than 200 
meters with each satellite. References 
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Pseudo-range  
                  changes(m) 

Situation 
30 40 50 100 200 average 

One spoofed satellite 0.8968 
(14 outliers) 

0.8968 
(5 outliers) 

0.8968 
(0 outlier) 

0.9286 
(0 outlier) 

0.9603 
(0 outlier) 

0.9159 
(3.8outliers) 

Two spoofed satellites 0.7857 
(6 outliers) 

0.8929 
(4 outliers) 

0.8036 
(0 outlier) 

0.8929 
(0 outlier) 

0.9286 
(0 outlier) 

0.8607 
(2 outliers) 

Three spoofed satellites 0.6667 
(0 outlier) 

0.7143 
(0 outlier) 

0.7619 
(0 outlier) 

0.8095 
(0 outlier) 

0.9048 
(0 outlier) 

0.7714 
(0 outlier) 

Pseudo-range  
changes(m) 

Situation 
30 40 50 100 200 average 

One spoofed satellite 0.9286 
(7 outliers) 

0.8810 
(6 outliers) 

0.9127 
(5 outliers) 

0.6270 
(1 outlier) 

0.7698 
(0 outlier) 

0.8238 
(3.8 outliers) 

Two spoofed satellites 0.8750 
(9 outliers) 

0.8750 
(9 outliers) 

0.8929 
(4 outliers) 

0.9286 
(2 outliers) 

0.9286 
(0 outlier) 

0.9000 
(4.8 outliers) 

Three spoofed satellites 0.8095 
(6 outliers) 

0.8095 
(5 outliers) 

0.8095 
(4 outliers) 

0.9048 
(0 outlier) 

0.8571 
(0 outlier) 

0.8381 
(3 outliers) 


