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Abstract—We consider a regulator willing to drive individual
choices towards increasing social welfare by providing incentives
to a large population of individuals.

For that purpose, we formalize and solve the problem of
finding an optimal personalized-incentive policy: optimal in the
sense that it maximizes social welfare under an incentive budget
constraint, personalized in the sense that the incentives proposed
depend on the alternatives available to each individual, as well as
her preferences. We propose a polynomial time approximation
algorithm that computes a policy within few seconds and we
analytically prove that it is boundedly close to the optimum. We
then extend the problem to efficiently calculate the Maximum
Social Welfare Curve, which gives the maximum social welfare
achievable for a range of incentive budgets (not just one value).
This curve is a valuable practical tool for the regulator to
determine the right incentive budget to invest.

Finally, we simulate a large-scale application to mode choice
in a French department (about 200 thousands individuals) and
illustrate the effectiveness of the proposed personalized-incentive
policy in reducing CO2 emissions.

I. INTRODUCTION

Taxes and subsidies in transportation are often perceived
by the population as unfair, since they neglect the alternatives
actually available to each individual and the individual pref-
erences. On the other hand, with the increase in information
available to governments [1], economic policies can be im-
proved to consider the peculiarities of each individual. We pro-
pose a policy of personalized incentives in a framework where
individuals choose between multiple alternatives options. A
regulator has a limited budget that he can use to propose
monetary incentives, with the goal to induce individuals to
change their choice toward socially-better ones. Most incentive
policies in the literature are not personalized [2], [3], with
some exception [4]. Differently from the latter, we seek for a
method with provable performance bounds.

We define the optimal personalized-incentive policy as the
allocation of incentives that maximizes social welfare (defined
as the reduction of CO2 emissions in the example above),
for a given budget. We formalize the problem of finding a
personalized-incentive policy maximizing social welfare under
the regulator’s budget constraint and show that it reduces to
the well-known Multiple-Choice Knapsack Problem (MCKP
– §II), which has been used in several contexts, like Eco-
nomics [5] and Computer Science [6]. To approximate the
optimal policy in polynomial time, we adapt a greedy algo-
rithm from the Operations Research literature and we analyze
some of its analytical (e.g., suboptimality gap bound) and
economic (e.g., diminishing returns) properties (§III). While in
most of the paper we assume that the regulator knows exactly

the preferences of each individual, we also study the case of
imperfect information (§IV).

Using data from the French census at the scale of a
French department, we evaluate the CO2 reduction achieved
via the transportation mode incentive policy computed with
our algorithm (§ V). The results show that our personalized
incentives achieve the same CO2 reduction as flat subsidies,
but with a considerably smaller amount of incentives spent.
Our code is available as open source [7].

We are aware that our framework is based on several
idealized assumptions that makes its direct applicability dif-
ficult in practical situations, in particular for what concerns
the assumption of being able to collect precise information
about individual preferences. In this sense, the path toward
personalized-incentives is still a long way to go. However, we
argue that the theoretical findings of this paper, coupled with
the continuous evolution of techniques for collecting societal
big-data, while respecting privacy, provide important steps
along this path.

II. FRAMEWORK AND INCENTIVE POLICY

A. Model

We consider a population I ≡ {1, . . . ,m} of m indi-
viduals. Each individual i ∈ I chooses an alternative j
among an individual-specific choice-set Ni. For example,
we can consider individuals choosing a mode of transporta-
tion to commute to their work. In this case, the choice
set could be Ni = {car,walk, bike, public transit}. The
choice set can be individual-specific so that if individ-
ual i owns a car but individual i′ does not, we could
have Ni = {car,walk, bike, public transit} and Ni′ =
{walk, bike, public transit}.

Let yi,j > 0 be an incentive provided by the regulator to
individual i, when she chooses alternative j. Since yi,j changes
from an individual to another, such policy is personalized.

A policy influences the individual choice since the proposed
monetary transfers change her utilities. The utility Ui,j of
individual i when choosing alternative j ∈ Ni is given by
Ui,j = Vi,j + yi,j ,, where Vi,j ∈ R is the intrinsic utility
(in the absence of policy). Each individual i chooses an
alternative j∗i which maximizes her utility j∗i ∈ argmaxj Ui,j .
Each alternative j of individual i is characterized by a social
indicator bi,j ∈ R (e.g., the opposite of CO2 emissions
induced by the commutes).

We assume the regulator has perfect information: it knows
exactly the intrinsic utilities {Vi,j}i,j and social indicators
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{bi,j}i,j of all the alternatives, for all the individuals. We will
relax this assumption in §IV.

The alternative chosen by each individual i in the absence of
policy (i.e., where yi,j = 0, ∀i, j) is called default alternative,
and denoted j0i , argmaxj′∈argmaxj Vi,j

bi,j′ . In order to
convince an individual i to shift from its default alternative
to any other alternative j, it is necessary and sufficient for
the regulator to provide an incentive wi,j , Vi,j0i − Vi,j , to
compensation for the decrease of individual utility.

B. Maximum Social Welfare Problem

The regulator has to decide, for each individual i, which al-
ternative to incentivize, which can be summarized by a binary
decision variable xi,j that is equal to 1 if the regulator wants
to make individual i choose alternative j, and 0 otherwise.
The incentive can be thus written as yi,j = xi,j · wi,j . The
Maximum Social Welfare problem is

max
{xi,j}i,j

∑

i∈I

∑

j∈Ni

bi,jxi,j (1)

s.t.
∑

i∈I

∑

j∈Ni

wi,jxi,j ≤ Q (2)

∑

j∈Ni

xi,j = 1, i ∈ I (3)

xi,j ∈ {0, 1}, i ∈ I, j ∈ Ni (4)

The objective function (1) aims to maximize the social welfare,
i.e., the sum of all social indicators, constraint (2) indicates
that the regulator cannot spend more than Q. Moreover, only
one alternative per individual is incentivized (3).

For any budget Q, we indicate with B∗(Q) the maximum
of the social welfare, solution of problem (1).

C. Maximum Social Welfare Curve Problem

Suppose now that the regulator is endowed with a maximum
budget Q and that he can spend any budget in the interval
Y ∈ [0, Q]. To decide the exact amount of budget that is
convenient to spend, it is useful to obtain the Maximum Social
Welfare Curve C∗Q, representing the maximum social welfare
reachable, B∗(Y ), for any budget Y ∈ [0, Q], i.e. C∗Q =
{(Y,B∗(Y )) | Y ∈ [0, Q]}, which is clearly monotone non-
decreasing (the larger the budget spent, the larger the social
welfare reached). Observe that, although a maximum budget
Q is available, the regulator may not want to indiscriminately
spend it all, but may choose the actual budget to invest in
incentives, based on several criteria. For instance, the regulator
may use the above curve to find the minimum budget needed
to reach a certain social-welfare target (see the example of
Fig. 3).

III. APPROXIMATION ALGORITHM

The MCKP problem, and thus the Maximum Social Welfare
problem (1), is NP-hard [8] . We provide in this section a
polynomial time algorithm based on greedy algorithms from
the Operations Research literature, which gives us solutions
boundedly close to the optimum.

A. Preliminary Steps

Before presenting the proposed algorithm, we need to
“clean” the input of the problem, removing some irrelevant
alternatives from the set Ni of the alternatives of any individ-
ual i [8, Section 11.2.1]. In broad terms, irrelevant alternatives
are the ones that do not provide enough social indicator
compared to the incentive amount needed to induce them. The
alternatives remaining after the cleaning are usually called LP-
extremes and we denote them withRi ⊆ Ni. Figure 1 gives the
intuition behind the process of constructing the set Ri, which
is called concavization [9, Fig.1,2]. In the figure, alternative
3 is irrelevant since 2 provides a larger social indicator, while
requiring less incentive. Alternative 7 is irrelevant since it
requires to spend more incentive than 6, for a negligible
gain in the social indicator. It is much more convenient to
make a slightly bigger investment to induce alternative 9,
which provides a significant social indicator improvement with
respect to 6.

Fig. 1: Alternative set Ni of individual i and the subset Ri of
LP-extremes.

We follow the Operations Research literature in the slight
abuse of notation of denoting with wi,j the incentive to be
provided to the j-th alternative in Ri. With no loss of gener-
ality, we can assume the ordering wi,1 < wi,2 < · · · < wi,|Ri|.
Obviously, the default alternative is the first alternative in the
set Ri and wi,1 = 0.

Definition III-A.1 (Efficiency and incremental efficiency). We
define the efficiency of an alternative j of individual i as ei,j ,
bi,j−bi,j0

i

wi,j
, i.e., the gain in social indicator that we can gain

via a unit of incentive allocated to that alternative.
We also define the incremental social indicator b̃i,j and the

incremental incentive w̃i,j required for each alternative j ∈
Ri as

b̃i,j , bi,j − bi,j−1
w̃i,j , wi,j − wi,j−1

, j = 2, . . . , |Ri|. (5)

The incremental efficiency is then defined as ẽi,j , b̃i,j/w̃i,j .

The incremental efficiency ẽi,j can be interpreted as the
increase in social welfare for each monetary unit spent, when
individual i shifts from alternative j − 1 to alternative j.
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B. Greedy Algorithm

Very efficient algorithms [8, Section 11.2.1] are known to
solve problem (1), i.e., to approximate the maximum social
welfare for a fixed single value of budget Q. However, to
apply them to the Maximum Social Welfare Curve problem,
in which we want to find the maximum social welfare for a
range of budget values Y ∈ [0, Q], instead of just one, we
would have to run those algorithms from scratch for every
single value of budget. For this reason, we build our solutions
upon a simpler greedy algorithm [8, Figure 11.2], which is
less efficient to solve the Maximum Social Welfare problem
(although still polynomial in time complexity), but easily
extendable to also solve the Maximum Social Welfare Curve
problem. The other advantage deriving from such choice is that
this greedy algorithm has interesting properties that increase
its practical application.

The pseudocode of the algorithm is in Algorithm 1. The
notation [i, j] stands for “j-th alternative of individual i”. First,
the algorithm finds all the LP-extremes alternatives and sort
them by order of decreasing incremental efficiency. Then, at
each iteration, the next pair [i′, j′] with the highest incremental
efficiency is picked (line 8). The alternative induced to i′ is
set to j′ (line 10) and the budget is reduced by the amount
of the incremental weight (6). An additional piece of the
approximation of the social welfare curve is computed (8).
The algorithm stops when the maximum budget Q is depleted.

Observe that the curve CQ given as output by the algorithm
is an approximation of the solution C∗Q of the Maximum Social
Welfare Curve Problem (Section II-C). Moreover, given any
maximum budget Q, the algorithm returns an approximation
B(Q) to the solution B∗(Q) of the Maximum Social Welfare
Problem (1). Note that, in order to achieve B(Q), the policy
issued by the algorithm does not spend the entire maximum
budget Q, but only Q̃ ≤ Q.

The algorithm also gives as output the incremental effi-
ciency of the “split item”, denoted with ẽs,t, useful to compute
the optimality gap of the algorithm (Theorem III-B.1 below).
The name split item, which we borrow from [8], reminds that,
when we allocate budget Q, we add to the solution all the
LP-extreme alternatives, in decreasing order of incremental
efficiency, up to the “split alternative” [s, t], as [s, t] actually
splits the set R of all LP-extremes in two subsets: the first
containing the alternatives to include in our solution, while
we do not include the LP-extremes from the second subset.

The following statements guarantee that the result from the
algorithm is boundedly close to the optimum. We omit the
proofs for lack of space, which can be obtained by adapting [8,
Ch.11].

Theorem III-B.1 (Upper bound). Let us run Alg. 1 with
budget Q, and let Q̃ be the budget actually used and ẽs,t be
the incremental efficiency of the split item. The social welfare
B(Q) we obtain is boundedly close to the social welfare
B∗(Q) of any optimal personalized-incentive policy:

B∗(Q)−B(Q) ≤ ẽs,t · (Q− Q̃). (9)

Algorithm 1: Greedy algorithm for the Maximum
Social Welfare and Maximum Social Welfare Curve
problems.

Input : Social indicators {bi,j}i,j , intrinsic utilities {Vi,j}i,j ,
budget Q

1 Iteration index k := 0

2 Y [k] := 0, Total incentive allocated so far.
3 B[k] := 0, Social welfare obtained in the current allocation.
4 Compute the ordered set Ri of LP-extremes of each individual i.
5 Sort all the alternatives [i, j] according to decreasing incremental

efficiency ẽi,j and put them in a set R.
6 Initialize the alternatives chosen by the individuals {xi,j}i,j as

follows {
xi,1 = 1, (default alternative)
xi,j = 0, for any alternative j > 1

7 while R 6= ∅ and Y [k] ≤ Q do
8 Take [i′, j′], the next alternative with the highest incremental

efficiency ẽi′,j′ from R.
9 Add [i′, j′] to the solution, i.e.:

R := R \ {[i′, j′]},
Y [k+1] := Y [k] + w̃i′,j′ (6)

ẽ[k] := ẽi′,j′ (7)

B(Y ) := B[k], ∀Y ∈ [Y [k], Y [k+1]) (8)

B[k+1] := B[k] + b̃i′,j′

k := k + 1

10 Update the selected alternative for individual i′, i.e.,{
xi′,j′ = 1,
xi′,j = 0, for any other alternative j 6= j′

Output: Curve CQ = {(Y,B(Y )) | Y ∈ [0, Q]}
Chosen alternatives {xi,j}i,j
Incentive policy y = {yi,j}i,j , where yi,j = xi,j · wi,j

Split item [s, t] := [i′, j′]
Incremental efficiency of the split item ẽs,t
Budget actually used Q̃ := Y [k−1]

Corollary III-B.2. The curve CQ obtained via Algorithm 1
is boundedly close to the Maximum Social Welfare Curve C∗Q
from (II-C) and the gap is given by Theorem III-B.1.

Fig. 2 illustrates the property above in a small example.

Proposition III-B.3. The computational complexity of Alg. 1
is O(

∑m
i=1|Ni|· log|Ri|+|R|· logm), where m is the number

of individuals, |Ni| is the number of alternatives of individual
i, |Ri| is the number of LP-extremes of individual i and |R|,∑m
i=1|Ri|.
Note that, since the alternatives of each individual are

independent of the others, the sets Ri can be computed in
parallel, thus reducing even further the computation time.

Despite our algorithm being computationally efficient, there
might be cases in which it is desirable to stop it prematurely,
without waiting for it to completely terminate. This can be the
case when a personalized-incentive policy must be computed
on-the-fly, within tight time-constraints. The following prop-
erties ensure that our algorithm is suitable to this situation,
which eases its practical adoption.
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Fig. 2: Distance between the social welfare curve CQ com-
puted by Algorithm 1, the maximum social welfare curve C∗Q
(Section II-C) and the upper bound of Theorem III-B.1. The
stars represent the incentive spent Y [k] and social welfare
Y [k] = B∗(Y [k]) at each iteration k = 1, . . . , 8 of the
algorithm (line 9).

Remark III-B.4 (Anytime algorithm). Alg. 1 is anytime: if we
stop it prematurely at any iteration k, we get a valid solution
for the Maximum Social Welfare and the Maximum Social
Welfare Curve problems, with budget Q′ = Y [k].

Remark III-B.5 (Incremental use). Another desirable prop-
erty of Algorithm 1 is that we can build on a previously
computed incentive allocation whenever new available budget
becomes available, instead of recomputing the entire alloca-
tion from scratch. To explain this, let us suppose that we have
a certain budget Q and the algorithm returns the allocation
{xi,j}i,j , spending the corresponding incentive amount Q̃.
Suppose now that the available budget increases to Q′ > Q.
In this case, in order to exploit the new additional budget, we
can simply resume the algorithm from its last iteration and
continue up to the furthest iteration such that Y [k+1] ≤ Q′.
This is, per-se, a computational advantage with respect to
algorithms that need to run from scratch every time new
resources (budget) are available.

IV. IMPERFECT INFORMATION

The assumption that the regulator knows perfectly the utility
of the individuals may seem restrictive. In this section, we
show that the algorithm is still relevant when the utility
is imperfectly known. From discrete-choice theory [10], we
assume that intrinsic utility of alternative j of individual i is
Vi,j = V̂i,j+εi,j , where V̂i,j is deterministic and εi,j randomly
Gumbel-distributed. Their specific parameters are specified in
our code [7].

We assume that the regulator knows the deterministic part
V̂i,j of the utility but not the random part εi,j .

Under this assumption, the regulator does not know the
minimum incentive amount needed to induce individual i to
shift from her default alternative j0i to another alternative j. A

heuristic solution would be to set the incentive amount equal
to the expectation of the utility difference between the two al-
ternatives, given that j0i is the default alternative chosen when
there is no incentive. In this case, the incentives {yi,j}j∈Ni

proposed by the regulator to individual i, to convince her to
shift to alternative j, are such that yi,j′ = 0, for any j′ 6= j,
and

yi,j =E(Vi,j0i − Vi,j |Vi,j0i > Vi,j) = (10)

ŷi,j + E(εi,j0i − εi,j |εi,j0i − εi,j > −ŷi,j), (11)

where ŷi,j = V̂i,j0i − V̂i,j is the difference in the deterministic
part of the utility, known to the regulator.

Given an individual i and an alternative j ∈ Ni, if the
regulator proposes the incentive yi,j , as defined by (10), then
individual i has a positive probability to refuse the incentive.
Hence, the expenses of the regulator may be smaller than the
total incentive amount proposed.

Algorithm 1 can be used to compute a personalized-
incentive policy under imperfect information, by defining new
weights

wi,j = E(Vi,j0i − Vi,j |Vi,j0i > Vi,j).

At each iteration of the algorithm, the regulator proposes
the incentive wi′,j′ to individual i′ for alternative j′, where
[i′, j′] is the pair of individual and alternative selected by the
algorithm. The regulator observes the response of the individ-
ual to the incentive. If the individual accepts the incentive, it
decreases the budget by the incentive amount. The regulator
keeps proposing incentives one by one until his budget is
depleted.

Note that, if an individual i accepts an incentive yi,j for
alternative j ∈ Ni, the regulator can still propose her, later, an
incentive yi,j′ for another alternative j′ ∈ Ni. If the individual
refuses the second incentive yi,j′ , she still receives the first
incentive yi,j .

In Section V-B, we apply the policy presented above to
our case study and compare it to the case with perfect infor-
mation, assuming that random terms are Gumbel-distributed.
The following proposition gives the exact expression of the
incentives (10), in case of Gumbel-distributed random terms.

Proposition IV-.1. Let us assume that the random terms are
i.i.d. and follow a Gumbel distribution with scale parameter
µ (i.e., εi,j/µ follows a standard Gumbel distribution). Then,
the incentive amount from (10) can be written as

yi,j = µ
1 + eŷi,j/µ

eŷi,j/µ
ln
(
1 + eŷi,j/µ

)
≥ 0.

V. APPLICATION TO MODE CHOICE

We consider a regulator willing to employ a limited mone-
tary budget in order to promote eco-friendly modes of trans-
portation in order to reduce CO2 emissions.

Observed variables include city- or district-level home and
work location, main mode of transportation used for com-
muting, and some socio-demographic variables. The modes
of transportation are: car, public transit, walking, cycling

4
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Fig. 3: Maximum social welfare curve, up to a daily budget of
3000 C. Note: The social welfare corresponds to the reduction
in CO2 emissions due to the personalized-incentive policy.

and motorcycle. To estimate the utilities Vi,j of each mode
of transportation perceived by each individual, we resort to
multinomial logit modeling on census data on the Rhône
department (222 000 households) from the French statistics
institute INSEE in 2015-19. To estimate the social indicators
bi,j , we use data from the French Environmental Agency [11].
Details about the datasets and the estimation procedure can be
found in our repository [7].

We implicitly assume that the utility and the social benefit
of an individual when commuting by car or public transit does
not depend on how many other individuals commute by car
or by public transit. This approximation is legitimate if the
number of modal shifts induced by the policy is low, so that
their impact on congestion and occupation is negligible. We
checked a posteriori that this latter assumption is verified in
our case (less than 1.60% of individuals shifted mode).

A. Calculation of the Personalized-Incentive Policy

We have about 2 · 105 individuals and 106 alternatives. The
regulator proposes, each day, incentives to the individuals be-
fore their home-work trip. The social indicator of an alternative
is the reduction in CO2 emissions for the trip back and forth,
with respect to the default alternative. The budget is the daily
amount available to the regulator. The social welfare curve
given by Alg. 1 when daily budget is 3000 C is in Fig. 3.

We then set the budget of the regulator to Q = 1800 C.
Running Algorithm 1 with this budget required about 3500
iterations and took about 6 seconds (with Python, on a com-
puter with an Intel i5-8350U 1.7GHz and 24GB of memory).
The algorithm allocates practically all the budget (1798.59 C),
inducing modal shift of 1.57% of individuals and CO2 reduc-
tion by 18 tons per day (3.00% of total CO2 emissions). Thus,
this policy would cost on average 100.61 C for each ton of
CO2 prevented, which is a reasonable carbon price [12].

Despite the small incentives, the reduction in CO2 emissions
is considerable. Indeed, among the individuals who received
incentives, the average amount of incentives is 0.52 C per in-
dividual, for an average daily reduction in CO2 emissions of 5
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Fig. 4: Distribution of incentive amount and CO2 reduction
for the incentives given in one day with budget Q = 1800 C.
The slope of the black line represents the incremental effi-
ciency of the split item returned by the algorithm, ẽs,t = 5
tons of CO2 / euro. Note that all points are above the line
because their incremental efficiency is larger. The histogram
above represents the distribution of the incentive amounts. The
histogram on the right represents the distribution of the CO2
reduction for the incentives.

kilograms. Recall that alternatives providing a large reduction
in CO2, while requiring small incentive, have a high efficiency.
Hence, the algorithm selects first shifts achievable with a
small incentive, i.e., where the individual is almost indifferent
between the two alternatives, which however have a large
difference in CO2. Fig.4 shows the distribution of the incentive
amount and the CO2 reduction for the incentivized individuals.
For most incentives, the amount proposed to individuals is
below 1 euro (larger incentives are rarely efficient).

Fig.5 compares mode share before and after the policy.
Most individuals who received incentives are individuals who
commuted by car and were induced to commute by public
transit (1.2% of all individuals, 74% of individuals who
received incentives). The share of individuals commuting by
car decreased by 2.4%, while public transit ridership increased
by 4%.

We now compute a bound of the optimality gap, i.e.,
the maximum additional CO2 savings we would achieve if
we could use a theoretical optimal policy instead of resort-
ing to Algorithm 1 (Theor. III-B.1). Since the incremental
efficiency of the split item returned by the algorithm is
ẽs,t ' 5 kilograms of CO2 per euro and the unused budget is
Q − Q̃ = 1.41 C, an optimal policy would reduce of just
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Fig. 5: Evolution of mode share before and after the policy.
1.163% of individuals were given incentives to shift from car
to public transit, 27.29% of individuals commuted by public
transit before the policy and were not induced to shift.

TABLE I: Performance of the personalized-incentive policy
for one day, with perfect and imperfect information.

Perfect information Imperfect information

Budget spent 1798.59 C 1797.03 C
Incentives proposed 3486 419
Incentives accepted 3486 247
Acceptance rate 100% 59%
CO2 reduction 17.9 tons 3.8 tons

5 · 1.41 ' 7 kilograms more than Algorithm 1, which is
negligible compared to the total CO2 emissions reduction of
18 tons provided overall.

B. Imperfect Information

We show in this section the performance of our allocation
policy when the regulator has imperfect information about in-
dividual utilities. In this case, the allocation policy is computed
as in Section IV. Using the values of the random variables εi,j
drawn previously, we can check whether individuals accept the
incentives proposed to them. The policy stops when the daily
budget of 1800 C is depleted.

Table I compares the performance of our personalized-
incentive policy under perfect and imperfect information. As
expected, imperfect information decreases the efficacy of the
policy. Since the regulator does not exactly know the indi-
vidual utilities, it may propose insufficient incentives, which
are rejected by individuals (it happens 41% of the times).
This results in a smaller reduction of CO2 (21% compared
with the perfect information case). Note that less individuals

are involved in the incentive program (only 12% compared
to the perfect information case) because incentive given to
single individuals are on average larger, and thus the budget
is depleted more quickly.

These results could be improved by learning from the
responses of individual i to the incentives proposed earlier in
order to compute the incentives that will be proposed to her for
other alternatives. For example, if the regulator observes that
individual i refused the incentive to shift from car to walking,
he learns information on the random term of the utility for car
of individual i.

Also, if it is not possible to propose incentives to individual
i for different alternatives consecutively, the regulator could
propose incentives for multiple alternatives simultaneously.

These extensions cannot be carried out with Algorithm 1.
Future work could study the optimal personalized-incentive
policy under imperfect information.

VI. CONCLUSION

This paper explores a computationally efficient method
for the regulator to determine the optimal incentives to be
provided to each individual to alter their choices in order to
maximize social welfare. Such a method requires to know the
preferences of individuals, which could be possible, thanks to
the wealth of data available for user nowadays, in compliance
to privacy. We will more systematically study in our future
work the imperfect information case, which we have here
tackled empirically. Moreover, we will consider the possible
congestion induced by the distribution of incentives, possibly
via an iterative procedure alternating the incentive algorithm
and the computation of the current level of congestion.
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