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Abstract— The advance towards higher levels of automation
within the field of automated driving is accompanied by
increasing requirements for the operational safety of vehicles.
Induced by the limitation of computational resources, trade-
offs between the computational complexity of algorithms and
their potential to ensure safe operation of automated vehicles
are often encountered. Situation-aware environment percep-
tion presents one promising example, where computational
resources are distributed to regions within the perception area
that are relevant for the task of the automated vehicle. While
prior map knowledge is often leveraged to identify relevant
regions, in this work, we present a lightweight identification of
safety-relevant regions that relies solely on online information.
We show that our approach enables safe vehicle operation in
critical scenarios, while retaining the benefits of non-uniformly
distributed resources within the environment perception.

I. INTRODUCTION
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Automated driving has received significant attention
within the last decades. Both research and industrial ap-
plications try to achieve higher SAE levels of driving au-
tomation [1]. Generally, this is accompanied by increased
hardware and software complexity, reflected in powerful
computational units, more sensors, further diversity of sensor
modalities, and multiple redundancies of sensor and hard-
ware elements. The reason for this increase is the correspond-
ing increase in requirements for operational safety [2], [3],
as responsibilities are shifted further towards the automated
vehicle (AV) instead of its driver.

One central element for safe operation of AVs is environ-
ment perception. The increase in sensor hardware and corre-
sponding algorithm complexity requires significant amounts
of computational resources and energy. One measure to
reduce the required resources is situation-awareness [4]. In
situation-aware environment perception, the key idea is to
distribute resources only towards regions that are identified
as relevant for the current automation task of the vehicle.
Thereby, compared to the naive 360° uniform distribution,
the amount of data that needs to be processed, as well
as the required computational resources, can be drastically
reduced, which is ultimately reflected in the system’s energy
consumption.

For the identification of these regions, prior knowledge of
the vehicle’s environment is often used. Several approaches,
e.g., [5], [6], [7], use an available high-definition map as a
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Fig. 1: Scenario with risk-imposing traffic participant pulling
out of an unmapped area into the road.

representation of relevant regions for environment percep-
tion. As traffic participants naturally operate on known areas
of roads and sidewalks, this is an understandable approach
for lower levels of automated driving. However, two major
concerns arise. First, available maps might be outdated, or
temporary changes in the road topology are not considered.
Second, with a rising level of automation, also unexpected
behavior of traffic participants has to be considered.

Hence, the assumption that all traffic participants solely
operate on known, mapped areas becomes invalid. Examples
might span from wildlife crossing rural roads to traffic
participants pulling out of driveways or other unmapped road
access points unexpectedly, as outlined in Fig. 1 for a tractor
pulling out of a field. Coherently, if the safe operation of
automated driving shall be ensured, situation-aware envi-
ronment perception needs to identify relevant regions not
solely based on prior map knowledge. Instead, to consider
the outlined shortcomings of map-based approaches, online
information about the vehicle’s environment, and especially
its dynamic elements, is required to identify relevant regions.
In this work, we present our identification method based
on online information and summarize our contribution as
follows:
• We present a lightweight identification of relevant

regions corresponding to a potential collision threat,
labeled threat regions. For the identification of these
regions, we leverage the model-free environment de-
scription of a dynamic occupancy grid map (DOGM) [8]
derived from lidar data.

• We evaluate our method in simulation, where we show
that it enables safe operation of a situation-aware
perception system by maintaining sufficient perceptive
capabilities for the AV to act/react on.

• Lastly, we verify the computational efficiency of the
approach by evaluating the power consumption during
post-processing of representative real-world data.
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II. RELATED WORK

The work presented in this paper relates to three research
fields: situation-aware environment perception, threat assess-
ment for automated driving, and object detection based on
DOGMs.

A. Situation-Aware Environment Perception

As introduced in Section I, situation-awareness aims to
distribute resources non-uniformly towards regions within
the perceptive field that are deemed relevant for the current
driving task [9]. Besides the outlined examples leveraging
prior map information, a multitude of approaches to identify
these regions exist, spanning from actuated sensor platforms,
e.g., [10], [11], to saliency-based attention mechanisms in
deep-learning approaches [12].

Recently, we have presented a scalable and modular con-
cept for situation-aware environment perception [13]. Our
concept enables the integration of the above approaches and
optimally configures the software modules of the environ-
ment perception processing chain based on requirements
described in a multi-layer attention map (MLAM). The layers
of the MLAM represent individual influences of the environ-
ment that define relevant regions for the respective situation
of an AV. Prior map knowledge presents one example of
such influences. The requirement towards the environment
perception results from the aggregation of all active attention
layers, where the situation of the AV acts as an activation
function for a subset of the available attention layers.

The work of this paper proposes one possible approach
to identify relevant regions. By integrating the resulting
description of threat regions into our recently presented
concept of situation-aware environment perception as an
attention layer, we enable the corresponding system to react
dynamically on identified threat regions, while retaining the
benefits of our concept.

B. Threat Assessment for Automated Driving

Threat assessment is a central element for the safe op-
eration of AVs. Next to the handling of internally safe op-
eration, e.g., by ensuring stable vehicle dynamic controllers
or resilience against hardware faults, threat assessment for
automated driving represents the handling of external safe
operation, i.e., it aims to identify the potential threat of
known traffic participants interfering or engaging with the
AV. Within the familiar operation cycle of 1) sensing, 2)
planning, and 3) acting, threats are usually identified in later
stages of the sensing step, considered in the planning step
and, coherently, reactive or proactive actions are executed.
Li et al. [14] and Dahl et al. [15] have thoroughly reviewed
the advances in threat assessment. They present a concise
overview of employed methods, metrics, and applications.

The key element of threat assessment is the requirement
for a reliable description of the traffic participant for which
the threat shall be assessed. Attention methods based on
prior map knowledge restrict the perceptive capabilities and
thereby suppress corresponding threat assessment outside the
mapped area. Within the scope of this work, our method for

threat region identification leverages lightweight approaches
for threat assessment at the beginning of the sensing step to
enable the description of the traffic participant. Consequently,
threat assessment of traffic participants within the identified
threat regions is outside of the scope of this work.

C. Object Detection Based on Occupancy Grid Maps

A grid-based environment representation is a robust and
efficient description of a vehicle’s environment that divides
the environment into cells and assigns, in principle, each cell
a probability of it being occupied or free. As the environment
of AVs usually contains dynamic elements, e.g., other traffic
participants, occupancy grid maps (OGMs) were quickly
extended to estimate the velocity of each cell, resulting in
dynamic occupancy grid maps (DOGMs). A key benefit of
the grid-based representation is that it requires neither spatial
or movement models for objects nor associations of grid
cells to objects. This enables an essentially unconstrained
representation of an AV’s environment. [8].

However, a model-based description of traffic participants
is beneficial for interpreting and anticipating their behavior.
This is especially valid considering the requirements for
threat assessment (cf. Sec.II-B). To extract model-based traf-
fic participant representations from DOGMs, i.e., associating
cell clusters of similar attributes to objects, existing ap-
proaches can be separated into cluster-based approaches and
deep-learning approaches. Cluster-based approaches, e.g.,
Steyer et al. [16] or Gies et al. [17], employ standard cluster-
ing algorithms like DBSCAN [18], to group occupied cells of
similar attributes. They further plausibilize the resulting clus-
ters by evaluation of the attributes of cells within the cluster
or against attributes of their surrounding cells. Depending on
the data fusion approach within the environment perception,
clusters might be identified for the entire grid map (late
fusion in [17]), or only new object hypotheses are generated
from remaining cells not associated with existing object
hypotheses (early fusion in [16]). Deep-learning approaches,
e.g., [19], [20], aim to overcome challenges of clustering
approaches by intrinsically incorporating regional features
within the employed network architectures to improve the
resulting object detections. Approaches employing recurrent
neural networks, e.g., Engel et al. [21], incorporate the
time domain to further stabilize estimates and reduce noise
artifacts at increased complexity.

The above approaches are commonly employed as input
to model-based tracking algorithms. As the scope of our
work lies on threat assessment in an early stage of the AV’s
operation cycle, we base our approach on lightweight, pre-
filtered clustering algorithms.

III. SYSTEM ARCHITECTURE

In this section, we briefly outline the system architec-
ture representing the interaction of our method for cluster-
based threat region identification from DOGMs with our
recently introduced concept of situation-aware environment
perception, labeled awareness processing [13]. The system
architecture is shown in Fig. 2.



Fig. 2: Interaction between situation-aware environment per-
ception (blue) and an existing environment perception pro-
cessing chain (gray), containing required software modules
mr and optional modules mo. Inactive modules are indicated
by fading. Diagram adapted from [13].

First, the situation is derived from sensor and other data,
e.g., from external sources like infrastructure or other traffic
participants. Second, based on the situation, corresponding
attention layers are considered for the generation of the
MLAM. Software modules used for the attention map gen-
eration, i.e., the processed output of a module is evaluated
by an attention layer, are indicated as required. As the set of
active attention layers depends on the situation, the sets of
required and optional modules change dynamically. This is
indicated by the dashed two-way arrow. Third, considering
the requirements represented by the MLAM as well as the
additional module requirements of the attention layer(s), the
processing chain is configured. Lastly, the MLAM is applied
intra-module-wise. Here, the non-uniform distribution of sys-
tem resources towards relevant regions as per the MLAM is
enforced. Modules required for the attention map generation
remain unaffected to ensure the correct identification of new
or changing relevant regions over time.

Our method for threat region identification (cf. Section IV)
enables the introduction of an attention layer into the aware-
ness processing that mitigates the challenges of map-based
attention distribution. Being based on a DOGM, modules
required for its generation must be active when threat region
identification is expected. As we focus the work of this paper
on the method for threat region identification, integration and
verification of our method in an application of awareness
processing are outside of its scope.

IV. THREAT REGION IDENTIFICATION

This section presents our method for threat region identi-
fication in two steps. First, clusters of non-stationary cells of
a DOGM are identified. We use the DOGM implementation
presented by Nuss et al. [22] and generate clusters in an
adapted approach from Gies et al. [17] using DBSCAN [18].
Details of the used implementation and our adaptations are
provided in Section IV-A. Second, the future occupied area
of identified clusters is predicted, which is then evaluated for

intersection with the AV’s planned movement.
Clusters corresponding to an intersection are identified

as threat regions. These regions are to be considered as
requirements for perception modules, e.g., by representing
them as an attention layer in the context of awareness
processing (cf. Section. III). As they do not represent a threat
assessment of relevant traffic participants within the region,
we emphasize that our method is designed to be efficient
and straightforward. In this way, our method complies with
the reduction in resource consumption pursued in situation-
awareness, while enabling the description of traffic partici-
pants for threat assessment.

A. Cluster Identification

The DOGM presented by Nuss et al. [22] is gener-
ated from lidar data using a particle-based Dempster-Shafer
probability hypothesis density (PHD) [23] / multi-instance
Bernoulli [24] (MIB) filter. Each grid cell of size a × a
corresponds to a state s = {MO,MF , p, v, Pv}, comprising
the belief masses for being occupied MO or free space MO,
the cell’s 2D position p, as well as the cell’s 2D velocity v
and covariance matrix Pv . We refer to [22] for details.

The cluster identification is adapted from the methodology
introduced by Gies et al. [17], which is intended for object
detection from the DOGM. The approach first employs a
search mask to neglect both unknown as well as unoccupied
cells. We define that stationary objects outside of known,
driveable areas do not pose an external threat (cf. Section II-
B), so we further restrict the search mask to only include
cells above a minimum required absolute velocity threshold.
Second, DBSCAN [18] is used for the remaining cells to
identify all clusters C. Every identified cluster ck ∈ C
with ck = {sj}j∈Jk

relates to its associated cells j ∈ Jk
and their state vectors sj . Third, the identified clusters
C are plausibilized w.r.t. occupancy probability, movement
probability, and velocity variances of their associated cells
in Jk. In addition, we plausibilize the size of the cluster to
neglect artifacts.

B. Occupied Area Prediction and Intersection Evaluation

The future occupied area for a plausibilized cluster is
predicted over a prediction horizon T using its orienta-
tion ϕk, position pk, absolute velocity v̄k, and object box
estimate Bk. The position is estimated by averaging the
corresponding state elements of associated cells. The cluster
orientation and absolute velocity are derived from their 2D
velocity v. Lastly, Bk is derived from the positions of all
contained cells and oriented alongside ϕk. The occupied area
prediction predck is then described by the convex hull that
is spanned between the cluster’s object box estimate Bk and
its prediction at T using a constant velocity (CV) model for
the cluster’s orientation ϕk and velocity v̄k. The convex hull
of an occupied area prediction can effectively be described
by a set of points:

pred = {phull1 , phull2 , ..., phulln} . (1)



Fig. 3: Example for two line segments that intersect. The
orientation is indicated by a curved arrow for ordered point
sequences ABC and ABD that are indicated by dashed
arrows. Figure adapted from [25].

Our method to estimate the future occupied area of a
cluster within the prediction horizon relates to the group of
kinematic-based threat assessment (cf. [14], [15]). Similar to
other approaches of its type, it is efficient to implement and
easy to extend if corner cases deem that necessary.

To identify a cluster as a threat region, the intersection of
its predicted occupied area with the planned movement of the
AV predAV is evaluated. As the dimension and kinematics of
the AV as well as its planned trajectory within the prediction
horizon T are known, predAV can be represented as a set
of points describing the closed hull as per (1). With predAV

and predck
represented as a set of 2D points, the two areas

intersect if at least one pair of line segments between two
adjacent hull points of the AV and the cluster ck intersect.
Consequently, 2D line segment intersection is evaluated for
all combinations of line segments of predAV and predck

.
While many methods for 2D line segment intersection

exist, we employ the method of Cormen et al. [25]. They
evaluate the orientation of combinations of three ordered
points from the four points describing the two line segments.
For the example shown in Fig. 3, the segments AB and CD
intersect, as both ABC and ABD, as well as CDA and
CDB have different orientations. Although the consideration
of collinearity is possible, we evaluate only true line segment
intersection here. The case that one pair of line segments is
collinear and all other pairs do not intersect can only occur
where the cluster’s future occupied area is parallel to the
AV’s prediction. In this case, the cluster is either already
on the AV’s planned trajectory, or it does not pose a threat
in terms of collision risk. Similarly, if predck

is contained
within predAV , the cluster is on the AV’s planned trajectory
and no additional threat region identification is required.

Finally, the identified threat regions, i.e., clusters that relate
to any intersection of line segments between predck and
predAV , need to be considered in the environment perception
of an AV so that the potential collision threat of traffic
participants within the identified regions can be assessed. We
have outlined the integration as an additional attention layer
in situation-aware environment perception in Section III.

V. EVALUATION

Closed-loop testing of safety-critical features in real-
world conditions is both dangerous as well as cost-intensive.
Therefore, we evaluate our introduced method for identifying
threat regions using DeepSIL [26], a recently published

closed-loop simulation framework. The framework can pro-
duce trajectories of vehicles alongside a pre-defined map
using the lanelet2 [27] format, which can be easily generated.
Further, it provides ground-truth kinematic data and a simu-
lated sensor for generating a DOGM. Instead of the resource-
intensive multiple trajectory prediction network (MTP), the
vehicle trajectories for our evaluation are generated from the
efficient intelligent driver model (IDM) [28], which is used
as a baseline in [26].

The intrinsic threat imposed by a traffic participant is often
related to time-based metrics (cf. [14], [15]), e.g., the time
to collision (TTC) or the time to react (TTR). Our work
focuses on enabling early detection of potentially dangerous
traffic participants without considering the intrinsic kine-
matic relations. Therefore, to evaluate the effectiveness of our
method, we define the TTR to reflect the duration between
the time when its detection becomes possible (time of earliest
detection, ToD) and the time of collision (ToC). The benefit
of our approach is then reflected in the relative increase of
the time to react (riTTR)

riTTR =
ToDours − ToC
ToDprior − ToC

− 1, (2)

which is represented by the relation between our method and
a detection method solely based on prior map knowledge. We
determine ToDours as the first time of intersection of predAV

and predck
. Further, we determine ToDprior as the first time

any point of Bk intersects with predAV , representing the
time a traffic participant has sufficiently entered a perception
area solely based on prior map knowledge.

We have outlined plausible real-world examples for the
necessity of online threat region identification in Section I. To
identify reasonable scenarios for evaluating our method, we
refer to established safety assessment protocol descriptions,
e.g., by NHTSA [29], that are designed for automated emer-
gency braking (AEB). The scenario descriptions can be sep-
arated into three groups: approaching and lane changing on
a straight path, straight crossing paths, and turning towards
or away from the AV’s orientation. While most scenarios
are covered with the assumption of prior map knowledge,
the most challenging scenarios refer to the group of turning
traffic participants, as indicated in Fig. 1. Consequently,
within the scope of this work, we evaluate the riTTR in two
turning constellations that reflect challenging, risk-imposing
scenarios.

The simulation results for T = 3 s, reflecting a commonly
chosen prediction horizon, are visualized in Fig. 4 at ToDours.
The figure shows predAV in green and predck in blue.
The orientation of DOGM cells is color-coded as indicated
by the color-code circle. Further, the lane boundaries are
outlined, where only the straight lane is contained in the
prior map knowledge. The dark-gray rectangles describe the
derived perception area as per situation-aware environment
perception (cf. Section II-A). Consequently, such an area at a
cluster’s position reflects its identification as a threat region.
The numerical results are summarized in Tab. I and will be
discussed in the following.



(a) Traffic participant turning into the AV’s path.

(b) Traffic participant turning over the AV’s path.

Fig. 4: Simulation results for T = 3s at ToDours. predAV and
predck are indicated in green and blue, respectively. DOGM
cell orientation is color-coded as per the color circle. The
derived perception area is indicated by dark-gray rectangles.

A turning in scenario is shown in Fig. 4a, representing
the scenario described in Fig. 1. The initial movement of the
traffic participant is similar to a straight crossing scenario so
that the threat is well-modeled by the CV model for predck

.
Consequently, ToDours increases to 2.1 s. A riTTR of 425 %
enables a safe operation of the AV.

Fig. 4b shows a turning over scenario, where a traffic
participant first moves parallel to the AV and then turns
into its path. The riTTR of 60 %, reflecting an increase from
ToDprior = 0.5 s to ToDours = 0.8 s, is still significant and
an improvement towards safe operation can be assumed.
Further, Fig. 4b shows that the estimated cluster orientation
does not match the actual orientation of the simulated traffic
participant. This is a known effect of the used implementa-
tion of the DOGM (cf. Nuss et al. [22]). For extended objects,
the CV particle model is unable to represent a turning object
properly. Instead, a predicted particle of one position of
the object is confirmed at another position of the object. A
change in orientation is reflected at first only at the respective
object edges. As the cluster orientation ϕk is derived from
cell averages, it consequently diverges from the actual object
orientation.

With respect to our introduced CV model for deriving
predck

, a straightforward adaptation to mitigate this effect
is the introduction of a cluster angle uncertainty ϕu, with
ϕ̃k = ϕk + ϕu, so that the rectangular shape of predck
is transformed into a symmetrical trapezoid shape. Intro-
ducing an uncertainty of ϕu = 10◦ for the turning over

TABLE I: Numerical results for the scenarios in Fig. 4. Two
cluster angle uncertainties of 0° and 10° are compared.

scenario prior ϕu = 0◦ ϕu = 10◦

ours riTTR ours riTTR

turning in 0.4 s 2.1 s 425 % 2.1 s 425 %
turning over 0.5 s 0.8 s 60 % 1.1 s 120 %

Fig. 5: System power consumption comparison between
baseline and included threat region identification. Whiskers
correspond to 3×inter-quartile range.

scenario, ToDours increases to 1.1 s and riTTR increases to
120 % respectively. An alternative to model adaptations is
provided by Schreiber et al. [30]. They present a promising
deep-learning-based approach for generating DOGMs using
a recurrent network architecture. Their work is motivated
explicitly by the indicated shortcomings of the CV particle
filter model. However, having the conciseness of this paper
and the already good results of our model adaptation in mind,
further evaluation of mitigation methods is omitted.

VI. SYSTEM POWER CONSUMPTION

In the previous section, we verified that our method
enables safe operation of an AV in risk-imposing scenarios.
In this section, we evaluate the system power consumption
as a measure for added complexity since computational
resources aboard an AV are very limited, and their usage
shall be minimized within the context of situation-aware
environment perception. We added our method of threat
region identification to our perception processing chain of
an AV (cf. [17]) and post-processed sensor data from a
representative route within the vicinity of Ulm University.
Post-processing is conducted on a high-level consumer-grade
PC using an AMD Ryzen Threadripper 2990WX CPU,
two NVIDIA GeForce RTX 2080 Ti GPUs, and 64GB of
RAM. The route comprises approximately 5 km with various
aspects of urban and rural driving as well as a short highway-
like section. It does not contain any scenarios corresponding
to an actual threat of collision. The data were captured with
our automated test vehicle, equipped with a range of sensors,
see [31] for details.

The system power consumption, measured during the post-
processing of the route, is averaged from 100 samples per
second and shown in Fig. 5 as boxplots. The figure compares
the power consumption distribution between the baseline,
containing only processing modules required to generate
our particle-based DOGM and the additional threat region
identification module. The results verify that our approach is
lightweight, as the median power consumption is increased



by only 0.8 %. Hence, our method presents a viable approach
for the identification of threat regions for situation-aware
environment perception.

VII. CONCLUSIONS

In this work, we have presented a lightweight identification
of threat regions corresponding to a potential collision risk
of traffic participants with the automated vehicle. For the
identification of these regions, our method requires no prior
knowledge of the environment but uses a clustering approach
for cells of a dynamic occupancy grid map. This is combined
with a model-based prediction to evaluate the intersection
of a cluster’s future occupied area with the AV’s known
trajectory. Contrary to approaches relying solely on prior
map knowledge for situation-aware environment perception,
we have shown that our prior-independent approach sig-
nificantly increases the reaction time for an AV in the
evaluated collision scenarios, while increasing the median
system power consumption by only 0.8 %. By integrating
our method for threat region identification as an attention
layer into our previously presented concept for situation-
aware environment perception (cf. [13]), we enable a safe
operation of AVs in terms of perceptive capabilities, while
maintaining the benefits of situation-awareness. Further, we
have outlined countermeasures to resolve challenges related
to the underlying constant velocity (CV) model for particles
of the chosen DOGM implementation. In our continued
research, we will pursue the outlined countermeasures, e.g.,
model adaptations or other derivations of the DOGM like
from [30].
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