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Abstract— In recent years, reachability analysis has gained
considerable popularity in motion planning and safeguarding of
automated vehicles (AVs). While existing tools for reachability
analysis mainly focus on general-purpose algorithms for formal
verification of dynamical systems, a toolbox tailored to AV-
specific applications is not yet available. In this study, we
present CommonRoad-Reach, which is a toolbox that integrates
different methods for computing reachable sets and extracting
driving corridors for AVs in dynamic traffic scenarios. Our
toolbox provides a Python interface and an efficient C++ imple-
mentation for real-time applications. The toolbox is integrated
within the CommonRoad benchmark suite and is available at
commonroad.in.tum.de.

I. INTRODUCTION

Compared with human-driven vehicles, highly automated
vehicles (AVs) are expected to offer increased road safety
and passenger comfort, reduced emissions and travel time.
Major challenges, such as strict safety guarantees in critical
situations, decision making, and motion planning in small
solution space, are yet to be resolved to fully unfold these
benefits. Reachability analysis, which determines the set of
all reachable states (also referred to as reachable set) of a
system over time, is a powerful technique to address these
challenges. An example of a reachable set is shown in Fig. 1.
Despite reachability analysis having been well-researched
over the past decades with continuous improvements in
scalability and tightness [1], publicly available toolboxes are
either not real-time capable for AV-specific applications or
do not take into account time-varying forbidden states orig-
inating from traffic participants present in the scenario. This
study presents a toolbox for computing the reachable sets of
AVs for motion planning applications. The toolbox integrates
two methods presented in our previous works: polytopic set
propagation [2] and graph-based propagation [3].

A. Related Work

1) Reachability analysis for road vehicles: General-
purpose approaches for reachability analysis are primarily
used for formal verification, i.e., checking whether a system
can reach unsafe sets considering system dynamics and con-
straints, e.g., on input or disturbance bounds. These methods
are useful for AVs to verify their motion plans, see, e.g., [4],
[5]. However, motion planning or rigorous computation of
safety metrics, such as time-to-react [6], requires especially
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Fig. 1: Exemplary computation result of our toolbox for a simple scenario
with a static and dynamic obstacle. Our tool computes the reachable set of
the ego vehicle over time considering the initial state and (time-varying)
forbidden states. The projection of the reachable set onto the position
domain yields a collision-free drivable area shown here for step k = 28.

efficient algorithms considering surrounding moving vehi-
cles.

Several intriguing applications of reachability analysis for
AVs have recently been proposed in the literature: Reacha-
bility analysis can be used to determine the set of states that
ultimately result in a collision irrespective of the input of
choice [7]. Set-based prediction using reachability analysis
has been proposed to capture all possible future behaviors
of surrounding traffic participants, which also considers
limitations due to the field-of-view and traffic rules [8]–
[10]. Online verification techniques that utilize safety layers
based on reachability analysis can ensure the safety of
motion planners [11]–[15]. A further line of research uses
reachable sets to extract possible driving corridors, i.e.,
spatio-temporal constraints, for motion planning [16], [17].
For this application, set-based techniques are especially well
suited in complex scenarios as they do not suffer from
discretization effects and are computationally feasible under
real-time constraints, in contrast to other methods, such
as sampling-based [18] or combinatorial [19] approaches.
Driving corridors extracted from reachable sets are integrated
with different motion planners in [16], [20]. Furthermore,
reachable sets are used to determine specification-compliant
planning space [21] and to negotiate conflicting planning
space among a group of cooperating vehicles [22].

2) Existing toolboxes for reachability analysis: Recently,
several publicly available toolboxes for reachability analysis
have been developed. Tools such as Flow* [23] and SpaceEx
[24] offer efficient C++ implementations of set representa-
tions and reachability algorithms for linear [24] and non-
linear [23] hybrid systems. Although C++-based tools have
good performance, their compilation overhead makes them
difficult to use for prototyping. Hence, reachability tools
written in just-in-time compiled or interpreted languages are
desirable; examples include the MATLAB-based tool CORA
[25], JuliaReach [26], or the Python-based tool HyLAA [27].
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B. Contributions

Existing toolboxes are either not capable of exclud-
ing time-varying forbidden states [23]–[26], [28], or are
based on inherently inefficient Hamilton–Jacobi–Bellmann
solvers [29]–[32]. Despite the aforementioned applications of
reachable sets in recent works, a toolbox implementing those
methods is not publicly available. Our open-source toolbox
is tailored to AV-specific applications and
• integrates two approaches for computing reachable sets,

i.e., using polytopic set propagation and graph-based
propagation;

• extracts collision-free driving corridors that can be used
as planning constraints for motion planners;

• provides Python and C++ implementations of the al-
gorithms, offering convenient prototyping and real-time
computation to the users; and

• is integrated within the CommonRoad1 benchmark
suite [33], which offers a simulation framework, an ex-
tensive scenario database, and various tools for motion
planning of automated vehicles.

The remainder of this study is structured as follows: Sec. II
introduces necessary preliminaries and Sec. III highlights
the implementation details of our toolbox. In Sec. IV, we
demonstrate the key features of our toolbox in numerical
experiments. Lastly, we draw conclusions in Sec. V.

II. PRELIMINARIES

A. System Description

The scenarios in our toolbox are described in the Com-
monRoad format, which represents the road network using
lanelets [34] and models environment elements such as
obstacles and traffic signs. We predict the motion of dynamic
obstacles using their most-likely trajectories; however, our
toolbox is also adaptable to any other prediction method
such as set-based prediction [8]. Both the global Cartesian
coordinate system and a local curvilinear coordinate system
that is aligned with a reference path [34] can be used to
compute the reachable set. The possible reference path is
the centerline of a lane or a path through the road network
leading from the initial state to a specified goal region.

Let us introduce some necessary notations: We denote by
k ∈ N0 a discrete step corresponding to a continuous time
tk = k∆t, with a predefined time increment ∆t ∈ R+. For
a given dynamical system, xk ∈ Xk ⊂ R4 represents a state
in the state space Xk, and uk ∈ Uk ⊂ R2 represents an input
in the input space Uk, each at step k. Let � be a variable,
we denote its minimum and maximum values by � and �,
respectively. Since our toolbox facilitates the computation in
Cartesian and curvilinear coordinate systems, we introduce
the general subscripts ζ ∈ {x, s} and η ∈ {y, d} to
indicate the direction of a variable in the corresponding
coordinate frame. Thus, (x, y) denotes the global coordinates
in the Cartesian frame, and (s, d) denotes the longitudinal
coordinate s and lateral coordinate d in a local curvilinear

1https://commonroad.in.tum.de/

frame. Computations within the Cartesian coordinate system
do not rely on a reference path and handle unstructured sce-
narios better. In contrast, computations within a curvilinear
coordinate system are better suited for structured scenarios
with lanes.

We abstract the system dynamics of a hypothetical ego
vehicle using a point-mass model. This abstraction ensures
that the reachable set of the high-fidelity model is always a
subset of that of the simplified model; alternative abstractions
can be found in [35], [36]. The state of the system is modeled
as xk = (pζ,k, vζ,k, pη,k, vη,k)T, and the system accepts
inputs uk = (aζ,k, aη,k)T, where p, v, a denote position,
velocity, and acceleration, respectively. The discrete-time
system dynamics of the ego vehicle is

xk+1 =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t

0 0 0 1

xk +


1
2∆2

t 0
∆t 0
0 1

2∆2
t

0 ∆t

uk. (1)

The velocities and accelerations in both directions of the
coordinate system are bounded by

vζ ≤ vζ,k ≤ vζ , vη ≤ vη,k ≤ vη, (2a)

aζ ≤ aζ,k ≤ aζ , aη ≤ aη,k ≤ aη. (2b)

These bounds are chosen to consider the kinematic limita-
tions within the adopted coordinate system, see, e.g., [37].
Note that within the Cartesian coordinate system, we over-
approximate Kamm’s friction circle with a box; within curvi-
linear coordinate systems, we assume that the ego vehicle
follows the reference path and thus use more conservative
parameters for the longitudinal and lateral driving directions.

B. Reachable Set

Let x0 be the initial state and u[0,k] be an input trajectory
between steps 0 and k. We use χk(x0,u[0,k]) to represent
the solution of (1) at step k. Given the occupancy of the ego
vehicle Q(xk) ⊂ R2 and the set of time-varying occupancies
of all obstacles Ok ⊂ R2 at step k, we define the set of
forbidden states as Fk = {xk ∈ Xk|Q(xk) ∩ Ok 6= ∅}. In
this study, the reachable set of the ego vehicle at step k is
defined as the set of states reachable from the initial set of
states X0 while avoiding the set of forbidden states Fτ for
every step τ ∈ {0, . . . , k} [2]:

R∗k(X0) :=
{
χk(x0,u[0,k])

∣∣∣∃x0 ∈ X0,∀τ ∈ {0, . . . , k},

∃uτ ∈ Uτ : χτ (x0,u[0,τ ]) /∈ Fτ
}
.

Subsequently, we omit X0 for brevity. Obtaining R∗k is in
general computationally expensive; therefore, we compute
its over-approximation Rk. As a set representation, we
choose the union of base sets R(i)

k , i ∈ N. Each base set
R(i)
k = P(i)

ζ,k × P
(i)
η,k is a Cartesian product of two convex

polytopes P(i)
ζ,k and P(i)

η,k, which represent the reachable
positions and velocities in the (pζ , vζ) and (pη, vη) planes,
respectively (Fig. 2a–b). This representation is beneficial
compared to other set representations in [1, Tab. 1] since
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Fig. 2: Polytopes and drivable area of a base set R(i)
k .
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Fig. 3: Example of a reachability graph GR. Nodes of the same color have
connected drivable areas within one step and belong to one driving corridor
(see Sec. II-C and Fig. 4).

polytopes are closed under linear maps and intersections;
because of the restriction to two-dimensional polytopes, the
unfavorable computational complexity of polytopes for high
dimensions is irrelevant to our application. To simplify the
notation, we denote the collection of R(i)

k by Rk, i.e., Rk ={
R(1)
k , . . . ,R(i)

k

}
. The projection of R(i)

k onto the position
domain yields a axis-aligned rectangle D(i)

k (Fig. 2c), whose
union is referred to as drivable area Dk. Similarly, we use
Dk to denote the collection of D(i)

k .
We also require the reachability graph GR, which stores

the spatio-temporal relationships of the base setsR(i)
k as a di-

rected, acyclic graph (Fig. 3). In GR, each node corresponds
to one base set R(i)

k and a connecting edge between two base
sets R(i)

k and R(j)
k+1 indicates that R(j)

k+1 is reachable from
R(i)
k after one step.

C. Driving Corridor

We follow the definition of driving corridors presented
in [16]. At step k, the drivable area Dk may be disconnected
due to the presence of obstacles, thus we introduce the notion
of connected sets C(n)

k ⊆ Dk, n ∈ N0 within the drivable
area. A sequence of connected sets over steps 0 to kf ,
where kf is the final step, yields a driving corridor C(·) =

(C(m)
0 , . . . , C(n)

kf
). At every step, the drivable area can contain

several connected sets, thus multiple driving corridors may
exist. Fig. 3 shows two different driving corridors identified
within a reachability graph. Therein, nodes of the same color
collectively represent one driving corridor. The two driving
corridors are visualized in Fig. 4. Each corridor corresponds

ego vehicle

dynamic obstacle

C(1)k

C(2)k

Fig. 4: Example of two driving corridors extracted from the reachability
graph in Fig. 3. The driving corridors correspond to a braking maneuver
(top) and an evasive maneuver (bottom). Each rectangle represents a
connected set C(n)k at different steps k ∈ {0, . . . , kf}.

to a possible maneuver of the ego vehicle with respect to the
crossing obstacle.

Driving corridors can be separated into longitudinal and
lateral driving corridors. This is particularly useful for motion
planners that independently plan the longitudinal and lateral
motions. A possible implementation is provided in [16]:
Given a longitudinal driving corridor and the positions pζ,k
of a planned longitudinal trajectory, a lateral driving corridor
is obtained by identifying the connected sets within the
longitudinal driving corridor, which contain the positions
pζ,k for all k ∈ {0, . . . , kf}. The search space for the lateral
planning problem is thus further constrained by the fact that
a lateral driving corridor in [16] is a subset of a longitudinal
driving corridor.

III. IMPLEMENTATION DETAILS

A. Overview

CommonRoad-Reach provides both the computation of
reachable sets and the extraction of driving corridors. Subse-
quently, we present an overview of the toolbox and highlight
its core modules (Fig. 5). The toolbox consists of the
following core modules:
• ReachableSetInterface serves as the user inter-

face for setting configurations, computing reachable sets
and drivable areas, and extracting driving corridors.

• ReachableSet (Python) is an abstract superclass that
instantiates the subclasses for computing reachable sets
using either polytopic set propagation or graph-based
propagation method.

• PyReachableSet is a Python implementation of
the reachable set computation using the polytopic set
propagation method described in [2].

• CppReachableSet interacts with ReachableSet
(C++), which is a C++ implementation of the polytopic
set propagation method.

• PyGraphReachableSetOffline precomputes
reachability graphs for the graph-based reachability
analysis according to [3].

• PyGraphReachableSetOnline loads the precom-
puted reachability graphs and performs the online com-
putations of the graph-based reachability analysis.

• DrivingCorridorExtractor implements func-
tions to extract possible driving corridors from a reach-
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Fig. 5: UML class diagram of the core modules of our toolbox.

ability graph GR.

B. Reachable Set Computation

1) Polytopic set propagation method: This method is
implemented in Python and C++. In addition to [2], we
support the computation in a local curvilinear coordinate
system of the ego vehicle. The computation executes the
following steps, as shown in Fig. 6:

1) Propagation: Each base set R(i)
k−1 ∈ Rk−1 of the

previous step is propagated according to the system
model (1), resulting in the propagated sets RP,(i)

k and
their corresponding drivable areas DP,(i)

k projected onto
the position domain.

2) Repartition: DP,(i)
k are merged and repartitioned using

a sweep line algorithm and a segment tree. This step
helps reduce the number of rectangles and thus reduces
overall computation time.

3) Collision detection: The repartitioned rectangles DP,(q)
k

are checked for collision with obstacles using the
CommonRoad Drivability Checker [38]. The colliding
rectangles are recursively split into two new equally
sized rectangles along their longer axis. This is repeated
until there is no more collision or the diagonal of the
rectangle is smaller than a user-specified threshold.

4) Creation of new base sets: The new base sets R(j)
k are

created by determining the reachable velocities for the
collision-free drivable areas D(j)

k .
We refer the readers to [2, Alg. 1] for more computational
details.

2) Graph-based propagation method: The second pro-
vided method is the graph-based propagation method pre-
sented in [3]. In contrast to the polytopic propagation,
the reachable sets are derived by traversing a precomputed
reachability graph GR and removing edges that collide with
the forbidden states. To use a generic, offline-computed
graph for any initial state x0 and forbidden states Fk, we
precompute it assuming an initial state x0,off = 0 (four-
dimensional zero vector, see (1)), without considering Fk,
and by discretizing the reachable sets Rk using a regular
grid in the position plane. We add additional edges in GR
representing the reachability between sets R(i)

k and R(j)
k+κ

with κ ∈ {1, . . . , nMS} across up to nMS ∈ N steps to
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Fig. 6: Selected steps in the polytopic set propagation method. We show
the reachable sets projected onto the position domain.
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Fig. 7: Three main steps of the graph-based propagation method to remove
unreachable nodes from the offline-computed graph. We show the corre-
sponding reachable sets projected onto the position domain.

avoid the accumulation of discretization errors during the
online phase. The online computation subsequently executes
the following steps (Fig. 7) to account for the initial state
and forbidden states:

1) Translation: To consider a given initial state x0, the
offline-computed reachable set Rk is translated along
the trajectory of the zero-input response χk(x0,0u)
starting in x0.

2) Determining reachability: To determine the reachability
of each set R(i)

k , we check which of the corresponding
nodes in GR are connected for all κ ∈ {1, . . . , nMS} to
at least one parent nodeR(j)

k−κ. Nodes are removed from
GR if they are not reachable. This principle is shown in
Fig. 8.

3) Removal of forbidden states: Nodes whose correspond-
ing set R(i)

k intersects with Fk are removed from GR.
We perform this check by discretizing obstacles using
the same road grid as in the computation of Rk.

After the above steps, we can optionally traverse the graph
backward in time, starting at the final step kf to discard all
nodes from which the final set Rkf cannot be reached. We

apply a similar principle as in step 2 and remove nodesR(j)
k−1

from GR without any reachable children in Rk.
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Fig. 8: One-dimensional example for reducing the discretization error of [3]:
By using edges across nMS > 1 steps to determine the reachable sets, we
prevent the aggregation of discretization errors in intermediate steps. The
undiscretized drivable area is shown for comparison.

3) Comparison of the two methods: The polytopic set
propagation method can handle time-varying bounds on ve-
locities (2a) and accelerations (2b) of the vehicle originating
from, e.g., road curvature, traffic rules, and handcrafted
rules [21]. In contrast, this is not possible in the graph-based
method due to the fixed parameters in the precomputation
of the reachability graph. This characteristic causes greater
over-approximation of the computation results in the curvi-
linear coordinate systems due to the previously mentioned
time-varying velocity and acceleration constraints. On the
other hand, the graph-based method skips geometric opera-
tions, such as splitting of reachable sets, thus the computation
is often more efficient than the polytopic set propagation.

C. Driving Corridor Extraction

Our toolbox can further extract driving corridors from a
reachability graph generated from Sec. III-B. To this end, we
begin at the final step kf and use a similar graph traversal
procedure described at the end of Sec. III-B.2 with the fol-
lowing modifications: Before checking reachability between
sets R(i)

k and R(j)
k−1, we identify the connected sets C(n)

k at
each step k. Then, we perform the graph traversal procedure
with κ = 1, i.e., we check the reachability of nodes within
the connected set C(n)

k over one step. After traversing GR
backwards in time and identifying the connected sets C(n)

k for
all k ∈ {0, . . . , kf}, the relationships between connected sets
C(n)
k and C(m)

k−1 of consecutive steps are stored in a separate
graph GC in which each path from C(m)

0 to C(n)
kf

corresponds
to a driving corridor (see Sec. II-C). Optionally, one can
constrain driving corridors to end in a user-specified terminal
set Ikf ⊆ R2 in the position domain (e.g., a set of goal
states).

As an additional option, lateral driving corridors (see
Sec. II-C) can be determined using the same procedure
by invoking the extraction with a driving corridor and a
longitudinal trajectory (pζ,0, . . . , pζ,kf ) computed by, e.g.,
an optimization-based motion planner. The procedure for
extracting the corridor is similar to the description above,
with the addition that during backwards traversal of GR,
parent sets R(j)

k−1 that do not contain the position pζ,k−1

of the given longitudinal trajectory are excluded.

TABLE I: PARAMETERS USED IN NUMERICAL EXPERIMENTS FOR DIF-
FERENT COORDINATE SYSTEMS

Parameter Unit Cartesian Curvilinear

kf step 30 30
∆t s 0.1 0.1
vζ m/s 20.0 20.0
vζ m/s -20.0 0
vη m/s 20.0 4.0
vη m/s -20.0 -4.0
aζ m/s2 6.0 6.0
aζ m/s2 -6.0 -6.0
aη m/s2 6.0 2.0
aη m/s2 -6.0 -2.0
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Fig. 9: Drivable areas in scenario I at different steps.

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate the key features of our
toolbox by numerical experiments using three different sce-
narios from the CommonRoad benchmark suite with the
following benchmark IDs:

I Urban road: ZAM Test-1 1 T-1:2020a
II Intersection: ARG Carcarana-1 1 T-1:2020a

III Highway: USA US101-6 1 T-1:2020a

We list the main parameters used in the experiments for both
coordinate systems in Tab. I. The animations of the experi-
ments can be found at https://mediatum.ub.tum.de/1662399.

A. Scenario I: Urban road

The first scenario illustrates an urban driving situation with
a static obstacle (e.g., a parked vehicle) in front of the ego
vehicle and another vehicle following the ego vehicle. We
demonstrate the computation of reachable sets for the ego
vehicle in the Cartesian coordinate system. Fig. 9 shows the
collision-free drivable areas for selected steps, which con-
sider both static and time-varying occupancies of obstacles. It
can be seen that the drivable areas detect the narrow passage
on the left side of the static obstacle.

B. Scenario II: Intersection

Our second scenario is a four-way intersection with the
presence of two other vehicles. In Fig. 10 we visualize the
collision-free drivable areas at steps k = 15 and k = 24
within the Cartesian coordinate system and a curvilinear
coordinate system.

https://mediatum.ub.tum.de/1662399
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Fig. 10: Drivable areas in scenario II at different steps within two coordinate
systems. We remind that the parameters used in the computations within the
two coordinate systems are different (see Sec. II-A and Tab. I).

We further use this scenario to demonstrate the extraction
of driving corridors (Fig. 11). To this end, we investigate
the drivable area at the final step kf = 30 in Fig. 11a:
We see that the drivable area is disconnected due to the
turning vehicle V1 at the intersection. Thus, the drivable area
exhibits two connected sets C(1)

30 and C(2)
30 , each belonging to

a separate driving corridor. Starting from the two connected
sets in the last step, our toolbox identifies two driving
corridors Cbrake(·) and Cturn(·) for the time interval [0, 30]. The
extracted corridors are visualized in Fig. 11b and 11c, where
the corridors and the occupancy of vehicle V1 are stacked
over time. The two driving corridors correspond to different
tactical decisions: In Cbrake(·), the ego vehicle would brake in
the middle of the intersection before vehicle V1. In contrast,
corridor Cturn(·) represents a maneuver where the ego vehicle
would accelerate and continue turning right through the gap
between V1 and the road boundary.

C. Scenario III: Highway

Fig. 12 shows a highway scenario that is created from
the NGSIM dataset [39]. We carry out the computation in a
curvilinear coordinate system using a planned route as the
reference path. The results show that our toolbox robustly
handles the computation of the reachable sets of the ego
vehicle in scenarios with multiple dynamic obstacles and can
detect narrow gaps between vehicles, see, e.g., k = 30 in
Fig. 12.

TABLE II: COMPUTATION TIME WITHIN CARTESIAN FRAME

Method kf Unit Avg. Std. Dev.

Polytopic set 30 ms 378 131
Graph-based 30 ms 227 58

TABLE III: COMPUTATION TIME WITHIN CURVILINEAR FRAME

Method kf Unit Avg. Std. Dev.

Polytopic set 30 ms 53 16
Graph-based 30 ms 26 8

D. Computation Time

We computed the reachable sets for the planning problems
given in 100 randomly chosen scenarios from the Common-
Road benchmark suite to benchmark the performance of
our toolbox. All computations were executed on a laptop
with an Intel Core i7-7700HQ 2.8 GHz processor. The
computation times for the two methods provided in the
toolbox are displayed in Tab. II for the Cartesian coordinate
system and in Tab. III for curvilinear coordinate systems,
respectively. For both propagation methods, computations
in the curvilinear coordinate system are faster than in the
Cartesian coordinate system. This is because in curvilinear
coordinate systems, we used more conservative parameters
in both the longitudinal and lateral directions (see Sec. II-A
and Tab. I), which resulted in less nodes in the reachability
graph and smaller drivable areas. As expected, the average
computation times of the graph-based propagation are shorter
than those of the polytopic set propagation due to the reasons
described in Sec. III-B.3. The computations took a fraction
of the planning horizon and render the toolbox suitable for
real-time applications.

V. CONCLUSIONS

We presented CommonRoad-Reach, an open-source tool-
box for computing reachable sets and extracting driving
corridors for AVs. Unlike existing tools that offer general-
purpose reachability algorithms, our toolbox is tailored to
AV-specific applications such as motion planning in arbitrary
dynamic traffic scenarios. As a result, our toolbox integrates
two methods for the reachable set computation published in
[2], [3]. By providing Python and C++ implementations of
the algorithms, our toolbox offers both prototyping and real-
time capabilities to users. From reachable sets, our toolbox
further extracts collision-free driving corridors, which can be
used as solution space for motion planners. We used different
dynamic traffic scenarios of varied complexity to demon-
strate the functionalities of our toolbox, and we benchmarked
the real-time functionality against 100 scenarios from the
CommonRoad benchmark suite.
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vehicle on the opposite lane for visualization purposes.
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Fig. 12: Drivable areas in scenario III at different steps.
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