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Abstract— This paper presents a multi-layer motion planning
and control architecture for autonomous racing, capable of
avoiding static obstacles, performing active overtakes, and
reaching velocities above 75 m/s. The used offline global
trajectory generation and the online model predictive controller
are highly based on optimization and dynamic models of the
vehicle, where the tires and camber effects are represented
in an extended version of the basic Pacejka Magic Formula.
The proposed single-track model is identified and validated
using multi-body motorsport libraries which allow simulating
the vehicle dynamics properly, especially useful when real
experimental data are missing. The fundamental regularization
terms and constraints of the controller are tuned to reduce
the rate of change of the inputs while assuring an acceptable
velocity and path tracking. The motion planning strategy
consists of a Frenét-Frame-based planner which considers a
forecast of the opponent produced by a Kalman filter. The
planner chooses the collision-free path and velocity profile to
be tracked on a 3 seconds horizon to realize different goals
such as following and overtaking. The proposed solution has
been applied on a Dallara AV-21 racecar and tested at oval
race tracks achieving lateral accelerations up to 25 m/s’.

I. INTRODUCTION

In the literature, several approaches for motion plan-
ning and control have been developed and tested on high-
performance autonomous vehicles [[L]. Hierarchical methods
which exploit different levels of model complexity at differ-
ent stages of the motion planner/controller are the current
state of the art [2]], [3l], [4], [S], [6]. The strength of this
approach has been shown in [[7], where a hierarchical method
with a Nonlinear Model Predictive Control (NMPC) at its
core was able to outperform a top driver on a formula student
race car at lateral accelerations of over 20 m/s>.

For the task of multi-vehicle racing, the gap between
human expert drivers and autonomous systems is still sig-
nificant. This is also related to the fundamental challenges
that must be solved to tackle this task, which include
perception, rule-based interaction with other agents and the
infrastructure, motion prediction, generation, and tracking
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Fig. 1. TII EuroRacing overtaking TUM Autonomous Motorsport during
semifinal of the Autonomous Challenge at CES, Las Vegas Motor Speedway.
©Yev Z Photography

of optimal trajectories for overtakes in unstructured envi-
ronments. Most related works in this field focus on racing
video games, simulations, and RC cars, and very limited
work is done on full-scale race cars. In [8], the authors
use an NMPC algorithm with a 4-wheel vehicle model with
additional states for the nearest obstacle. The solution has
been tested in simulation with a control rate of 25 Hz and
a maximum speed of 40 m/s. For RC cars several groups
have tackled the problem using game-theoretical planners
[9], [10], [11], however, these methods focus on one-vs-one
racing and do not scale well to full size racetracks. Several
algorithms based on Deep Neural Networks (DNN) have also
been proposed [12], [13], [14]. A curriculum reinforcement
learning-based method using an off-policy algorithm has
been evaluated on Gran Turismo Sports, an arcade racing
simulation, outperforming the built-in game Al and reaching
similar performance to experienced sim-racing drivers [15].
A different approach is to implement the obstacle avoidance
and overtaking tasks in a motion planning module, letting the
controller solve only the tracking problem [[16]], [[17]]. In [18],
the authors present a multi-layered graph-based planning
architecture in which the trajectory is chosen considering
a cost function representing the feasibility of the vehicle
to follow the path segments of the graph built offline. The
method has been tested in a real-world overtaking maneuver
at low speeds in a simplified adversarial context.

In this article, we present a framework for planning
and control in head-to-head autonomous racing conditions
evaluated during the Indy Autonomous Challenge (IACEI)
events at the Indianapolis Motor Speedway (IMS) and Las

Uhttps://www.indyautonomouschallenge.com/
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Vegas Motor Speedway (LVMS) on a full-scale open-wheel
racecar. It has been reached a top speed of 75 m/s in a single
vehicle scenario, and a speed of 63 m/s during an overtaking
maneuver. The authors participated in the competition as part
of the TII EuroRacing team (TII-ER).

In Section [ we describe the vehicle model used for
the optimization-based problems and introduce our model
identification and validation approach. In Section [lI] the lap
time optimization strategy is presented before describing the
motion forecasting and the Frenét-Frame-based method for
the local planning. Constraints, cost function, and tuning
strategies applied on the controller are reported and explained
in Section The experimental results are described in
section [V] while final conclusions and future works are
discussed in Section [V1l

II. VEHICLE MODEL

The vehicle considered in this paper is a Dallara AV-21,
shown in Figure [I| based on the Indy Lights chassis IL-15
with a 390hp engine. The suspensions and aerodynamics are
adjusted for oval racing with an asymmetrical setup to exploit
highly banked tracks.

A. Curvilinear Single Track Model

A single track dynamic model, shown in Figure 2] is
used for the offline trajectory optimization problem and the
NMPC. As in [3]], we use curvilinear/Frenét coordinates to
describe the state. Therefore, global position and heading are
not directly considered, but transformed to a state relative to

the reference path.

1) Equations of Motion: The vehicle state is given by
T = [$;n;4;05;0y;7;0;T; B] and the input as u =
[Ad; AT; AB], where s, n and p are the progress along
the path, the orthogonal deviation from the path and the
local heading. Longitudinal v, and lateral v, velocities are
considered as well as the yaw rate r. §, T and B are the
steering angle, throttle command and brake command, which
are included in the state. The control commands Ad, AT and
ADB are the derivatives of the inputs. Thus, the equations of
motion are

. Vg cos(u) — vy sin(p)

1 —nk(s) ’
n =vg sin(u) + vy cos(p),
p=r—n(s)3,

Vo =~ (Fy, — Fi— Fy, sin(0) + Fy, cos(8) — Fy, +muyr),

m

Uy = i(Fyr + Fy, cos(9) + Fyy sin(d) — Fy, — mvzr) ,

- IL (zf (Fy, cos(8) + Fy, sin(6)) — lrFyr) ;

§=A8,
T =AT,
B=AB,

where £(s) is the curvature at the progress s, Iy and [, are
the distances from the center of gravity to the front and rear
wheels, m is the mass and I, the moment of inertia. I, e F,
are the lateral tire forces at the front and rear wheels. F,,

F, are the longitudinal forces at front and rear axles. Fj,

u:\é

F, Y

Fig. 2. Dynamic single track vehicle model on curvilinear coordinates.

and Fy model the forces on the x and y-axis due to the road
bank angle 6, and are given by F,, = mg sin(0) sin(u) and
Fy, = mg sin(f) cos(u). I,y represents the aerodynamic
effects considering the air density p, the frontal area S and
the drag coefficient Cy,

Fi=05pSCyv2.

2) Tire Model: The tires effects are modeled using a
simplified Pacejka Magic Formula [19] with a combined
slip correction. Beyond the usual macro-parameters B, C,
D and E, the lateral force offsets Svy;, ¢ € [f, ], have been
included resulting in

Fy; 1 = Svy, + Dy sin (C’f tan_l(Bf Q)+
— Ey(Byay, —tan_l(Bfayf))), |

Fy, 1at = Svy, + D, sin (CT tan™ (B, ay, )+ .
~ B (Byay, —tan"} (B, ay,))),

where o, = a; + Shy, is the resulting slip angle obtained
by applying a shift Sh,, to the front slip angle «y and the
rear slip angle «,

l
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Shy, and Sh,, are calculated using Pacejka micro-

parameters [19] related to horizontal shifts and variation of
the lateral force shift considering the change in the tire load
with respect to the reference vertical load and the camber
angle.

To consider the combined slip, we propose a combined
slip weighting factor. Thus, the pure lateral forces Fy, ja:
and Fy, ;. are weighted with G,, such that we get the final
forces, Fy, = Gy, Fy, 10t and Fy, = Gy, Fy, 141, With G,
given by

Gy, = cos (arcsin(Fy, /Frax,)) ,

where Fax; = D;€; and ¢; is an ellipse shape parameter.
Note that we clip the force fraction F,/Fax, at 0.98 to
avoid singularity issues.



3) Longitudinal Forces: The front axle longitudinal forces
are modeled as

F,, = —Cy,B — Cyo,

where C), is the rolling resistance. The braking force is
represented as Cy, B, with Cp, the maximum brake pedal
pressure and B € [0, 1].

Considering a rear wheels drive powertrain, the rear lon-
gitudinal force is modeled as

Frr = CmT - Cer - Cro 5 (2)

where C), is a linear engine coefficient and T € [0, 1].
The turbo-charged combustion engine used on the research
vehicle produces a force which is not linear in the whole
usable regions since it depends on the engine rpm and gear.
In order to represent this behavior on @), a scale factor k,
varying on the speed has been applied to the upper bound
constraint of the throttle command, thus T' € [0, k;].

Gear shifting effects are neglected as well as the gear
command which is controlled separately and sent to the low-
level controller when reaching the desired engine rpm.

B. Model Identification

Due to the lack of a steering wheel on the research vehicle,
the traditional maneuvers used to collect data for vehicle
model identification were not practical [20]], [21]. We relied
on information provided by the IAC organizers and tire and
vehicle manufacturers, initially limiting our model to a static
identification.

1) Multi Body Simulation: Dymola [22], a physical mod-
eling and simulation tool, has been used to model the AV-21
vehicle dynamics with the VeSyMA - Motorsports Library
[23]. The library provides solutions to model open-wheel
race-cars components such as suspensions, aerodynamics,
tires, and the powertrain. A highly detailed multi body
simulation of the vehicle has been developed using the
available information on the mechanical components such
as the static parameters of the Indy Lights chassis and the
engine map retrieved from a test bench. Unknown compo-
nents or possible setups choices for the suspension have been
estimated from IL-15 and IndyCar oval configurations, in
particular the camber, caster and toe. The IMS and LVMS
tracks have been modeled on Dymola by estimating the
banking angle from sim-racing games. The resulting tracks
have later been validated using the data from the on-board
LiDAR sensors.

2) Tire Model Identification: The tire maker provided a
Magic Formula 6.2 model obtained using a test rig. However,
the model could not be used to reproduce accurately enough
the real tire behavior, which is highly affected by the tire-
road grip, wear and suspension setup. A common strategy is
to use the provided set of coefficients as a starting point and
run an identification procedure to find parameters that better
match the experimental data gathered on track.

In our work, the approach presented in [20] has been
applied using data obtained by simulating ramp steer maneu-
vers at different speeds and road conditions in our Dymola
simulator.
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Fig. 3. The estimated tire model, lateral force on the front (left) and rear

(right) axles, over the real data gathered at LVMS at a speed of 62 m/s.
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Fig. 4. Comparison of real and simulated data of the warm-up maneuver.

3) Validation: First experimental data on the real vehicle
have been gathered using a simple Pure Pursuit path tracking
algorithm [24] at a maximum speed of 45 m/s at IMS and
performing a light warm-up maneuver at 25 m/s in the long
straights of the track. The warm-up maneuver consists of
a series of +£80deg steering wheel angle reference jumps
on top of the lateral controller. An optical sensor has been
mounted to get accurate measurements of speeds and angles
in addition to the data obtained from the GNSS RTK-
corrected system available on the Dallara AV-21. The tire
model fitted on real data is depicted in Figure [3] In Figure
[ a comparison of the real and simulated data of the warm-
up maneuver is shown. The first set of simplified Pacejka
coefficients estimated from Dymola has been used during
the tests and races at IMS and LVMS in the MPC described
in Section [[V]

III. MOTION PLANNING DESIGN
A. Offline Global Trajectory Generation

A global path is generated as the main reference for
the local planner. The resulting global path should consider
the dynamic model, constraints on the inputs and tires, but
should also give the possibility to incorporate rules related
to track limits, such as keeping an inner or outer line.

Following [5], the solution is found by solving an optimal
control problem using the dynamics transformed in the
spatial domain f ((s), u(s)), with the progress s as running
variable. The continuous space model is discretized with a



discretization distance A; resulting in x4 = fg(a:k, ug) =
T + Asfs(l‘k, uk)

The cost function maximizes the progress rate $ including
a regularization term B(zp) = gpa? which penalizes the
rear slip angle, and a regularizer on the input rates u? Ru
where R is a diagonal weight matrix. In summary, the overall
cost function is defined as

Jopt(Tr, ug) = =81, +u? Ru+ B(xy,) . (3)

Combining the cost, model, and constraints the optimization
problem is formulated as

N
min > = Topt(wk, ur)
k=0

st xpgr = [, up),
fHan,un) = 20,
T € Xirack Tk € Xellipse »
ar € A, up, €U, k=0,...,N,

where X = [z, ...,zn], and U = [ug, ..., un]. Xeiipse 1€p-
resents velocity dependent friction ellipse constraints similar
to [[7l], and X},4ck represents a track constraint on the lateral
deviation n ensuring that the trajectory stays on the track,
considering additional side margin distances e, Tright tO
the half length L. and half width W, of the car, and the left
and right track width Ny r at a progress s,

n+ Lesin |p] + Wecos pp < Np(8) — ngent

4
—n + L sin |p| + Wecos p < Ng(s) + urighe - @

The physical inputs a = [§; T’; B] and their rate of change u
are constrained using box constraints A and U. The problem
is formulated in JuMP [25] and solved using IPOPT [26].

B. Motion Forecasting

The motion forecasting module receives the position of
the moving obstacles from the perception module, which
processes the raw information of the sensors and keeps track
of the obstacles in time. The module assigns to each obstacle
a unique identifier ¢, a position in a Cartesian frame x;, y;,
and a covariance matrix of the position ¥, ;.

Starting from the position of the i-th obstacle in a Carte-
sian frame x;(k), y;(k) at step k, the position of the obstacle
in the Frenét frame s;(k), n;(k) is computed. Then, we define
the model of the obstacle as

5i(k+1) = 3(k), 5)
ni(k+1) =n;(k). (6)

Equation (9 states that the longitudinal speed of the obstacle
is constant, whereas equation () indicates that the lateral
displacement to the reference path is constant.

This simple model exploits the fact that the only obstacles
in the track are other cars that will follow a racing line similar
to the one that the ego car is following, and that the speed on
an oval race track is almost constant. This insight is perfectly
represented by modeling objects in a Frenét frame that uses

the race line as the reference path, combined with our motion
model.

From the equations (), (6), the following state space
model is derived

[ si(k+1) 1 T, 0
X+ =| &k+1) | =0 1 o|xw,
ik 1) 0 0 1

)
GRS I R0 ®)

where T is the sampling period of the filter, X;(k) is the
state of the model and Y; (k) is the output.

Thus, at each time step for every obstacle, the Frenét frame
measurements $;(k), 7;(k) are computed from Z;(k), g;(k).
Using these measurements, the Kalman filter is updated with
a prediction step, followed by a correction phase in which
Ysn, the covariance matrix of the position converted in the
Frenét frame, is used. The future trajectory of the obstacle
O;(k + 1lk),...,0;(k + m|k) is predicted by applying m
consecutive prediction steps.

C. Frenét-Frame-based Planner

The planner module implemented is an extended version
of [27] adding further considerations to the moving obsta-
cles’ collision check and racing scenarios.

1) Trajectories Generation: Given a race line computed
offline, a Frenét frame is defined and used to generate mul-
tiple trajectories, which for example merge to the reference
line, follow a vehicle or perform an overtake. Each single
trajectory is defined as a combination of a lateral movement
n(t) and a longitudinal movement s(t) at time ¢ with respect
to the reference path.

Starting from the lateral movements, let Ny = [ng, 720, 7o)
be the start state and Ny = [n1,n1,71] be the end state. As
we want to move parallel to the reference line, we generate
the set of lateral movements by changing n; in an interval
[Pmin, max] and set 3 = #i; = 0. Given Ny, N; and
the time interval 7' between them, a quadratic polynomial
is fully defined, and its coefficients can be calculated. For
each lateral movement, we then assign a cost based on the
following cost function:

Cla = ijt (n(ﬁ» + kT + kzdnf .

This cost function penalizes the solutions with slow conver-
gence to the reference, i.e. the ones that at the end of the
trajectory are off from the reference path n = 0. Unlike what
is proposed in [27], we decided to keep T  constant for all
the trajectories in the set in order to provide to the controller
a trajectory with a fixed time horizon.

A similar approach has been used for the longitudinal
movement generating trajectories that bring the car to a
desired velocity $,,, while minimizing the jerk. As shown
in [27]], quartic polynomials can be found to minimize the
cost function

Clong = kjJi(s(t)) + keT + ks (31 — $0)° 9)



for a given start state Sy = [so, S0, So] at to and [$1, 8] of
the end state S; at some t; = tg+7. This means that we can
generate a set of optimal longitudinal trajectories by varying
the end constraints $; = $,, + As and 7.

The set of lateral movements 7y, and longitudinal move-
ments 7T, are then combined, resulting in a set 7 = Tjy X
Tion of complete trajectories.

2) Trajectory Selection: All the trajectories 7, € T are
checked to evaluate whether they exceed the track bound-
aries or collide with an obstacle. We decided to perform
these checks in the Frenét frame, to avoid converting the
trajectories to a Cartesian frame. Furthermore, rather than
doing the checks on the polynomials, we sampled each
trajectory in a finite number of points. The sampling is done
by fixing a time interval At and evaluating the trajectory in
At,2At, ..., MAt. Thus, the trajectory is converted to a set
of points, where each point is associated with a time instant:

TP = Ti = {{tka(sn,kvn‘ri,k)}? k= 177M}

Given the track width in every point of the reference path,
it is trivial to check if a trajectory 7; goes out of the track
boundaries.

From the Motion Forecasting module, an obstacle O; is
defined as a set of points. Each point is associated with a
time instant:

O; = {{tr, (S0,.k> Mo, )}

To account for the safety margins, a rectangle is built
around every point of the predicted trajectory of the obstacle.
A trajectory 7; collides with an obstacle O; if Jk €
{1,..., M} such that (s, y,n, ) is inside the rectangle
built around (S, k, Mo, k). The described collision check
treats the obstacle as a hard constraint for the planning
algorithm. This approach could lead to undesired behavior
in the scenarios in which an obstacle is blocking the race
line, because the best trajectory will be the nearest one to
the obstacle that does not collide with the obstacle itself. Fol-
lowing such a trajectory could bring the car to the edge of the
obstacle safety margins. This can be critical if we consider
the possible noise in the detection module. To overcome this
issue, the collision check method is improved by adding a
soft constraint. For each trajectory 7;, a collision coefficient
vi € [0,1] is computed, where 7; = 0 indicates that the
trajectory is not colliding with any obstacle, whereas v; = 1
indicates that the trajectory is violating the safety margins
(hard constraint). Given this change, the cost becomes

k=1,...,M}.

2
Clot,i = klatclal,i + klonclon,i + ksoft'yi 5

with Ky, Kion, ksote > 0.

To compute 7; we decided to exploit the Euclidean dis-
tance from the safety margin. For every trajectory 7; the
minimum distance n; from the safety margin is computed.
Then, ~; is defined as

n;
; =max< 1 — ,00
v { Asort }

(10)

where Agp; > 0 is a parameter to enlarge or reduce
the effect of the soft constraint. In Figure [5] a graphical
representation of the soft constraint is given.

Fig. 5. Graphical representation of the collision coefficient as defined in
(T0). The black rectangle indicates the safety margin from the obstacle (hard
constraint).

The final step of our planner is to select the trajectory with
the minimal cost which does stay inside the track margins.

3) Following Mode: A following mode is implemented in
the planner to keep a desired distance to the opponent when
it is not allowed to perform an overtake by the rules of the
competition. Differently from [27], given the position Py, =
[Sopp» Mopp] and speed $pp Of the car to keep the distance from
and the desired distance Ages, the desired speed of the ego
car Sqes 1s regulated by a simple proportional controller:

Agap)

where Ag,p > 0 is the current distance between the ego and
the opponent car, and £ > 0 is the gain of the controller.
The computed desired speed is then used in (9) for the
longitudinal movement generation.

Sdes = éopp —k (Ades -

IV. MODEL PREDICTIVE CONTROL DESIGN
A. MPC Problem

In the control problem, the model is discretized in time
f&(xy,us) using a fourth-order Runge Kutta method. As in
(3), the MPC cost function combines the progress optimiza-
tion with the regularization terms in order to penalize the
rate of change of the physical inputs and rear slip angle:

+u” Ru+B(z) .

']MPC(xta ut) = _St+Q7tnt2+un?+Q'U ‘Sv,t

In addition to (3), the cost function includes path following

weights ¢, and g, as well as a velocity tracking weight g,

on the slack variable s, ; of the upper velocity constraint.

Note that the reference path is given by the Frenét-planner.
The MPC problem is formulated as

T
min = Jupc (@, uy
vy 3 = drcteomn)

st. xo=2,
Tiy1 = ftd(xtaut)a
Tt € Xypack T4 € Xellipsev
Vgt SV =Syt Sut >0,
ar € A,u €U, t=0,...,T.

where Z is the current curvilinear state, v the upper velocity
bound and T is the prediction horizon. The main difference



to [5]] is the more complex model and the integration with
the Frenét-planner.

The optimization problem is solved using a custom
sequential quadratic programming framework, which uses
HPIPM [28], a high-performance quadratic programming
framework for MPC, and CppADCodeGen, a code gener-
ation automatic differentiation library.

B. Tuning

The regularization weights and constraints have been
chosen in order to manage the trade-off between low path
tracking error and input commands smoothness. Due to the
uncertainty of the actuation performance and the model
mismatch at high speeds, it has been decided to set the
regularization term related to the steering wheel rate of
change one order of magnitude higher than the value used
in simulation and in other autonomous racing platforms in
which the controller has been tested.

V. RESULTS

The algorithms presented have been executed on a com-
puting platform equipped with an 8 core Intel Xeon E 2278
GE, an NVIDIA RTX Quadro 8000 GPU, and 64 GB DDR4
RAM.

The vehicle position was provided by a localization mod-
ule based on an Extended Kalman Filter (EKF) using data
produced by two GNSS RTK systems with Inertial Measure-
ment Units (IMU) and wheel speed sensors. The perception
module exploited the three solid-state LiDAR sensors, one
frontal radar, and six cameras mounted on the racecar in
order to estimate the obstacles and opponent position. Further
details on the whole autonomous software stack will be
presented in a future work.

Both the Frenét-Frame-based planner and the motion fore-
casting module run at a frequency of 20Hz. The planner uses
a time horizon of 3s, a sampling time of At = 50ms, and
lateral node sampling of 0.5m. The hard lateral safe distance
is set to 3m, and the additional soft margin to 1.5m. The
same At is used in the MPC with a prediction horizon of
T = 50 resulting in a time horizon of 2.5s. However, the
MPC is executed at a frequency of 100Hz.

Experimental results have been produced in different sce-
narios at Lucas Oil Raceway (LOR), IMS and LVMS.

A. High Speed Laps

The capability of the designed MPC to control the vehicle
at high speeds has been tested during the time trial part
of the IAC events. At the IMS track, TII-ER achieved the
fastest time reaching an average speed of 62.5 m/s over a
lap. The tracking performance at the LVMS is shown in
Figure [6, where a top speed of 75.5 m/s has been reached.
The maximum lateral error is 1m, whereas the RMS value
is 0.5m. The heading error is maintained between 0.7deg
and -1.0deg. A limited heading error despite a not negligible
lateral error is the expected effect of the strategy applied to
the MPC regularization terms explained in The positive
lateral error could be related to a not accurate force offset
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Fig. 6. Experimental results for path tracking during high speed laps. See
https://youtu.be/ERTffn3Ipls?t=2013|for the time trial laps at
LVMS.

Shy, used in ([I-A22), which should be investigated using
the experimental data. Figure [7] presents the g-g diagram,
showing that the racecar reached lateral accelerations up to
25 m/s?.

am/ s’]
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ay[m/s’)

Fig. 7. The g-g diagram of the fastest lap at LVMS.

In both events, the top speed has been limited by hardware
and engine malfunctions. In particular, Figure [§] shows the
case in which the research vehicle was not able to reach the
target speed despite a fully saturated throttle command due
to a detached cable in the powertrain wiring.
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Fig. 8. From Figure@ powertrain issue during the high speed laps. A top
speed of 75.5 m/s has been reached instead of the target speed of 77.7 m/s.
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B. Static Obstacle Avoidance

Figure [9] depicts a scenario in which static obstacles have
been added to the LOR track. The AV-21 racecar was able to
safely avoid the obstacles at a velocity of 34 m/s. The safe
sensor range for the LiDAR-based detection was set at 60m.
Thus, the planner received the obstacle position 1.7s before
the potential collision.

Fig. 9. Static obstacles test at LOR. See https://youtu.be/LIzb—_|
8vrI8 for a video of the test.

C. Head-to-Head Racing

A passing competition was held at LVMS where the
racecars had to perform overtakes at increasingly higher
velocities respecting the race format composed of four steps.
The attacker should first reduce the gap from the defender,
keep a longitudinal safety distance and overtake once reach-
ing a passing zone. Then, the roles can be switched. If the
new attacker succeeds in the four steps, a new round at higher
speed is started. Figure [I0] shows the performance of our
solution during the last four rounds of the semifinal. Similar
results of the time trial have been obtained with a higher
lateral and heading error during the initial portion of the
overtaking maneuvers. Figure shows a frame sequence
of the overtake at the highest speed achieved. It should be
mentioned that the experimental data in the head-to-head
scenario ends at a top speed of 63 m/s due to a wrong hard
brake command triggered by a module separated from the
motion planner and controller, causing the TII-ER vehicle to
collide with the track borders.

VI. CONCLUSIONS

A multi-body model of the racecar has been implemented
in simulation and used to examine and identify non neg-
ligible dynamics prior to the tests on track. This approach
combined with a higher weight on the steering rate of change
term demonstrated to be a successful strategy in making
the controller robust enough at velocities of 75.5 m/s and
accelerations of up to 25 m/s?, which were never explored
before the final racing events. The planner has been capable
of generating a path and velocity profile in order to follow
the opponent, maintaining a defined distance, and producing
a safe trajectory for active overtakes at speeds up to 63 m/s.
Experimental data gathered during the tests will be used to
improve the model identification and regularization terms,
aiming to explore the dynamics and tire friction limit of the
vehicle, as well as reduce the path tracking error. More chal-
lenging scenarios, such as racing in complex road courses
and competing against multiple agents, will be explored
in future applications. Further research will focus on new
approaches for online trajectory generation to accomplish
more aggressive maneuvers to adapt to racing conditions

while keeping into consideration safety and computational
limitations.
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