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Abstract— In this paper we formulate a dynamic mixed
integer program for optimally zoning curbside parking
spaces subject to transportation policy-inspired constraints
and regularization terms. First, we illustrate how given
some objective of curb zoning valuation as a function of
zone type (e.g., paid parking or bus stop), dynamically
rezoning involves unrolling this optimization program over
a fixed time horizon. Second, we implement two different
solution methods that optimize for a given curb zoning
value function. In the first method, we solve long hori-
zon dynamic zoning problems via approximate dynamic
programming. In the second method, we employ Dantzig-
Wolfe decomposition to break-up the mixed-integer pro-
gram into a master problem and several sub-problems
that we solve in parallel; this decomposition accelerates
the MIP solver considerably. We present simulation results
and comparisons of the different employed techniques on
vehicle arrival-rate data obtained for a neighborhood in
downtown Seattle, Washington, USA.

I. INTRODUCTION

The proliferation of smart-cities sensing devices—
ranging from sensors mounted on civil infrastructure to
crowd-sourced mobile data—has resulted in a wealth
of new insights into how people interact with the built
environment [1]. In particular, data on curb activities like
parking, passenger pickup-dropoff, and courier services
are being collected by a variety of sensor types, such
as cameras [2], proximity sensors [3], or indirectly via
digitally logged transactions[4]. These data have been
used primarily to answer questions about demand for
curb space [5]; this work takes a forward looking per-
spective. This data will be useful as uses for curb space
become increasingly varied, such as electric vehicle
charging and micromobility services. For cities that will
continue to centrally manage their curb zoning rules to
adapt to an increasingly dynamic curb environment, we
propose utilizing this proliferation of sensors to enable
increasingly dynamic and flexible curb zoning.

Dynamic curb zoning implies changing zoning types,
limitations and prices over short time horizons. We focus
on daily time horizons; extant examples include curb
zones available for parking during off-peak travel hours,
and closed during peak travel hours to allow the curb
lane to service more traffic [6]. Other examples include
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airport departure zones serving arrivals and vice versa
[7] and designating times for commercial loading [8].
Typically these zone changes are reflective of periods of
peak demand for varying use types, mitigating conges-
tion at the curb or on the roadway [9].

In this work we propose a framework for optimal,
dynamic curbside zoning given information about time-
varying curb demand. Given increasingly available sen-
sors, we can better measure demand by time of day
and vehicle type and thus rezone curbside space dy-
namically with respect to that demand. In this paper we
formulate this dynamic rezoning problem as a mixed-
integer program (MIP) that takes into account various
transportation policy constraints derived from various
sources of spatio-temporal data [5]. To deal with the
computational intractability that may arise due to the
large number of integer variables in such problems, we
investigate two different techniques to solve the MIPs in
a scalable manner.

In the first approach, we use approximate dynamic
programming (ADP) to solve the dynamic curb zon-
ing problem. Dynamic programming has been applied
successfully in many areas to solve mixed-integer pro-
grams [10]. However, dynamic programming methods
suffer from the curse of dimensionality and are not scal-
able with the increase in system size. Recent works in
literature have looked into various approximate dynamic
programming techniques that can improve scalability
and computation time [11], [12]. In this work, we apply
different ADP techniques to the dynamic curb zoning
problem and compare the different techniques in terms
of accuracy and computation time.

In the second approach, we solve the MIP with
Dantzig-Wolfe decomposition, which is a delayed col-
umn generation technique [13]. Several decomposition
methods exist in literature to solve MIPs [14], however,
the nature of the curb zoning problem allows us to
break up the problem into a master problem and a set
of sub-problems that can be solved in parallel. This
problem structure allows the Dantzig-Wolfe decompo-
sition to obtain a solution that scales well with problem
size [15]. We baseline the two approaches against the
global optimum obtained by solving the original MIP,
and provide recommendations on how to choose the
appropriate approach.

The rest of this paper is organized as follows: in
Section II we summarize existing research and describe

ar
X

iv
:2

20
7.

10
23

2v
1 

 [
m

at
h.

O
C

] 
 2

0 
Ju

l 2
02

2



some examples of dynamic curb space zoning. Sec-
tion III formally defines the problem as a time-dynamic
optimization program for sequences of zonings and
solves the problem as a mixed-integer program. Further,
we construct an example objective function for valuing
individual curb spaces based on a hypothetical point-of-
interest distribution and existing vehicle arrival rate data.
In Section IV we formulate the curb zoning problem
through approximate dynamic programming and com-
pare different ADP techniques with the MIP solution.
Section V employs the Dantzig-Wolfe decomposition
method to solve the curb zoning problem and compare
the results with the MIP solution. In Section VI we
discuss these different methods with respect to techno-
logical shifts in smart cities currently on the horizon,
illustrating how this problem formulation is a valuable
prospective avenue in which to view curb zoning as a
land-use problem that need not be statically constrained.
Finally, Section VII concludes our paper and lays out the
scope for future work.

II. BACKGROUND

Curb space is designated for users by various transit
modes with categorical labels: e.g., bus stops, paid
parking, commercial vehicle loading zones (CVLZ),
passenger pick-up/drop-off zones, curbside electric ve-
hicle (EV) charging, and so on. Each usage has value,
but one-to-one comparisons are exceptionally difficult,
thus cities have used historical experience to balance
varying objectives like access, congestion reduction, and
productivity when allocating individual curb spaces to
one or more of these modalities [16]. With higher res-
olution data streams and a better understanding of user
elasticities [17], adapting these allocations to changing
demand in time and usage is becoming increasingly
feasible.

The literature on the subject of parking space assign-
ment and curb zoning can be broken down into two fun-
damental perspectives: centralized and decentralized—
from the viewpoint of the municipality that owns the
curb real estate.

1) Centralized: a municipality or curb manager
maintains total control over zoning and space allo-
cation and must solve for a network-wide optimal
set of allocations [18].

2) Decentralized: a market or auctioning mecha-
nism is utilized that allows competing actors
to bid for curb space access with varying de-
grees of oversight/constraints (i.e. bidding be-
tween modalities—people parking competing with
trucks needing CVLZ access, or bidding amongst
a single modality—commercial delivery compa-
nies bidding against one another for rights to
access a space) [19].

In this paper we focus on the centralized case of
curb zoning. This is distinct from centralized space
assignment where individual vehicles are routed to deter-
mined locations [20]; rather, the zoning problem seeks
to determine where and when these parking locations
should be made available and to what vehicle types.

We can represent our problem as an instance of
general multi-agent planning with shared resources [21].
The standard multi-agent planning problem is typically
formulated as a combinatorial optimization or MIP, fac-
tored over the agents. Each agent has its local constraints
and objective function (the global objective is simply
the sum of agent objectives), and agents interact with
each other through shared resources that act as multi-
agent constraints. Prior research presented an optimal
multi-agent planning algorithm based on Dantzig-Wolfe
decomposition and Gomory cuts [22]. The second of
our proposed approaches builds upon the essence of
their work, albeit for solving our problem that has more
difficult constraints.

III. METHODS

We now discuss how to solve for an optimal se-
quence of zonings under various constraints derived
from transportation-oriented policies, assuming that we
have an appropriate way to value curb spaces over time.
We then construct an example curb valuation function
(based on real-world arrival rate data) that serves as an
objective function for our simulated results.

A. MIP Formulation

Denote u
(i)
k,cj

∈ U as the curb allocation variable
(decision variable) at time-step k, for curb cj and curb-
type (i), where k ∈ T = {1, . . . , T}, cj ∈ N =
{c1, . . . , cN} and (i) ∈ M = {pp,cv,bus}, with ‘pp’
representing paid parking allocation, ‘cv’ representing
commercial vehicle allocation and ‘bus’ representing
allocation for public transportation. u(i)k,cj

is a binary

variable with u
(i)
k,cj

= 1 if allocated and u
(i)
k,cj

= 0 if
not allocated. We can extend our formulation to more
curb allocation types without loss of generality.

We want to maximize the sum of finite known se-
quences of bounded functions Fk : U → R, describing
the utility of the curb space as a function of the allo-
cation. In our case we define Fk as a linear function of
the curb allocation variable u(i)k,cj

as:

Fk(uk,cj , cj) =
∑
i∈M

H
(i)
k,cj

u
(i)
k,cj

(1)

where H(i)
k,cj

is the normalized valuation for curb cj at
time-step k and for curb allocation type i. We assume
that we know this value beforehand because we have
calculated it from the available data on curb usage.



Apart from maximizing this function, we are also
required to meet certain constraints with respect to the
curb allocation. Some of them are listed below.

1) Curb changes: We would like to bound the number
of curb allocation changes from one time-step to
the next. Enforcing this constraint avoids unneces-
sary switching in curb space allocations over time.
It can be expressed as:∑
cj∈N

∑
i∈M

1

2
‖u(i)k+1,cj

− u(i)k,cj
‖1 ≤ b ∀k ∈ T \T

(2)

2) Number of allocations at a time: We impose upper
and lower bounds on the number of curb allocation
types at any particular time, e.g., we would like a
minimum and maximum number of bus stops to
be allocated at any time. This constraint can be
expressed as:

u(i) ≤
∑
cj∈N

u
(i)
k,cj
≤ u(i) ∀i ∈M, ∀k ∈ T (3)

where u(i) and u(i) are the minimum and maxi-
mum number allowable for curb-type i ∈M.

3) Distance between similar allocation types: We
would like to spread out similar allocations as
much as possible from each other, e.g., we would
like to avoid having two bus-stops right next to
each other. To achieve this, we can formulate
a distance matrix from our spatial data, Am ∈
RN×N , which relates the distance between any
two curbs, e.g., the distance between curbs ci and
cj will be given by Am(ci, cj). If u(i)

k is the curb
allocation vector at time-step k for curb-type i,
then this constraint can be expressed as:

w
(i)
k ≤ u

(i)
k

>
Amu

(i)
k ∀k ∈ T ,∀i ∈M (4)

Based on our objective function and the different
constraints that we need to satisfy, the dynamic curb-
allocation problem can be formulated as a mixed-integer
program (MIP) as follows:

max
∑
k∈T

∑
cj∈N

Fk(uk,cj , cj) + ρ
∑
k∈T

∑
i∈M

w
(i)
k (5a)

s.t
∑
cj∈N

∑
i∈M

1

2
||u(i)k+1,cj

− u(i)k,cj
||1≤ b, ∀k ∈ T \T

(5b)

u(i) ≤
∑
cj∈N

u
(i)
k,cj
≤ u(i), ∀i ∈M, ∀k ∈ T (5c)

w
(i)
k ≤ u

(i)
k

>
Amu

(i)
k , ∀k ∈ T ,∀i ∈M (5d)∑

i

u
(i)
k,cj

= 1, ∀cj ∈ N , ∀k ∈ T (5e)

Fig. 1. (a) Average arrival rate of median passengers per vehicle over
a typical workday (b) Curb zoning at the time of the data collection
study on arrival rate.

where the second term in the objective is the regularizer
that maximizes the distance between similar allocations,
with ρ being the regularizer weight. The constraint
in (5e) ensures that only one type of curb zoning is
allocated to any curb space at each time-step.

Having laid out our MIP, we briefly comment on its
relationship to the shared resource multi-agent planning
formulation mentioned earlier [22]. For each curb, i.e.,
agent, the decision variables are a sequence of integers
that represent allocations over time, i.e, a plan. On
each individual curb, we have a per-agent constraint of
allocating only one type of zoning at a time. Our global
objective function decomposes over individual curbs and
is the sum of local curb objectives; however, unlike
them, we have an additional component (comprising the
w

(i)
k terms) that acts as a regularizer and depends on

inter-agent decisions, i.e., the sum of distances between
similar allocations. Finally, our shared inter-agent con-
straints (5b)-(5d) are more complex than that of the prior
work, which imposes a constraint on a sum of linear
functions over the agent plans.

B. Data and Simulation of MIP

To showcase the result of the MIP on the curb
zoning problem, we consider this problem for a Seattle
neighborhood (illustrated in Fig. 1b) with 289 curb
spaces over a time horizon of 10 hours. We consider
three possible curb allocation types to be dynamically
rezoned per hour, namely: paid parking (PP), commer-
cial vehicle load zones (CVLZ) and buses/public trans-
portation (Bus). Two primary data points are required to
construct an example valuation of individual curb space:
arrival rate of vehicles by type (an implicit measure of
demand), and the parking space’s distance from their
intended destination (where closer is more desirable
[23]). For each curb space in the area of interest there
are many ways to value the real estate: for this example
we compute a net revenue to the municipality, both
internalized (e.g., price to park, value of time spent
walking to destination), and externalized (e.g., cost of
carbon, cost of congestion). All data, relevant sources,



Fig. 2. (a) Value of curb spaces over time and curb locations for
three different types of allocations: blue-paid parking, red-commercial
parking and green-buses/public transportation (b) Allocation of curbs
at different locations and at different times for different zoning
purposes based on solution of the MIP.

and code are available at https://github.com/
cpatdowling/dynamiczoning.

The key data source in approximating time-dependent
demand for space in our example is the arrival rate
of passengers (in the case of bus transit, paid parking,
and passenger pickup/drop-off) and vehicles (in the
case of commercial vehicles). To measure these arrival
rates, we combine temporally coinciding paid parking
transactions, [24], [25], King County Metro study data,
and manual observation studies [8], combined in Fig. 1a.
Then for each individual parking space location for each
zone type, we compute a valuation based on historically
expected demand and distance to hypothetical points
of interest [26]. The value for each allocation at each
of the curb spaces over the time horizon is shown in
Fig. 2a. Based on this curb value, the MIP optimization
problem (5) is solved to achieve the optimal curb zoning.
The results of this optimization solution are depicted
in Fig. 2b that shows the curb zoning over the curb
spaces and over the time horizon and satisfying the given
network and operational constraints.

To be clear, while we have attempted to construct
an example objective function with real data, we would
strongly encourage practitioners to consider more princi-
pled research focused on measuring the value of various
zoning types [27], [28]. This work is focused on apply-
ing such a measurement to optimally allocate or rezone
curb space over time, and showing that this is a dynamic
programming problem.

C. Drawbacks of MIP

The above MIP can be solved with many commer-
cially available MIP solvers. However, due to the large
scale nature of the problem, it becomes difficult to scale
up when dealing with large number of curb spaces
in a city as the solution time for integer programs
grows exponentially [29]. In order to deal with this
scalability issue, we instead rely on utilizing two dif-
ferent techniques to solve MIPs. In the first approach,
we utilize certain approximate dynamic programming
(ADP) solution methods. The drawback of ADP is that

it provides no guarantees on global optimality. In the
second approach, we utilize a Dantzig-Wolfe decompo-
sition method to solve this MIP. In the next sections, we
will compare different ADP methods to Dantzig-Wolfe
on their computation time and the optimality gap with
the MIP solution.

IV. APPROXIMATE DYNAMIC PROGRAMMING

The mixed-integer programming based approach is
not scalable as the problem size grows exponentially
with time horizon. To address this we utilize dynamic
programming techniques to solve the curb allocation
problem. Specifically we aim to utilize recent ad-
vances in approximate dynamic programming (ADP)
to achieve scalable yet sufficiently accurate solutions
to the curb allocation problem. Dynamic programming
breaks a multi-period planning problem into simpler
sub-problems at different points in time. This optimiza-
tion problem is then solved in a recursive manner by
using the Bellman equation. Let the state of the system
at time-step k be xk, with x0 being the initial state. Then,
an infinite-horizon decision problem takes the following
form:

V0(x0) = max
uk

∞∑
k=0

Fk(uk) : xk+1 = G(xk, uk) (6)

where V0(x0) is the optimal value of the objective
function for initial state x0, uk is the decision variable
at time-step k, Fk(uk) is the objective function at
time-step k and G(xk, uk) represents the system state-
change dynamics. One can write the above problem in
a recursive manner as:

V0(x0) = max
u0

{F0(u0) + V1(x1)} : x1 = G(x0, u0)

(7)

which can be written in the generalized form as:

Vk(xk) = max
uk

{Fk(uk) + Vk+1(xk+1)}

xk+1 = G(xk, uk)
(8)

Since in this case, the objective function satisfies a
separable structure [30] and uk does not depend upon
uk+1, the Bellman equation can be written without the
state variables as:

V0 =

∞∑
k=0

max
uk

Fk(uk) (9)

This special separable structure of the objective function
allows us to compute the optimal value function at each
time-step independently. However, we still need to con-
sider the inter-temporal coupling constraints in (5). We
use these simplifications to develop the ADP formulation
shown next.

https://github.com/cpatdowling/dynamiczoning
https://github.com/cpatdowling/dynamiczoning


Algorithm 1: Adaptive dynamic programming
(ADP4) based curb allocation algorithm

Result: optimal allocation u(i)k,cj

Input: Fk, b, Am, u
(i), u(i)

Initialize random u
(i)
k,cj

for p = 1 : NOL do
for k = 1 : T do

for q = 1 : NIL do
Choose 10 random curb locations
Modify uk,cj for these locations
based on maximum Fk

Calculate objective value for this
allocation: Vk(q) = Fk(q) + ρwk(q)

if (2) or (3) not satisfied then
Vk(q) = −∞

end
end
uk,cj = argmax(Vk(q))

end
Save optimal allocation for comparison in

next iteration
end

In the ADP formulation, we utilize Monte Carlo
methods to sample the feasible space and iteratively
converge towards an optimal solution [12]. Because
of the nature of curb demand distribution, however,
the optimal curb allocation solution tends to consist of
blocks of similar curb allocations together in groups. We
can also ascertain this from the clusters in the solution
to the MIP illustrated in Fig. 2b.

Purely random Monte Carlo methods are unable to
sample the feasible space in such a clustered manner.
Thus, we formulate a hybrid Monte Carlo algorithm
which considers both the global and the local nature
of the cost function when allocating curb zones. The
algorithm shown in Algorithm 1 consists of two loops.
In the outer loop we randomly sample the feasible space
and converge towards an optimal solution. In the inner
loop we consider the local cost of each curb space
and allocate them according to the localized costs. This
mechanism can be thought of as a combination of global
exploration and local exploitation, where we locally al-
locate curb spaces based on their cost functions and then
explore random allocations to compare with. Allocations
that maximize the objective along with satisfying all
the network constraints are stored as optimal. Then the
process repeats and new solutions are compared with the
stored optimal value and the stored optimal is updated
if a better solution is obtained. The process is repeated
until we converge to a solution. Algorithm 1 below
shows the architecture of the proposed algorithm. Then

Fig. 3. Comparison of different ADP techniques with the MIP
solution.
ADP1: Randomly generate the total number of curbs allocated to
paid parking, commercial vehicles and buses and update that many
locations, calculate the value function, save the maximum value
function allocation and repeat.
ADP2: Randomly choose certain curbs and randomly update their
allocations (between paid parking, commercial vehicles and buses),
calculate value function, save the maximum value function allocation
and repeat.
ADP3: Same as ADP2 but every often choose a completely random
allocation, begin again and repeat ADP2.
ADP4: Randomly choose certain number of curbs and update their
allocation according to local maximum curb value function, then
calculate total value function and save the maximum. At batched
intervals, choose a completely random allocation and repeat again.

Fig. 3 compares the results of our algorithm (ADP4)
with those of simple Monte Carlo based ADPs (ADP1,
ADP2, ADP3) and the globally optimal solution to the
full MIP.

V. DANTZIG-WOLFE DECOMPOSITION

A fundamental approach for solving linear programs
(LPs), Dantzig-Wolfe decomposes the overall problem
into a master problem that imposes inter-agent shared
resource constraints, along with one subproblem for each
agent [31]. The master problem has far fewer constraints
than the original, as it ignores per-agent constraints.
But its domain is the set of all feasible multi-agent
plans and is thus exponentially large in the number of
agents. Therefore, Dantzig-Wolfe starts off the master
problem with a restricted solution set that it expands
iteratively with delayed column generation by solving
subproblems, terminating only when a subproblem can
no longer contribute a better feasible solution to the
master problem.

To apply Dantzig-Wolfe decomposition to our specific
curb-allocation setting, we exploit its special structure
in a manner similar to the prior work on multi-agent
planning [22]. We relax the integer variables and solve
an LP as the master problem and obtain the solution



which then solves the curb-allocation problem for each
curb space in parallel, considering only the local curb
constraints along with the broadcasted duals. At each of
the sub-problems, we calculate the reduced cost, and if it
is negative, we add that allocation to the list of possible
feasible solutions for when we next re-solve the master
problem. This process is repeated in an iterative fashion
until the solution converges.

The relaxed LP is shown below:

max
∑
k∈T

∑
cj∈N

Fk(u
(m)
k,cj

, cj) (10a)

s.t
∑
cj∈N

∑
i∈M

1

2
||u(i)k+1,cj

− u(i)k,cj
||1≤ b,∀k ∈ T \T : νk

(10b)

u(i) ≤
∑
cj∈N

u
(m)(i)
k,cj

≤ u(i),∀i ∈M, k ∈ T : [λ
(i)
k , λ

(i)

k ]

(10c)

u
(m)(i)
k,cj

=
∑
m∈Q

zmU
(m) (10d)∑

m∈Q
zm = 1 : µ (10e)

zm ∈ Z, ∀m ∈ Q (10f)

where Q is the set of all feasible solutions (m) to
the original MIP, Um is the curb allocation for the
feasible solutions and [λ

(i)
k , λ

(i)

k ] are the lagrange duals
associated with the constraints in (10c), µ is the lagrange
dual associated with the constraint in (10e) and νk is the
dual associated with the constraint in (10b). Here, (10d)
chooses the binary weights associated with the curb
allocation of feasible solutions Um and (10e) ensures
that only one set of feasible solutions is chosen. The
above problem can be turned into an LP by relaxing
the integer constraint in (10f) to the following linear
constraint:

zm ∈ [0, 1], ∀m ∈ Q (11)

Utilizing the Lagrange duals obtained from solving
the above LP, these values are broadcasted to solve a
MIP locally and in parallel for each curb location cj as

follows:

max
∑
k∈T

Fk(uk,cj , cj)−
∑
i∈M

∑
k∈T

λ
(i)

k u
(i)
k,cj
−∑

i∈M

∑
k∈T

λ
(i)
k u

(i)
k,cj
−

∑
k∈T \T

∑
i∈M

νku
(i)
k+1,cj

(12a)

s.t
∑
i∈M

u
(i)
k,cj

= 1, ∀k ∈ T (12b)

u
(i)
k,cj
∈ Z (12c)

The optimal solution obtained from solving the above
MIP is used to calculate the reduced cost shown below:

∑
k∈T

Fk(u
∗
k,cj , cj)−

∑
i∈M

∑
k∈T

λ
(i)

k u
∗(i)
k,cj
−∑

i∈M

∑
k∈T

λ
(i)
k u
∗(i)
k,cj
−

∑
k∈T \T

∑
i∈M

νku
∗(i)
k+1,cj

− µ
(13)

If the reduced cost is less than zero, then the obtained
optimal solution is added to the list of feasible solutions
Um for the LP and the LP is resolved with the addition
of the new feasible solution. This process is repeated
until convergence.

Fig. 4 compares the simulation results using the
Dantzig-Wolfe approach to the MIP solution, for the
Seattle insignia neighborhood with a total of 289 curb
spaces over 10 time-steps. From these results, we are
able to demonstrate the efficacy of Dantzig-Wolfe in
converging towards the optimal solution obtained from
the MIP. Of course, we are primarily motivated to use
Dantzig-Wolfe decomposition due to its scalability, as it
enables us to solve an LP combined with smaller MIPs
in a parallel manner. This circumvents the scalability
issue encountered in solving large-scale MIPs.

VI. DISCUSSION

A critical assumption of this work is the existence of
a curb value function that a municipality can reasonably
measure or approximate, to then optimize over. In this
work, we have maximized an objective that encodes
the net revenue of the curb to all users relative to
the distance from hypothetical points of interest across
three types: passenger parking, commercial loading, and
transit riders (with constraints on the minimum and
maximum number of each zone type, maximum number
of rezonings over the time horizon, and a penalty on
solution that deviate from a desired distance between bus
stops). We see two pathways forward. First, a wide body
of econometric work seeks to measure these valuations
directly, particularly with respect to the externalized
costs of a given zoning type [27], [23], [32], [28].
Second, one could approximate an implicit valuation



Fig. 4. Comparison of objective value obtained using Dantzig-Wolfe
decomposition with the MIP solution over iterations.

Fig. 5. Comparison of objective value obtained using Dantzig-Wolfe
decomposition with the ADP4 and MIP solution over iterations.

Fig. 6. Comparison of cumulative solve time over iterations between
Dantzig-Wolfe decomposition method with the ADP methods.

by measuring the changing response in demand for a
space when a space is rezoned. Such an approach would
build upon inverse reinforcement learning [33] and could
incorporate domain and institutional knowledge through
Bayesian priors [34].

The latter introduces an interesting problem that may
be considered by more dynamic management of future
curb zoning: as curb space is rezoned, demand at that
space and for spaces in neighboring areas may change
as a result. Resolving this form of control-dependent
demand might be addressed through performative pre-
diction methods in the context of our proposed dynamic
programming formulation [35].

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that, given some prin-
cipled measure of curb valuation, dynamically rezoning
curb space is a dynamic programming problem. We also
show that we can easily introduce policy-driven con-
straints, such as upper and lower bounds on the number
of a given zoning type, or a desired distance between
any two spaces zoned with the same type (e.g., bus
stops). For even modestly large neighborhoods, however,
solving this dynamic programming problem becomes
computationally intractable particularly if these policy-
driven constraints are coupled in time, such as limiting
the total number of rezonings over a finite time period.
We show that this can be addressed by sampling the
solution space through the use of approximate dy-
namic programming, or by decomposing the problem
via Dantzig-Wolfe decomposition.

Future work could model other types of policy-related
time constraints in the curbside zoning problem. It could
also demonstrate our approach on case studies with
more zone types and longer planning horizons. Finally,
another important direction for future work will be to
conduct a sensitivity analysis of optimal curb-zoning
with respect to various system parameters, in order to
yields helpful insight on real-world implementation.
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