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Bike Sharing Demand Prediction based on Knowledge Sharing across
Modes: A Graph-based Deep Learning Approach

Yuebing Liang!, Guan Huang? and Zhan Zhao?

Abstract— Bike sharing is an increasingly popular part of
urban transportation systems. Accurate demand prediction is
the key to support timely re-balancing and ensure service
efficiency. Most existing models of bike-sharing demand pre-
diction are solely based on its own historical demand variation,
essentially regarding bike sharing as a closed system and
neglecting the interaction between different transport modes.
This is particularly important because bike sharing is often used
to complement travel through other modes (e.g., public transit).
Despite some recent efforts, there is no existing method capable
of leveraging spatiotemporal information from multiple modes
with heterogeneous spatial units. To address this research gap,
this study proposes a graph-based deep learning approach for
bike sharing demand prediction (B-MRGNN) with multimodal
historical data as input. The spatial dependencies across modes
are encoded with multiple intra- and inter-modal graphs. A
multi-relational graph neural network (MRGNN) is introduced
to capture correlations between spatial units across modes,
such as bike sharing stations, subway stations, or ride-hailing
zones. Extensive experiments are conducted using real-world
bike sharing, subway and ride-hailing data from New York
City, and the results demonstrate the superior performance of
our proposed approach compared to existing methods.

Index Terms— bike sharing, demand prediction, inter-modal
relationships, graph neural networks, deep learning

I. INTRODUCTION

In the past decade, bike sharing has emerged as a sus-
tainable, convenient, and generally affordable travel mode,
and become an integral component of urban transportation
systems in cities around the world. The trend is likely
to continue under the ongoing COVID-19 pandemic, as
biking is usually seen as a safer and healthier travel option.
Because of its positive effects on the environment, public
health and traffic congestion, bike sharing systems (BSS)
should be promoted to play a bigger role in urban mobility.
Currently, efficient operations of BSS rely on the dynamic
rebalancing of bikes between locations to better match the
ever-changing demand patterns [1]. Therefore, the accurate
short-term demand prediction at high spatial resolution is
crucial because it is the basis to ensure the availability,
efficiency, and user experience of bike sharing service.

Recent years have seen growing interests in short-term
demand prediction for intelligent BSS, with a particular focus
on deep learning methods, because of their demonstrated
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effectiveness in extracting the complex and nonlinear knowl-
edge hidden in large-scale mobility data [2], [3]. Despite
the success of these methods, they regard bike sharing as a
closed system and neglect the potential rich information of
the interaction between BSS and other transportation modes.
This is especially important to consider for bike sharing,
because it is mainly used for short-distance trips or the
first-mile/last-mile portion of longer trips. In practice, BSS
are often designed as feeders to public transport systems
or support multimodal transport connections [4]. Extensive
prior studies have explored the relationship between BSS
usage with public transit, taxi and ride-hailing, and unre-
vealed significant complementary or competitive relation-
ships subject to trip purpose, trip length, availability, etc [5],
[6]. As a result, the demand for bike sharing will inevitably
be influenced by other transportation modes, which should
be considered in demand prediction. Incorporating demand
information across modes can also help mitigate the data
sparsity problem commonly seen in BSS, since bike sharing
is rarely one of the primary travel modes in cities.

To incorporate inter-modal demand information for bike
sharing demand prediction, recent studies have proposed to
relate each BSS station to its adjacent subway stations or
bus stops and use their accumulated usage as an additional
attribute of BSS stations [4], [7]. Another approach is to
divide the study area into uniform grids and aggregate
multimodal data to the same grid system [8], [9]. However,
these methods are not always straightforward because of the
heterogeneous spatial units of different transportation modes:
some are station-based (e.g., subway, station-based BSS),
while others are stationless (e.g., ride-hailing, dockless BSS)
[10]. Instead of arbitrarily aligning multimodal networks, we
need a more flexible approach that can learn the inter-modal
relationships across heterogeneous spatial units directly from
data. Also, the learning should be done with high spatial res-
olution so that it is useful for BSS operations. For example,
dynamic rebalancing for station-based BSS would require
good demand prediction at the station level.

In this paper, we propose a graph-based deep learning
approach for bike sharing demand prediction (B-MRGNN).
To integrate multimodal data with diverse spatial units, we
encode spatial dependencies across different modes with
multiple intra- and inter-modal graphs. To extract cross-
mode relationships, we introduce an improved version of the
multi-relational spatiotemporal graph neural network from
our prior work [10]. The proposed model is demonstrated
using the Citi Bike data from New York City (NYC), with
the subway and ride-hailing data as additional inter-modal



demand input. Because of data constraint, we will focus on
station-based BSS in this study, but the methodology should
be generalizable to stationless (or dockless) BSS as well. The
specific contributions of this research are as follows:

o« We propose a deep learning model for bike sharing
demand prediction based on inter-modal relationships
learnt from historical demand data.

o We introduce a multi-relational graph neural network
(MRGNN) to model spatial correlations between het-
erogeneous spatial units across different modes.

« Extensive experiments are conducted based on real-
world datasets from NYC, and the results demonstrate
the superior performance of our proposed model com-
pared to existing methods.

II. LITERATURE REVIEW

Traditional methods for bike sharing demand prediction
mainly focus on finding the relationships between bike
demand and its historical demand and exogenous factors
(e.g. weather, land use) through regression models, such
as auto-regressive integrated moving average (ARIMA) [11]
and linear regression (LR) [12]. Later research adopts other
machine learning models, including random forest [13] and
gradient boosting machines [14]. In recent years, extensive
studies have presented the power of deep learning models to
capture the nonlinear and complex relationships for demand
prediction tasks. Xu et al. [2] introduced a recurrent-based
model considering the effect of exogenous factors. Jin et al.
[3] applied temporal convolution networks (TCNs) to capture
temporal dependencies for bike sharing demand prediction.
To incorporate spatial information, researchers employed
convolutional neural networks (CNNs) along with recurrent
layers to capture complex spatiotemporal influences, using
artificial grids for demand aggregation [15], [16]. Graph
neural networks (GNNs) exempt the requirement of artificial
segmentation and can capture relationships at the station
level, which is more useful for BSS operations. Yu et al. [17]
introduced a convolution-based model with Graph convolu-
tional networks (GCNs) to model spatial dependencies and
TCNs to model temporal dependencies. A multi-graph learn-
ing approach was proposed in [18] for ride-hailing demand
prediction encoding multiple types of spatial dependencies.
Wu et al. [19] introduced an adaptive adjacency matrix to
learn spatial dependencies hidden in data. However, these
methods are mode-specific and do not consider inter-modal
relationships.

Only a few studies have considered the influence of other
modes for bike sharing demand prediction. Zhang et al. [4]
incorporated the historical demand of public transit and used
LSTM for bike sharing demand prediction. Cho et al. [7]
enhanced the accuracy of bike sharing demand during peak
hours with public transit usage information using a graph
learning approach. These methods assign the accumulated
flow of adjacent public transit stations to each BSS station,
and do not model the spatiotemporal dependencies among
adjacent stations/zones from different modes directly. Recent
research has also investigated the co-prediction of bike

sharing demand and other transport modes. In [8] and [9], the
demands for taxis and bike sharing are are aggregated to a
grid system to enable shareable feature learning, before co-
predicted using a convolutional recurrent network. Despite
existing relevant works, a model that can directly leverage
spatiotemporal knowledge across modes with heterogeneous
spatial units is still needed.

III. PROBLEM STATEMENT

In this section, we introduce some notations in this re-
search and then formulate our problem.

Definition 1 (Demand Sequence): Consider a transport
mode m with N,, nodes (i.e. stations/service zones). For
each node i = 1,2,...,N,, its inflow and outflow demand
at time step ¢ is denoted as x/, ; € R?. Next, we represent
the demand of all the nodes from mode m at time step ¢
as X, = {x}, 0, %, ..., }, Xy, € RV Further, we use
xi-Tit = 1x1=T . x¥~1 x } to denote the demand sequence
of mode m over time steps 7.

Problem (Bike Sharing Demand Prediction): This research
aims to predict the station-level bike sharing demand given
historical demand of BSS as well as other modes. Formally,
given the historical demand of bike sharing denoted as Xé*”
and auxiliary modes, i.e., subway and ride-hailing in our
case, denoted as X'~7* and X}l_T” , the goal is to predict
bike sharing demand X;I“ at the next time step :

X£+l :F(XéiT:t,XstiT:nX;,iT:t), (1)

where F(x) is the prediction function to be learned by our
proposed model. This formulation can be easily adapted to
other demand prediction problems with multimodal historical
demand as input.

IV. METHODOLOGY

This section presents an improved version of the multi-
relational spatiotemporal graph neural network framework
[10] for station-level bike sharing demand prediction (B-
MRGNN) by taking advantage of historical demand se-
quences of subway and ride-hailing systems. Figure (1| dis-
plays the overall architecture of our proposed model. It is
composed of L multi-relational spatiotemporal blocks (ST-
MR blocks) for multimodal representation learning, each
comprising TCNs to model temporal patterns and multi-
relational graph neural networks (MRGNNs) to model the
spatial influence of adjacent subway stations and ride-hailing
zones on BSS stations. Based on the learned representation
from ST-MR blocks, a prediction layer is used to generate
bike sharing demand prediction. We further introduce a
prediction-based regularization term that incorporates the
demand prediction error for subway and ride-hailing during
model training. Details of each module are introduced below.

A. Multi-relational graph neural network

In this subsection, we provide more details on the
MRGNN that is used to capture the interactions between
heterogeneous spatial units across modes. As shown in
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Figure 2] MRGNN is composed of two major parts: multi-
relational graph construction to encode cross-mode spatial
dependencies and multi-relational graph convolutions to cap-
ture correlations between nodes through message passing.
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Fig. 2. The framework of MRGNN

1) Multi-relational graph construction: As subway and
BSS (in our case) are station-based and ride-hailing is
stationless, it is difficult to model spatial dependencies on a
single homogeneous graph. To encode spatial dependencies
within and across modes, we define multiple intra- and inter-
modal graphs. Specifically, intra-modal graphs are used to
capture spatial correlations among stations/zones of the same
mode. Taking bike sharing as an example, its intra-modal
graph is defined as G, = (V;,A;), where V, is a set of BSS
stations, and A;, € R¥»*Ns s an adjacency matrix representing
the spatial dependencies between BSS stations. Similarly, an
intra-modal graph is defined for subway and ride-hailing,
denoted as G; and G;. Inter-modal graphs are defined
to capture the pairwise correlations among stations/zones
between the target mode (i.e., bike sharing) and each of
the auxiliary modes (i.e., subway and ride-hailing). For
example, the inter-modal graph between bike sharing and
subway is represented as Gp; = (Vj, V,Aps), where V, and
V; denote BSS and subway stations and A, € RV»*Ns s
a weighted matrix indicating the cross-mode dependencies
between adjacent BSS and subway stations. Similarly, an
inter-modal graph is defined between bike sharing and ride-
hailing denoted as Gyy,.

Prior studies have demonstrated that strong correlations
may occur between locations that are either geographically
close or semantically similar (i.e., demand patterns) [18]. To
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The architecture of B-MRGNN

encode both relationships, we define two adjacency matrices
for each graph: one for geographical proximity denoted as
Ag and, the other for semantic similarity denoted as Ap.
The former is computed as a function of distance, while the
latter based on demand patterns. The specific definitions of
Ag and Ap follow our prior work [10].

Figure [3 illustrates the constructed multi-relational graph
of bike sharing, subway and ride-hailing. A total of
(34+2)x2=10 relations is defined to encode spatial depen-
dencies between nodes from different modes, including 3
intra-modal and 2 inter-modal graphs, each with 2 adjacency
matrices. This formulation can be easily adapted to encode
spatial dependencies across other modes with diverse net-
work structures spatial.

geo-proximity of BSS
sem-similarity of BSS

geo-proximity of subway
— = — = sem-similarity of subway

geo-proximity of ride-hailing
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Fig. 3. Modeling multimodal spatial dependencies for BSS

2) Multi-relational graph convolutions: Graph convolu-
tions have been an effective way to aggregate information
of connected nodes. However, most existing GCNs cannot
be applied to the multi-relational graph defined above for
two main reasons: first, they cannot process inter-modal
graphs with heterogeneous nodes and a non-square adjacency
matrix; second, they fail to consider the disparity between
different modes, which might result in negative transfer. To
tackle these issues, we introduce an inter-modal graph convo-
lution network to aggregate information of connected subway
stations and ride-hailing zones for each BSS station, consid-
ering both cross-mode similarity and difference. Given the



inter-modal graphs Gps = (Vp, Vs, Aps) and Gy, = (Vi Vi, Apn)»
as well as the input representations of subway and ride-
hailing, denoted as H, € RNs*¢in H, € RNi*¢in respectively,
the inter-modal similarity is modeled as:

Z) = ReLU (Ap(ApsHo) W, + 1), )
ZzSZ) = ReLU (A, (Xb,,Hh)Wlf;) + l;(,Z) ), 3)

where Z,g‘;) € RNoXCou | Zé;) € RNoXcou gre the aggregated
features of connected subway stations and ride-hailing zones
on BSS stations respectively, Wlf;),Wb(;) € RenXCou and
ll(;),lég € R are the learned model parameters, c¢;;, and
Cour TEpresents the input and output vector dimension of each
node (i.e. station/zone). A = Wmm) denotes the normalized
adjacency matrix constructed from A.

Our preliminary analysis shows that there is a notable
disparity between the demand patterns of different modes:
generally, the demand of subway and ride-hailing are more
concentrated during rush hours, while bike sharing usage is
more active during off-peak period. Simply modeling cross-
mode similarity can easily lead to negative transfer. Inspired
by [20], we model inter-modal difference between bike
sharing and the two auxiliary modes as:

7 — ReLU (Ap|ApeHy — Hy WY +11V), @
29 — ReLU (Ap|ApyHiy — Hy W\ + 11D, )

where |g;,SHS — Hp|, |gbhHh — H,| represent the information
gap between BSS stations and the aggregated information
of connected subway stations and ride-hailing zones respec-
tively, W;?,W;?,lé?,lé? are the learned model parameters.

In addition, we apply a standard GCN layer to model
pairwise correlations between connected BSS stations. Given
the intra-modal graph Gj, and the input representations of
bike Hj, € RNo*<in_the correlations between BSS stations are
modeled as:

Zj, = ReLU (ApHy Wy +15), 6)

where Wy, [} are model parameters. In practice, the inter-
modal similarity and difference graph convolution layers as
well as the intra-modal graph convolution layer can be mod-
eled in parallel using batch matrix multiplication operations.
Through the intra- and inter-modal graph convolutions, each
BSS station receives multiple feature vectors from geograph-
ically adjacent or semantically similar subway stations, ride-
hailing zones and other BSS stations. The learned feature
vectors from heterogeneous neighborhood nodes are then
aggregated using an adding function.

B. Multi-relational spatiotemporal block

In this subsection, we describe the design of ST-MR
blocks, which are stacked to capture correlations between
nodes of different modes from both spatial and temporal
domains. To capture temporal dependencies, we employ a
temporal gated convolution network (TCN) proposed by
[17], due to its high training efficiency and good prediction
performance. Briefly, given the historical demand series of a

node, TCN models the relationship between each time step
and its neighborhoods using a 1-D causal convolution. As
introduced above, different modes usually exhibit notably
different temporal patterns. Therefore, we apply a separate
TCN layer for each mode to capture mode-specific temporal
information. The learned features of different modes from
TCN layers are then fed into inter-modal graph convolution
layers to jointly model spatial and temporal dependencies of
BSS stations on connected subway stations and ride-hailing
zones. We also apply an intra-modal graph convolution layer
on each mode to capture spatiotemporal correlations within
modes. Following [10], we use an additional TCN layer for
each mode after MRGNN layers. The input of the second
TCN layer is the sum of the output of the first TCN layer
and the MRGNN layer, as a residual connection function
to speed up model training. To stablize model parameters,
we employ a layer normalization function at the end of
each ST-MR block. After the L stacked ST-MR blocks,
each BSS station gets a learned representation vector that
summarizes the spatiotemporal information from multimodal
historical demand. Based on the learned representations, we
generate future demand predictions using a fully-connected
feed-forward network.

C. Prediction-based Regularization

To train our model more efficiently, we introduce a
prediction-based regularization term. Specifically, in addi-
tion to bike sharing demand prediction, we generate future
predictions of subway and ride-hailing demand with addi-
tional feed-forward networks, and use the prediction error of
subway and ride-hailing demand as a regularization term in
the loss function. The intuition behind it is that by jointly
optimizing the demand prediction of auxiliary modes, we can
guide the model to extract useful spatiotemporal information
from them, which can inturn benefit bike sharing demand
prediction. In this way, the loss function is defined as:

Y x,! —Xﬁf‘l) 7

L(9)=I|X;§+1—Xz§“|+8r< e
me{s,h

where X/."! X!*1 are the predicted and true demand values
of mode m at time step ¢+ 1, €& is a pre-determined weight
for the prediction-based regularization term.

V. EXPERIMENTS
A. Data Description

Our proposed model is validated on real-world public
datasets from NYC. In this study, we use Manhattan as
the research area and collect travel demand data of bike
sharing, subway and ride-hailing from 2018-03-01 to 2018-
08-31. Specifically, we use the following three datasets: (1)
NYC Citi Bike: the data consists of the pick-up and drop-
off time and station of each Citi Bike trip records. During
our study period, there are around 36 thousand trip records
per day. We filter out the stations with an average of fewer
than three orders per hour and keep 246 BSS stations for
demand prediction. (2) NYC Subway: the data contains the



entries and exists counts of each turnstile in subway stations
every four hours, with around 2.4 million entry/exist counts
every day on average. We filter out subway stations with no
demand for long time periods, which results in 107 subway
stations. (3) NYC Ride-hailing: we use the for-hire vehicle
(FHV) data from NYC Taxi & Limousine Commission
(TLC), which is provided by ride-hailing companies such
as Uber and Lyft. It contains the pick-up and drop-off time
and zone of each trip records during the study period. On
average there are 234 thousand trips per day during our study
period. The zones are pre-determined by TLC and there are
63 TLC zones in Manhattan.

B. Experiment settings

The demands of all three modes are aligned into 4-
hour intervals and min-max normalization is used for each
mode to mitigate the effect of demand variance. Data from
the first 60% time steps are used for model training, the
following 20% for validation, and the last 20% for model
testing. We set the historical time step 7 = 6, the number
of training epochs E = 500, the learning rate of 0.002, the
batch size of 32 and the dropout ratio of 0.3. To prevent
overfitting, we use early stopping on the validation set and a
L2 regularization on the loss function with a weight decay of
le-5. The prediction-based regularization weight &, is tuned
from O to 0.3, and we find that our model achieves the
best prediction performance for bike sharing demand when
& = 0.2, verifying the effectiveness of jointly optimizing
multimodal demand prediction for model training.

The following models are used as baselines for bench-
marking: (1) HA: a statistical method that makes predic-
tions based on the historical average; (2) LR: a regression
model that captures the linear relationship between histor-
ical and future demand patterns; (3) XGBoost: a gradient
boosting machine model to uncover nonlinear relationships;
(4) LSTM: a recurrent-based model to capture long- and
short-term temporal dependencies in demand sequences; (5)
STGCN [17]: a convolutional framework using GCNs for
spatial correlations and TCNs for temporal dependencies;
(6) MGCN [18]: a multi-graph convolution network that
captures multiple types of spatial correlations with different
GCNs; (7) Graph WaveNet [19]: a graph learning approach
using node embedding to learn an adaptive adjacency matrix.
For fair comparison, we use the same experiment settings
for all models, and evaluate them using three widely used
metrics: Root Mean Square Error (RMSE), Mean Absolute
Error (MAE) and Coefficient of Determination (R?). We run
10 independent experiments for each model and report the
average values on the test set.

VI. RESULTS
A. Comparison of Model Performance

The performance of different models are summarized in
Table [l Compared with the baseline models, our proposed
model achieves significantly superior performance for all
evaluation metrics. This is likely because our model can

directly leverage spatiotemporal information of related sub-
way stations and ride-hailing zones to enhance the prediction
of bike sharing demand. In our model, the spatial effects
across modes are encoded with inter-modal graphs. Figure [
presents the performance variance of 10 independent runs
of our proposed model and several selected baselines. We
can find that our proposed model has the best performance
regarding both RMSE and MAE in all experiments with
relatively high stability.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT MODELS

Models RMSE [ MAE R?
HA 26.832 || 19.322 || 0.167
LR 16.750 || 10.431 || 0.676
XGBoost 15.139 || 9.262 || 0.734
LSTM 16.148 || 10.255 || 0.695
STGCN 13.820 || 9.097 || 0.789
MGCN 14.436 || 9.359 || 0.760
Graph WaveNet 12.689 8.092 0.814
B-MRGNN 11.598 || 7.270 || 0.845
13
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Fig. 4. Comparison of model stability

Among baseline models, the performance of HA is rel-
atively poor, indicating the low temporal regularity of bike
sharing demand patterns. This is reasonable as people use
bikes for different purposes (e.g. leisure) that are less regular
(compared to commuting). LR performs worse than other
machine learning models, suggesting the necessity of cap-
turing nonlinear relationships in demand series. XGBoost
performs notably better than LSTM, showing the advan-
tage of gradient boosting machines in some cases. The
poor performance of LSTM can be potentially explained
by its inability to capture spatial dependencies between
BSS stations. Although MGCN encodes multiple types of
spatial dependencies, it performs worse than STGCN in our
experiments, which might be due to its low model stability
as illustrated in Figure 4| Graph WaveNet achieves the best
performance among baseline models given its ability to
learn spatial dependencies hidden in demand data with an
adaptive adjacency matrix. Compared with Grave WaveNet,
our proposed model can further reduce the prediction error,
with RMSE and MAE improvement of 8.6% and 10.2%
respectively.



B. The effect of input modes

To further investigate the effect of incorporating inter-
modal relationships on bike sharing demand prediction, we
compare the performance of our model using different input
mode combinations: bike sharing alone, bike sharing and
subway, bike sharing and ride-hailing, and all three modes.
The results are shown in Table [l Note that they share
the same model structure, just with different input modes.
We find that the inter-modal relations from geographically
nearby or semantically similar subway stations and ride-
hailing zones can indeed help with the prediction of bike
sharing demand: without any inter-modal relations, the pre-
diction error regarding RMSE and MSE would increase by
8.0% and 8.5% respectively. Incorporating either subway
or ride-hailing demand patterns can already significantly
improve the prediction performance of bike sharing demand,
with the RMSE reduced by 6.2% and 7.2% respectively. It
is also worth noting that with only bike sharing demand as
input, our proposed model can still perform better than Graph
WaveNet, suggesting that our spatiotemporal framework can
better extract intra-modal relationships.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT MODE COMBINATIONS

Models RMSE || MAE [ R?
Bike sharing 12.528 || 7.889 || 0.821
Bike sharing + subway 11.754 || 7.391 0.843
Bike sharing + ride-hailing 11.630 || 7.275 0.845
Bike sharing + subway + ride-hailing || 11.598 || 7.270 || 0.845

VII. CONCLUSIONS

This paper proposes a bike sharing demand prediction
approach that allows for information sharing across modes.
Specifically, we adapt a multi-relational spatiotemporal graph
neural network approach to capture the complex spatiotem-
poral correlations among heterogeneous spatial units from
different modes. The spatial dependencies across modes
are encoded with multiple intra- and inter-modal graphs,
and an inter-modal graph convolution layer is introduced
to capture both correlations and difference between nodes
from different modes. To integrate dependencies from spatial
and temporal domains, we further incorporate MRGNN
layers with temporal convolution networks in stacked ST-
MR blocks. Empirical validation is performed on real-world
bike sharing, subway and ride-hailing datasets from NYC.
The results show that our proposed model achieves the
best performance compared to existing methods, suggesting
that the knowledge of subway and ride-hailing demand can
indeed benefit the demand prediction of bike sharing. In
future works, this research can be further improved by
examining how the effects of cross-mode information vary
over space and time.
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