
Extrinsic Camera Calibration with Semantic Segmentation

Alexander Tsaregorodtsev1, Johannes Müller1, Jan Strohbeck1, Martin Herrmann1,
Michael Buchholz1 and Vasileios Belagiannis2

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works. DOI: 10.1109/ITSC55140.2022.9922338.

Abstract— Monocular camera sensors are vital to intelligent
vehicle operation and automated driving assistance and are
also heavily employed in traffic control infrastructure. Cal-
ibrating the monocular camera, though, is time-consuming
and often requires significant manual intervention. In this
work, we present an extrinsic camera calibration approach
that automatizes the parameter estimation by utilizing semantic
segmentation information from images and point clouds. Our
approach relies on a coarse initial measurement of the camera
pose and builds on lidar sensors mounted on a vehicle with high-
precision localization to capture a point cloud of the camera
environment. Afterward, a mapping between the camera and
world coordinate spaces is obtained by performing a lidar-to-
camera registration of the semantically segmented sensor data.
We evaluate our method on simulated and real-world data to
demonstrate low error measurements in the calibration results.
Our approach is suitable for infrastructure sensors as well as
vehicle sensors, while it does not require motion of the camera
platform.

I. INTRODUCTION

Monocular cameras are a keystone to cost-efficient sensor
setups [1] for both intelligent vehicles (IVs) and smart
infrastructure, supporting automated driving. The calibration
of such cameras is vital to their operation out in the field
and, therefore, of utmost importance for applications such
as self-localization [2] or recognition [3]. However, while
the intrinsic camera calibration can easily be accomplished
once in a constrained environment, the recovery of the
extrinsic calibration in the field or between vehicle sensors is
still a challenging process. In particular, classical calibration
methods [4] often require manually placed calibration targets
in the scene. These approaches, therefore, cannot easily
be applied to traffic cameras, observing densely populated
junctions or to IVs out in the field. Thus, an automatic
calibration solution, which works for single infrastructure
cameras, is needed to reduce calibration effort. Such a

*Part of this work was financially supported by the Federal Ministry of
Economic Affairs and Energy of Germany within the program ”New Vehicle
and System Technologies” (project LUKAS, grant number 19A20004F).
Part of this work has been conducted as part of ICT4CART project which
has received funding from the European Union’s Horizon 2020 research
& innovation program under grant agreement No. 768953. Content reflects
only the authors’ view and European Commission is not responsible for any
use that may be made of the information it contains.

1The authors are with the Institute of Measurement, Control and Mi-
crotechnology, Ulm University, D-89081 Ulm, Germany
{<first name>.<family name>@uni-ulm.de}

2Vasileios Belagiannis is with the Department of Simulation and Graph-
ics, University Magdeburg, D-39106 Magdeburg, Germany
{vasileios.belagiannis@ovgu.de}. Most of this work was done during his
time at Ulm University.

3D Environment
Reconstruction

Point Cloud
Segmentation

Camera Image
Segmentation

E
xt

ri
ns

ic
C

al
ib

ra
tio

n

C
am

er
a

Im
ag

e
L

ID
A

R
Sc

an
s

Cross-Domain
Registration

Fig. 1. Approach Overview. On the left side, data from both domains are
fed into the pipeline. For lidar data, the 3D environment is reconstructed
using multiple scans. Afterward, both domains are labeled semantically.
In the final step, our proposed optimization is performed to register both
domains to retrieve the extrinsic calibration parameters.

solution can be used to calibrate cameras mounted on IVs
as well.

Recently, sensor-to-sensor registration methods, e.g. [5],
[6], have been proposed to automate the calibration process.
However, these methods often require broadly overlapping
fields of view (FOVs), which implies redundant sensors and
hence negates the cost savings achieved by a single sensor.
For IVs, specific fully automated calibration schemes, such
as [7], have been developed, which rely on the motion of
the sensor platform, i.e., the IV, to optimize the calibration
during each time step. A caveat of these specific calibra-
tion schemes is their dependency on sensor motion, which
excludes static infrastructure from the range of possible
applications. Deep learning approaches like [8] have recently
been developed to estimate extrinsic camera parameters from
camera images and lidar data. While these approaches have
shown promising results, they still tend to have higher esti-
mation errors compared to previous methods like [7], making
them unsuitable for IV and infrastructure calibration. Finally,
another classical method is described in [9]. It localizes a
camera sensor inside of a 3D model of the environment taken
from a SLAM with stereo cameras. However, this method
obtains its 3D environments from a mobile stereo camera
setup and thus contains texture information not present in
lidar data. Furthermore, this approach is not transferable to
stereo camera setups permanently mounted on IVs due to
their limited field of view.

We propose a monocular camera calibration approach to
perform cross-domain registration of a semantically seg-
mented mono camera image and a semantically labeled 3D
model of the environment the camera is located in. An
overview of the approach is given in Fig. 1. By using a
semantic representation of both the camera and the point
cloud domain, we introduce semantic labels, which can
be matched between the domains. Furthermore, the use of
semantic labels instead of raw RGB and RGBD camera data
makes the registration more robust and reduces the possibility
of registration algorithm errors. These can occur with raw
camera data due to color space and exposure differences
between different camera types.

Our approach consists of data pre-processing steps as well
as an optimization step performing cross-domain registration.
In the pre-processing steps, the 3D environment model is
reconstructed and then labeled semantically using neural
networks. The segmentation is also performed on images
of the target camera that we aim to calibrate. Then, an
optimization pass is invoked to match the visual appearance
and projection of a rendered view of the 3D model with
the segmented camera view. This optimization then yields
the extrinsic camera calibration. Finally, experiments with
the CARLA simulator [10] and the KITTI dataset [11] show
that our method leads to the accuracy level that is suitable for
automated driving applications, both for static and dynamic
camera platforms. The contribution of this paper is twofold.
From a practical perspective, our approach allows for low-
effort, highly automated calibration of monocular cameras
in (geo-referenced) world coordinates without requiring mo-
tion of the target sensor platform. From a methodological
perspective to the best of our knowledge, we are the first to
use semantic segmentation as a visual feature set to guide
the required parameter optimization. The source code of our
approach is publicly available1.

The related work to extrinsic camera calibration is outlined
in Section II. The complete algorithm is described in Section
III, while in Section IV, a theoretical and practical evaluation
is provided. At last, the conclusion of this work is described
in Section V.

II. RELATED WORK

Calibration of cameras has been extensively investigated
in the past. A classical approach for intrinsic and extrinsic
camera calibration is presented in [4]. One of the first ap-
proaches specifically for infrastructure sensors was described
in [5], where a vehicle target was used to calibrate a pair
of fisheye cameras with a large overlapping field of view.
Another approach using planar structure from motion and
textured environments was presented in [6], which is able
to calibrate multi-sensor configurations. The approach of [9]
circumvents the field of view (FoV) overlap requirement of
the other two approaches by reconstructing a 3D environment
using a mobile RGB-D camera setup. Then, a matching
of feature descriptors between the target camera image and

1https://github.com/Tuxacker/semantic_calibration

the model is performed and the closest matching keyframes
are found to determine the camera pose. The automatic
calibration method of [12] estimates the camera vanishing
points by tracking image features of moving vehicles, while
a newer method by [13] uses a neural network to find
landmark positions on vehicles. By using the positional
relations between landmarks obtained from real 3D models
of the vehicles, a calibration is estimated from the landmarks.

Another class of algorithms performs direct 2D to 3D
matching and registration. Feng et al. [14] use a neural net-
work to directly match point cloud patches to image patches,
while the algorithm in [15] performs camera localization by
finding correspondences between 2D and 3D line features.
Li et al. [8] train a classifier to detect if a point in the point
cloud is in the camera frustum and then solve the inverse
camera projection problem using the frustum labels.

Methods performing calibration through sensor motion can
also be found in the literature ([7], [16], [17]). In particular,
Horn et al. [7] use a visual SLAM approach to estimate
the camera displacement and then represent the translation
and rotation using dual quaternions instead of homogeneous
transformation matrices, which allows for a more efficient
implementation of the optimization. The optimization con-
sists of finding a calibration matrix that is able to close the
loop between the current and previous time step, where the
calibration matrices of the previous time step are known.
A recent method using automated vehicles as calibration
targets is shown in [18]. It uses lidar measurements in an
empty scene to determine the ground plane and background
and then regresses the position of the automated vehicle as
it passes through the sensors FoV with localization data of
the vehicle being available.

We improve on previous methods by exploring a new con-
cept for matching cross-domain features by visual alignment,
which does not require specific calibration targets or motion
of the sensor itself. It, therefore, allows us to perform a
single-shot calibration in diverse scenarios without requiring
a lot of manual intervention.

III. CALIBRATION METHOD

In this section, we formulate our problem and present each
step of our approach required to estimate the extrinsic camera
calibration.

A. Problem Formulation and Constraints

Consider the perspective camera model [4]uv
1

 = K int

[
R t
0 1

]
︸ ︷︷ ︸

:=P

x
y
z
1

 , (1)

where [u, v, 1]T denotes a homogeneous camera image co-
ordinate of an image I with pixel color value Iu,v ∈
[0; 1]3, and [x, v, z, 1]T ∈ M3D is a homogeneous point
coordinate of a 3D model M3D of the observed scene. M3D

is represented as a point cloud. Furthermore, it is assumed

https://github.com/Tuxacker/semantic_calibration

that the scene visible in the camera image is overlapping
with the scene represented in the point cloud.

Our goal is to recover the parameters of the extrinsic
camera matrix P , i.e., the rotation matrix R ∈ R3×3 and the
translation vector t ∈ R3. At the same time we assume that
the intrinsic parameters K int ∈ R3×4, which represent the
mapping from 3D coordinates in the camera coordinate frame
to 2D pixel coordinates, are already known, e.g. as described
in [4]. Below, we propose a new calibration approach to
estimate these extrinsic camera parameters.

B. Approach Overview
We use visual matching of semantic information for the

parameter estimation of the camera rotation R and transla-
tion t. Our method consists of four steps, starting with the
3D environment reconstruction M3D, represented as a point
cloud (see Sec. III-C). It is recorded with the lidar sensor
mounted on a vehicle. Next, the point cloud segmentation
step (presented in Sec. III-D) follows to extract semantic
information for each 3D point. Then, the camera image
segmentation (see Sec. III-E) assigns a class category to each
pixel. Given the segmented 3D point cloud and image, we
propose a cross-domain registration approach (explained in
Sec. III-F) to estimate the extrinsic camera parameters by
visually matching the camera segmentation with a rendered
point cloud view using linear programming [19].

C. 3D Environment Reconstruction
We assume access to a vehicle equipped with a lidar

sensor and high-precision localization to construct the 3D
environment model M3D. Several lidar scans are recorded
as point clouds and expressed in the world coordinate frame.
The transformation from lidar sensor coordinates to world
coordinates requires known lidar extrinsics. Due to road
bumps and inaccurate orientation measurements, points in
the sensor’s far field come with increased positional errors,
resulting in noisy 3D point clouds with many outliers. Thus,
we filter out points that exceed the maximum distance dmax
from the vehicle’s lidar sensor. In practice, dmax is chosen to
be between 50 m and 75 m, which are standard cutoff values
for Velodyne sensors like the VLP-32C or the HDL-64E
used in the KITTI [11] dataset. Next, we rely on the multi-
way Iterative Closest Point (ICP) registration algorithm [20],
[21] between all scans, which partially compensates for
localization errors that accumulate over time. To accelerate
the registration, instead of registering every scan against
every other scan, all scans are sorted by their capture time,
and groups of three neighboring scans are recursively regis-
tered and merged. The recursion ends when all groups are
combined into the single point cloud M3D. At last, the point
cloud is down-sampled during each recursion step in order to
relax the ICP computation requirements. The reconstruction
step can be skipped if the 3D environment is obtained by
another mapping algorithm or from a different source.

D. Point Cloud Segmentation
In the next step, semantic labels are assigned to the points

of M3D to obtain the semantic segmentation map M3D
c ,

which contains a color label for each point in M3D. For this
task, we rely on a pre-trained deep neural network to perform
semantic segmentation, namely Cylinder3D [22], which sup-
ports segmentation of classes defined in SemanticKITTI [23].
Furthermore, the segmentation is also used to filter out
dynamic object classes like cars and pedestrians. This leaves
the buildings, ground points, vegetation, fences, poles, and
traffic signs classes for registration. Therefore, the calibration
method does not require exact time synchronicity between
the lidar scans and the camera image, as points belonging to
dynamic objects can easily be filtered out by their label.

E. Camera Image Segmentation

After labeling the point cloud M3D, the semantic seg-
mentation map Isem is extracted from the camera image
I. Similar to the point cloud segmentation, we rely on a
pre-trained deep neural network to extract semantic labels
available in the Cityscapes dataset [24], e.g., OCRNet [25].
We chose to use Cityscapes labels, as they share most classes
available in SemanticKITTI and thus enable direct matching
of class labels between domains. Again, dynamic object class
categories, e.g., cars or pedestrians, are removed from the
segmentation map. For the remaining object categories, we
perform a category alignment between the point cloud [22]
and the image [25] segmentation models by neglecting points
and pixels with labels that are unique to this domain. It
should be noted that the removal of dynamic objects results
in holes in the resulting map, especially in crowded scenes.
To minimize their impact, we introduce the normalization
factor β during the registration step in Section III-F.

The image segmentation can also be done semi-
automatically to improve calibration quality. In this case, the
resulting segmentation is manually edited to fix incorrectly
labeled regions in order to improve data quality and hence
reduce the overall calibration error.

F. Cross-domain registration

Next, we aim to estimate the rotation matrix R and
translation vector t. We formulate this estimation problem as
an optimization, where a loss correlated to the error ∥R̂−R∥
and ∥t̂ − t∥ is minimized using the simplex algorithm by
Nelder and Mead [19]. As the Nelder-Mead method does not
require gradient information, it allows a broad range of data
transforms to be applied to M3D. This includes rendering
transforms, which can be used to obtain a rasterized image Î
of a specific perspective view of M3D. We, therefore, define
the rendering function f as

Î = f
(
M3D,P (R̂, t̂),M3D

c

)
, (2)

where M3D
c is the color encoding of the segmentation and

R̂, t̂ are estimates of R and t. This rendering function is
used to transform the point cloud M3D with color labels
M3D

c into an image Î with the viewpoint defined by the
perspective camera matrix P (R̂, t̂). Î can then be visually
matched with the previously obtained image segmentation
Isem by calculating a distance metric between both images
and interpreting the result as a loss value. By adjusting

R̂ and t̂ to minimize the visual difference between these
images, and therefore minimizing the loss value, we actively
determine the optimal camera parameters. An advantage of
the Nelder-Mead method lies in its use of a simplex to
define the initial search space, which then moves and shrinks
towards the function minimum. By scaling the initial simplex
bounds according to the expected measurement variance of
the initial guess, we can easily define a sensible search space
covered by the starting simplex. Note that other gradient-free
approaches may be used as well.

a) Initialization: In order to start the optimization, the
Nelder-Mead method requires an initial parameter set. The
convergence speed of the algorithm and its ability to find
an optimal solution depend on the initial parameter set
and the search space. Therefore, an initial guess for the
camera position and orientation is required. We furthermore
constrain the search space of the pitch and yaw angle to ±5◦,
while we set the roll angle to zero. We expect our method to
also work for non-vanishing roll angles, but in our use cases,
no camera roll is desired and can be achieved by proper
mounting. This is a reasonable simplification since potential
camera roll is often not desired for automotive applications.
The yaw angle can be measured with a compass, while the
pitch can be determined with a spirit level. The maximal
position offsets are constrained to ±2.5m, i.e., the GPS
accuracy of a typical smartphone GPS receiver. We argue that
an initial guess with such accuracy can be easily obtained for
most practical situations and is sufficient to obtain a good
solution for the extrinsic calibration problem, as shown in
Sections IV-B and IV-C. However, it is possible to extend
the search space at a tolerable increase in calculation effort
by combining the Nelder-Mead method with a coarse grid
search to estimate parameters that were not measured and are
therefore not known. If an IV sensor-to-sensor calibration is
desired, no initial measurements are required in most cases,
as the convergence range of our approach is sufficient to
bridge the translation and rotation between both sensors.
Therefore, they can be set to be zero vectors in such cases.
After setting the initial guess, we also have to calculate the
initial simplex, which will converge to the optimal solution.
To this end, we generate 6 values (as a simplex of dimension
n is described by n + 1 points) by adding and subtracting
the maximal constrained parameter range for each pair of
simplex vertices and for each parameter.

b) Optimization Loop: The Nelder-Mead method is
invoked until the loss distance between two steps falls below
10−4 in order to estimate R̂ and t̂. The loss target we
optimize is defined as

L(Î, Isem) = β

h−1∑
u=0

w−1∑
v=0

Vu,v ℓL2(Îu,v, Isem
u,v) (3)

with the L2 loss term ℓ

ℓL2(a, b) = (a− b)T (a− b). (4)

Here, β is a normalization factor, w and h denote the width
and height of the images, and Vu,v is a function checking

the validity of the classes. If one of the images contains an
invalid class for a pixel, Vu,v = 0, i.e., the pixel is ignored for
loss calculations. Otherwise, Vu,v = 1 implies a contribution
to the final loss. It should be noted that, while in theory, any
distance metric may be used for ℓ, we decided to use an L2
loss, as this loss is commonly used as an image similarity
measure. Finally, the optimization performed by the Nelder-
Mead method can be represented as

R̂opt, t̂opt = argmin
R̂,t̂

{
L(Î, Isem)

}
. (5)

c) Appearance Matching and Masking: Before opti-
mizing the camera pose, we want to closely match the
general appearance of the rendered image Î to the target
Isem as well as reduce rendering artifacts. For that reason,
we first aim to minimize the appearance of background
pixels due to the sparsity of points in the 3D model. This
is achieved by calculating the distance di of every point
in M3D to the camera position. Then, each point in the
3D model is rendered as a circle of radius ri = λ/di,
where λ is a scaling factor that depends on the point cloud
density and can be determined empirically by rendering a test
view and increasing λ until the appearance of the rendered
view roughly matches the target segmentation image. This
adaptive point size approach also adds the benefit of limiting
the impact of varying line counts between different lidar
models, as lidars with fewer lines can still be densely
rendered by increasing λ. Secondly, pixels, which still cannot
be assigned with a semantic label corresponding to a static
object, e.g., due to point cloud sparsity, finally are classified
as invalid so that these pixels do not contribute to the loss
when estimating R̂ and t̂. This is achieved by storing this
information in the mask elements Vu,v and masking the loss.
In order to compensate for the potentially different amount
of pixels contributing to the loss between two optimization
steps, a normalization factor β = numel(V)/

∑
u,v Vu,v

is introduced, where numel denotes the element count of
an array. Without β, a change of the camera pose could
potentially reveal more surface area of a masked dynamic
object. This may result in a lower loss due to fewer non-
masked pixels contributing to it. At the same time, the
pose may have changed away from the true pose, which
should imply a higher loss, thus creating a need for loss
normalization.

d) Result Verification: After performing an optimiza-
tion step, we obtain the initial calibration result. However,
as the loss function is highly non-convex with respect to the
calibration parameters, this result may represent a local min-
imum. To avoid local minima, the optimization is restarted
twice using the previous result as the new start value while
also lowering the convergence threshold from 10−4 to 10−6

during the last optimization step. The parameter set resulting
in the lowest loss is chosen.

To check that the resulting parameters are indeed optimal,
a small additive noise is added to the initial guess in order
to exit a potentially found local minimum of the loss. The
scale of the additive noise can be based on the measurement

(a) Ideal segmentation

(b) Rendered point cloud view

Fig. 2. CARLA simulator [10] sample result (Town10HD). (a) depicts an
ideal semantic image segmentation of a camera sensor. (b) shows a rendered
view of a semantically segmented point cloud.

accuracy of the initially measured camera pose. Repeating
the optimization with noisy initial values can then be used
to discard sub-optimal parameter sets with high final loss
values, which are caused by the non-convexity of the loss
function.

IV. EVALUATION

We evaluate our approach on infrastructure scenarios
by observing a virtual intersection environment using the
CARLA simulator [10], as well as on a real-world envi-
ronment based on the KITTI Odometry benchmark [11].
Next, we describe the evaluation protocol including the scene
processing used for benchmarking and finally present our
results.

A. Evaluation Scenes

Similar to related work like [5] and [9], we use predefined
scenes for evaluation. For both CARLA and KITTI, two
distinct scenes were defined. For CARLA, we configured
urban intersection views from an elevated static perspective
to mimic real use cases for roadside infrastructure. Mean-
while, for KITTI, one time frame of two different urban
driving sequences was chosen, as we only need one time
frame at which the camera will be calibrated. In this case,
however, we merged 250 lidar scans around the timestamp
of the chosen frame to reconstruct the 3D environment. In
the case of CARLA, the segmented point clouds, as well as
the segmented camera images of the defined scenes, were
generated using the built-in maps. Given completely correct
segmentation maps, it is easier to assess the performance of
our approach. The virtual lidar was configured to have 128
lines and a vertical field of view of 90◦ with the center of the
FoV aligned to the ground plane. The virtual segmentation
camera used a resolution of 960x600 with a horizontal
FoV of 90◦. For the KITTI data, the Cylinder3D [22]
model, trained with Semantic-KITTI labels [23], was used to

generate the point cloud segmentation. Therefore, no ground
truth data available in Semantic-KITTI was used. Moreover,
the image segmentation was obtained with OCRNet [25],
trained with Cityscapes labels [24]. The sensor setup used
for recording the raw data passed to the network is described
in the KITTI paper [11]. As the image segmentation network
provided sub-optimal results in some cases, we manually
corrected the segmentation to additionally evaluate for a
semi-automatic setting. In our automatic setting, the original
image segmentation was utilized without any modification.
In all KITTI scenes, road and sidewalk labels were merged in
both domains to circumvent noisy borders between ground
points which would hinder the optimization. At the same
time, the dynamic object removal mentioned in Sec.III-D was
limited to the driveable area covered by the measurement
vehicle, which helped retain parked vehicles in the point
cloud. This helped to create more visual comparison areas
not masked out by Vu,v .

Furthermore, during CARLA evaluation, the point cloud
view was rendered with a sky background, as visible in Fig.
2b. In order to only match the sky region common between
both images, sky regions in the rendered view not matching
sky regions in the target were masked out, as these pixels
are caused by point cloud sparsity. Another efficient measure
consisted of only using the bottom half of the image for
registration, as in the KITTI lidar data, the point cloud was
cropped in the height dimension, resulting in a trimmed view
of the scene which introduced high discrepancies in the upper
half of the image. This can be clearly seen in Fig. 3c. Finally,
the point cloud was cropped to a 75m radius around the
initial location to reduce the memory footprint, in the case of
KITTI evaluation. The lidar segmentation view was rendered
with Pytorch3D [26].

B. Evaluation Protocol

As the ground truth calibration for both evaluations is
known, a random initialization procedure was performed
to assess the convergence behavior of the optimization
approach. This was implemented by initializing the op-
timization algorithm with noisy ground truth, where the
additive noise was uniformly sampled from the interval
[−2.5m; 2.5m] for positional offsets and [−5◦; 5◦] for ro-
tational offsets, as mentioned in Sec. III-F. By using this
approach, we can also verify the usability of our approach,
as such offsets could appear in field measurements. After
the completion of the optimization, the remaining offsets
were interpreted as the calibration quality. As all coordinate
systems used are scaled to meters, the positional offsets are
measured in centimeters. The algorithm is invoked 30 times
on each scene and the 10 parameter sets resulting in the
lowest loss L(Î, Isem) are considered as acceptable results
to filter out results that would be considered outliers, as
described in the Result Verification of Sec. III-F.
We then report the mean vector norm of the displacement
error vector ∥∆t∥ = ∥ ˆtext − text∥ as well as the mean
absolute angular error |∆α|. Furthermore, to evaluate our
choice of the L2 loss as a distance metric, we also repeated

the previously described evaluation protocol with the Huber
loss [27]

ℓHuber(a, b) =

{
1
2 (a− b)T (a− b), ∥a− b∥ < δ

δ(∥a− b∥ − δ
2), otherwise

(6)

For results using the Huber loss, we set the loss threshold δ
to 0.3.

TABLE I
EVALUATION RESULTS.

Loss L2 Huber

Metric ∥∆t∥ |∆α| ∥∆t∥ |∆α|

Fully automated CARLA-simulated infrastructure
Town10HD 1.5 cm 0.03◦ 1.5 cm 0.02◦

Town01 6.0 cm 0.11◦ 6.2 cm 0.10◦

Semi-automated KITTI
Sequence 00 12.7 cm 0.28◦ 15.3 cm 0.26◦

Sequence 09 20.6 cm 0.40◦ 19.3 cm 0.42◦

Fully automated KITTI
Sequence 00 20.2 cm 0.34◦ 20.3 cm 0.33◦

Sequence 09 18.6 cm 0.40◦ 19.6 cm 0.43◦

C. Results Discussion

Table I summarizes our results for both evaluations and ex-
amined loss functions. For the CARLA evaluation, our trans-
lation error is below 7 cm for both scenes, while the rotation
error is at most 0.11◦. We observed that the errors mostly
stem from point cloud sparsity, as can be seen in Fig. 2. It
should also be noted that, due to the rasterized representation
of an image, we cannot distinguish image translations below
a single pixel, therefore very small changes of under 1cm in
camera translation and 0.01° in camera rotation may not be
visible in the rendered view. The real-world KITTI scenes
also perform very well. While both the point cloud labels and
image segmentation contain incorrect labels and, in the case
of point clouds, incorrectly measured data points, the final
calibration quality is still very high, especially if used for
infrastructure sensor calibration. Furthermore, we tested fully
automatically labeled KITTI scenes by not manually correct-
ing the image segmentation. The performance in these scenes
dropped only slightly or even stayed in the same range and
is therefore comparable with the semi-automatic use case.
However, it should be noted that this performance highly
depends on the quality of the sensor data and the dataset
used for training the segmentation network. Comparing both
loss types, we can see only minor differences, which can be
explained by the random initialization and testing approach.
Thus, both losses are equally suitable for the task.

D. Comparison with Related Approaches

As our approach is quite different from previous works in
this area and no common evaluation protocols are defined,
it is difficult to directly compare performance metrics, so
we only look at qualitative results. Considering Horn et al.
[7], who achieve translation errors of 20.8 cm and rotation
errors of 0.26◦ on the KITTI dataset, but require sensor

(a) Rectified camera image

(b) Image segmentation

(c) Rendered point cloud view

Fig. 3. KITTI [11] dataset result (Sequence 00 fully automated). We can
see a noticeable visual difference between the segmentation image and the
rendered point cloud, which is caused by point cloud sparsity as well as
incorrect labels. However, they still share enough common labelfeatures to
be reliably matched, as shown in Table I.

movement, we get equally good results (see Table I) without
sensor movement. The authors of the mobile stereo camera
SLAM approach in [9] report translation errors in the range
of 6cm − 67cm and rotation errors between 1.5◦ and 5.4◦

on their own data. Comparably, our positional errors are on
the lower end of the spectrum, while our rotation errors are
smaller by a factor of 10. We, therefore, conclude that our
approach is competitive with other methods and can be used
for infrastructure and IV sensor calibration.

V. CONCLUSION

We presented an extrinsic camera calibration approach for
both infrastructure and intelligent vehicle cameras. In our
approach, we obtained a semantic segmentation of both IV-
collected lidar data as well as camera data. This segmented
data was then used to find an optimal calibration by using
an optimization loop to match the appearance of the image
segmentation with a rendered view of the segmented lidar
data, effectively performing cross-domain registration. The
algorithm has been evaluated on simulated CARLA [10]
scenes and real sensor data from the KITTI dataset [11]
to show its feasibility in a practical application, showing
equally good or better results than existing approaches,
which, however, are more constrained in their application.

REFERENCES

[1] B. Rinner and W. Wolf, “An introduction to distributed smart cameras,”
Proceedings of the IEEE, vol. 96, no. 10, pp. 1565–1575, 2008.

[2] N. Engel, S. Hoermann, M. Horn, V. Belagiannis, and K. Dietmayer,
“Deeplocalization: Landmark-based self-localization with deep neural
networks,” in 2019 IEEE Intelligent Transportation Systems Confer-
ence (ITSC), 2019, pp. 926–933.

[3] J. Wiederer, A. Bouazizi, U. Kressel, and V. Belagiannis, “Traffic con-
trol gesture recognition for autonomous vehicles,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 10 676–10 683.

[4] R. Hartley and A. Zisserman, “Computation of the camera matrix P,”
in Multiple View Geometry in Computer Vision. Cambridge University
Press, 2004, p. 178–236.

[5] S. R. E. Datondji, Y. Dupuis, P. Subirats, and P. Vasseur, “Rotation and
translation estimation for a wide baseline fisheye-stereo at crossroads
based on traffic flow analysis,” in 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC), 2016, pp.
1534–1539.

[6] C. Zhu, Z. Zhou, Z. Xing, Y. Dong, Y. Ma, and J. Yu, “Robust
plane-based calibration of multiple non-overlapping cameras,” in 2016
Fourth International Conference on 3D Vision (3DV), 2016, pp. 658–
666.

[7] M. Horn, T. Wodtko, M. Buchholz, and K. Dietmayer, “Online
extrinsic calibration based on per-sensor ego-motion using dual quater-
nions,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 982–
989, 2021.

[8] J. Li and G. H. Lee, “DeepI2P: Image-to-point cloud registration via
deep classification,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 15 960–15 969.

[9] E. Ataer-Cansizoglu, Y. Taguchi, S. Ramalingam, and Y. Miki, “Cali-
bration of non-overlapping cameras using an external SLAM system,”
in 2014 2nd International Conference on 3D Vision, vol. 1, 2014, pp.
509–516.

[10] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[11] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets Robotics:
The KITTI Dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[12] M. Dubská, A. Herout, R. Juránek, and J. Sochor, “Fully automatic
roadside camera calibration for traffic surveillance,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 16, no. 3, pp. 1162–
1171, 2014.

[13] V. Bartl, J. Špaňhel, P. Dobeš, R. Juranek, and A. Herout, “Automatic
camera calibration by landmarks on rigid objects,” Machine Vision and
Applications, vol. 32, no. 1, pp. 1–13, 2021.

[14] M. Feng, S. Hu, M. H. Ang, and G. H. Lee, “2D3D-Matchnet:
Learning to match keypoints across 2D image and 3D point cloud,” in
2019 International Conference on Robotics and Automation (ICRA),
2019, pp. 4790–4796.

[15] H. Yu, W. Zhen, W. Yang, J. Zhang, and S. Scherer, “Monocular cam-
era localization in prior lidar maps with 2D-3D line correspondences,”

in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 4588–4594.

[16] L. Wei, L. Naiguang, D. Mingli, and L. Xiaoping, “Calibration-
free robot-sensor calibration approach based on second-order cone
programming,” in MATEC Web of Conferences, vol. 173. EDP
Sciences, 2018, p. 02005.

[17] E. Wise, M. Giamou, S. Khoubyarian, A. Grover, and J. Kelly,
“Certifiably optimal monocular hand-eye calibration,” in 2020 IEEE
International Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI). IEEE, 2020, pp. 271–278.

[18] J. Müller, M. Herrmann, J. Strohbeck, V. Belagiannis, and M. Buch-
holz, “LACI: Low-effort automatic calibration of infrastructure sen-
sors,” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), 2019, pp. 3928–3933.

[19] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” The computer journal, vol. 7, no. 4, pp. 308–313, 1965.

[20] Y. Chen and G. Medioni, “Object modelling by registration of multiple
range images,” Image and vision computing, vol. 10, no. 3, pp. 145–
155, 1992.

[21] S. Choi, Q.-Y. Zhou, and V. Koltun, “Robust reconstruction of indoor
scenes,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 5556–5565.

[22] X. Zhu, H. Zhou, T. Wang, F. Hong, Y. Ma, W. Li, H. Li, and
D. Lin, “Cylindrical and asymmetrical 3D convolution networks for
lidar segmentation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 9939–9948.

[23] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall, “SemanticKITTI: A dataset for semantic scene
understanding of lidar sequences,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 9297–9307.

[24] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp.
3213–3223.

[25] Y. Yuan, X. Chen, X. Chen, and J. Wang, “Segmentation transformer:
Object-contextual representations for semantic segmentation,” in Eu-
ropean Conference on Computer Vision (ECCV), vol. 1, 2021.

[26] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. Johnson,
and G. Gkioxari, “Accelerating 3D Deep Learning with PyTorch3D,”
arXiv:2007.08501, 2020.

[27] P. J. Huber, “Robust estimation of a location parameter,” in Break-
throughs in statistics. Springer, 1992, pp. 492–518.

	INTRODUCTION
	RELATED WORK
	CALIBRATION METHOD
	Problem Formulation and Constraints
	Approach Overview
	3D Environment Reconstruction
	Point Cloud Segmentation
	Camera Image Segmentation
	Cross-domain registration

	EVALUATION
	Evaluation Scenes
	Evaluation Protocol
	Results Discussion
	Comparison with Related Approaches

	CONCLUSION
	References

