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Abstract— Autonomous driving has the potential to revolu-
tionize mobility and is hence an active area of research. In
practice, the behavior of autonomous vehicles must be accept-
able, i.e., efficient, safe, and interpretable. While vanilla rein-
forcement learning (RL) finds performant behavioral strategies,
they are often unsafe and uninterpretable. Safety is introduced
through Safe RL approaches, but they still mostly remain un-
interpretable as the learned behavior is jointly optimized for
safety and performance without modeling them separately. In-
terpretable machine learning is rarely applied to RL.

This work proposes SafeDQN, which allows making the be-
havior of autonomous vehicles safe and interpretable while
still being efficient. SafeDQN offers an understandable, seman-
tic trade-off between the expected risk and the utility of ac-
tions while being algorithmically transparent. We show that
SafeDQN finds interpretable and safe driving policies for var-
ious scenarios and demonstrate how state-of-the-art saliency
techniques can help assess risk and utility.

I. INTRODUCTION

Achieving sustainable mobility in the future requires new
modes of transportation. Autonomous vehicles present a huge
opportunity by directly relieving drivers and improving, e.g.,
ride-sharing services. However, despite recent advances in
perception and behavioral planning, traffic participation in
complex, real scenarios remains an unsolved problem. More-
over, safety constraints and the need to understand and assess
driving behaviors for regulatory approval prevent the use of
many modern machine learning models.

In reinforcement learning (RL), an agent learns a desired
behavior policy [1]. Ideal behavior is subject to three crite-
ria. (1) The agent needs to be efficient in reaching the goal
in time while conserving energy. (2) The behavior must be
safe, i.e., the agent is not allowed to take actions that place it
or others at high risk of collision or other adverse situations.
In other words, the agent needs to optimize for performance
only while keeping safety constraints satisfied. (3) Policies
and algorithms must be understandable. This is crucial for
human acceptance [2], but also mandated by regulatory con-
straints [3], and crucial for the certification and validation [4].

On the one hand, RL presents an exciting opportunity to
learn efficient and performant driving strategies for almost
arbitrary driving situations. On the other hand, safety and
interpretability do not come along naturally. A large body of
work focusing on safe behavior [5], [6], [7], [8], [9] uses non-
transparent mechanisms to guarantee safety. Existing algo-
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Fig. 1: Overview of SafeDQN.

rithms that find safe and interpretable solutions need to rely
on simplifications to provide safety guarantees [4], [10], [11].
Thus, there is a clear need for algorithms and agents designed
explicitly for interpretability and safety.

We combine recent advances in Safe RL and introduce
SafeDQN, which finds understandable and safe policies. The
key idea is a separate estimation of risk and utility in value-
based RL and their combination into a situation assessment
with a learned trade-off parameter, see Fig. 1. In addition
to a single Q-function, SafeDQN uses an explicit, indepen-
dent risk estimator QC , which is trained to estimate the
expected discounted constraint costs for each action. Addi-
tionally, SafeDQN employs a learned trade-off parameter λ
similar to RCPO [12]. Finally, risk and utility estimates are
combined for jointly optimal action selection.

The disentangled estimates improve interpretability by al-
lowing understanding and reason about risk and utility sep-
arately. We evaluate SafeDQN across a wide range of traffic
scenarios and show that it yields efficient strategies while
performing much safer than baseline methods. In addition,
we demonstrate how our design decisions allow us to gain
detailed insights into the operation of our algorithm. This
ensures that the internal mechanisms are transparent and un-
derstandable.

This paper is structured as follows. Sec. II introduces RL
and Safe RL. Sec. III discusses related work, Sec. IV de-
sign considerations for safe and interpretable behavior plan-
ning, before Sec. V introduces SafeDQN. Sec. VI evaluates
it on different traffic scenarios. Sec. VII investigates the in-
terpretability of our policies. Sec. VIII concludes.

II. BASICS

Autonomous driving as an instance of sequential
decision-making problems can be framed as a Markov
decision process (MDP). An MDP can be defined by a
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tuple (S,A, P, r, γ), where S is a set of states, A is a set of
actions, P = Pr(s′|s, a) is the state transition probability
(of reaching a state s′ from s when taking action a), r(s, a)
is the reward function, and 0 ≤ γ ≤ 1 is the discount
factor [13]. We will use rt for the reward received at time
step t. In the discounted setting, the goal is to find an
optimal policy π∗ ∈ Π that, given a state s ∈ S, maximizes
the expected sum of discounted future reward, i.e., to find

π∗ = arg max
π∈Π

Eπ [

∞∑
t=0

γtr(st, at)]. (1)

The expected, discounted future return for states s ∈ S under
a policy π is defined as the value function V π(s).

The state-action-value function Qπ(s, a) gives the ex-
pected future return of a state if we take action a first, and
then follow the policy π. To solve the driving task, instead
of directly optimizing for continuous or discretized control
inputs (e.g., steering, throttle, and brake controls) we let the
agent act on a set of high-level, semantic actions, e.g., switch
lanes or set and maintain the desired driving speed.

In this work we build upon the constrained Markov de-
cision process (CMDP) [14] that extends the MDP by in-
troducing a cost function c(st, at) and a constraint C(s, a),
which, in expectation and under a given policy π, must be
smaller or equal than a predefined threshold ϑ. We make use
of C formulated as a discounted sum, and denote QC(s, a) =
Eπ[C(s, a)] as the state-action risk function. More formally,
this translates into a constrained optimization problem:

max
π∈Π

Eπ [

∞∑
t=0

γtr(st, at)] (2)

s.t. QπC(s, a) ≤ ϑ, ∀(s, a) ∈ S ×A. (3)

A fundamental algorithm in RL is Q-Learning. It is an
off-policy method that approaches the optimal policy by up-
dating Q-values with the Bellman optimality equation [13]:

Q∗(s, a) = E[rt+1 + γmax
a′∈A

Q∗(st+1, a
′|st = t, at = a)].

(4)
To handle large or non-discrete state spaces, the Q-

function can be formulated with a non-linear function ap-
proximator such as a neural network (NN) [15]. Hence, the
Q-function is defined as Q(s, a; θ) using weight parameters
θ. Such parameters can be learned using the Bellman error
of the Q-function (as above) and back-propagation. This idea
is key to the Deep Q-Network (DQN) [15] algorithm, which
utilizes additional techniques to stabilize learning.

III. RELATED WORK

A large body of work applies RL to the behavioral plan-
ning problem in autonomous vehicles. RL has shown to work
well across a large variety of scenarios, including highway
scenarios [4], [9], [16], [17], [18], [19], roundabouts [20], and
crash avoidance [21]. They either control steering and veloc-
ity directly from sensor readings [21], or use semantic con-
trol actions that are executed using low-level controllers [19].

However, such approaches are different from ours as they
focus on very few evaluation scenarios, present specific, or-
thogonal solutions that could be integrated into our work, or
add additional constraints on environments.

Another line of research integrates RL into planning. Ap-
proaches either directly combine RL and Monte Carlo tree
search (MCTS) [22] or use a planner to ensure safety dur-
ing training [9]. This line of work has a large potential but
requires accurate forward models to plan with long and use-
ful horizons. In contrast, our model-free approach does not
resort to a knowledge of the environment dynamics.

Safe RL introduces safety constraints into RL optimization
problems, most commonly through CMDPs. A large body
of work adopts the Lagrangian solution to CMDPs. These
Lagrangian solutions simplify the problem into a single-
objective RL problem by adding the constraint costs as a (po-
tentially large) penalty to the rewards. Reward shaping often
uses a manually selected penalty weight [4], [18] to commu-
nicate constraints to the agent’s behavior. While this is a rel-
atively simple approach that does not require adaptations to
the algorithm, it must be carefully tuned. If the penalty mul-
tiplier is too small, reward shaping leads to reward-optimal
solutions that violate the constraints.

Advanced Lagrangian methods dynamically adapt the
multiplier in response to constraint violations during train-
ing. For instance, RCPO [7] modifies proximal policy op-
timization (PPO) [23] with the Lagrangian objective and a
dynamic multiplier. This dynamic multiplier is increased un-
til the agent no longer violates the constraints to find an
optimal trade-off between reward and constraint costs [7].
Our work adopts this idea in a value-based RL setup.

An additional recent research direction in Lagrangian Safe
RL research is the addition of separate estimators for the
constraint cost [24]. CPPO [8] uses separate risk and value
critics to find optimal updates to a safe policy and performs
an alternative update of the trade-off parameter to decrease
oscillations. Our algorithm is inspired by these works and
adapts their contributions to value-based RL.

Most similar to us, Constrained DQN (CDQN) [25]
presents an alternate approach to the adaptation. However,
CDQN differs from our method in several key aspects:
1) In contrast to CDQN which uses a fixed β-threshold to

distinguish between safe and unsafe actions, we exploit
the Lagrangian paradigm and learn an optimal trade-off
between estimated risk and utility values that satisfies
constraints.

2) We use a different optimization objective that prefers a
separate policy when updating Q and QC . In practice, this
is easier (and we found that more complicated constrained
objectives [25] did not improve performance or safety).

3) CDQN estimates truncated, undiscounted constraint costs
up to a fixed horizon H to improve the interpretability of
the estimate. However, in practical scenarios, there is no
safe horizon as actions can lead to constraint violations
after a long time. Instead, we estimate the discounted
expected reward cost. This allows adapting to scenarios
with longer risk horizons without harming interpretability.



IV. ALGORITHMIC TRANSPARENCY

One of the key design considerations for algorithms in
autonomous vehicles is algorithmic transparency [26]. This
means that inputs, internal mechanisms, and outputs of the
decision process must be understandable. Algorithmic trans-
parency allows humans to understand the decision-making
process. For RL in behavioral planning for autonomous ve-
hicles, this results in the following components:

Understandable observations and states: Every ele-
ment of the input needs to have relevant semantic meaning.
Hand-engineered features or affordances [4] are inherently
more semantic and understandable than raw sensor measure-
ments [21] and are preferred for algorithmic transparency.

Interpretable learning framework: This point specifi-
cally addresses the way how to learn from experience. We
argue that value-based RL methods such as DQNs are in-
herently easier to interpret than alternative policy-gradient
methods such as PPO. DQN iteratively learns to estimate
the future rewards that the agent can achieve from a given
state-action pair. This value has an exact theoretical defini-
tion and can be numerically approximated using sampling. In
contrast, policy gradients optimize the policy directly, which
works astonishingly well in practice, but is far from intuitive
to explain. Further, reducing variance through baselines has
an enormous practical effect but introduces additional com-
plexity. While a fully understandable learning framework re-
mains an open research question, we argue that consecutive
Q/QC-updates in SafeDQN are individually explainable.

Explicit safety components: Although the pure La-
grangian formulation and reward shaping have shown to
work well, they rely on an implicit trade-off (via the re-
ward definition) between safety and performance. In partic-
ular, an external expert cannot verify post hoc that a low Q
estimate or action probability corresponds to high estimated
risk. SafeDQN makes this trade-off explicit and allows to
learn, analyze and verify the risk estimator separately.

Semantic actions: To understand a policy π : S 7→ A, we
need to fully understand the action space and its semantics,
which means that each action must have a clear semantic,
understandable meaning. We argue that direct low-level con-
trol (where RL directly controls throttle and steering angle),
while certainly being effective, cannot be considered fully
understandable, because each individual action needs a pre-
cise context of other actions to be understood. Instead, re-
search should favor semantic, discrete action spaces. Here,
the behavioral planner (an RL agent) has a few discrete, se-
mantic actions available that can be executed using low-level
controllers such as proportional integral derivative (PID) or
model predictive control (MPC).

V. SAFE REINFORCEMENT LEARNING WITH SAFEDQN

SafeDQN takes a different look at the Lagrangian frame-
work and applies it to the DQN framework. We visualize the
key ideas in Fig. 1 and provide a pseudo code algorithm in
Alg. 1.

CMDPs introduce constraints into the typical setting of an
MDP. SafeDQN focuses on the setting where constraints are

expressed via costs ct that the agent receives at each time
step t. This is similar to the reward rt. The constraint is that
these costs should not exceed a predefined threshold ϑ.

Unsafe RL algorithms such as DQN or PPO cannot handle
these constraints as they cannot make use of the cost signal
during training. As mentioned in Sec. III, a typical remedy
to this is reward shaping, where we fold the costs c into the
rewards r using a fixed multiplier λ as

r̂ = r − λc, (5)

where r̂ is the shaped reward signal fed to the agent. Re-
ward shaping essentially penalizes constraint violations and
thus makes violating them suboptimal. However, this fixed
penalty coefficient λ used in reward shaping is hard to spec-
ify, and can often lead to behavior that is too conservative (if
λ is too high) or too risky (if λ is too low). Lagrangian so-
lutions for CMDPs, like RCPO, dynamically adapt λ during
training to find a behavior that exactly satisfies the constraints
and achieves optimal reward. This allows the algorithm to in-
crease λ while constraints are violated, and to decrease it to
find less conservative behaviors once they are satisfied. These
solutions are often used with on-policy RL algorithms like
PPO, that perform every update on fresh, on-policy transition
samples.

This paradigm does not, however, directly translate to off-
policy RL algorithms, like deep Q-network (DQN). DQN
uses a replay buffer to store environment transitions for the
off-policy Q-network update. When we naively modify the
reward signal and change λ, these transitions rapidly become
stale as they have an incorrect weighting between rewards
and costs. This introduces errors into the training data used
for updates of the Q-network and hinders learning. An al-
leged solution to this is to store r and c separately inside
the replay buffer and to then dynamically apply weighting
upon network training, which solves the staleness problem,
but still introduces considerable estimation errors to the Q-
network whenever λ is updated.

To solve this, SafeDQN trains separate estimators for ex-
pected rewards and costs and combines them dynamically
using λ for rollouts. A state-action value estimator Q corre-
sponds to the typical estimator used by DQN. A risk estima-
tor QC is trained to estimate future expected costs incurred
when taking an action and then following a risk-optimal pol-
icy. We combine these two estimates into a Lagrangian esti-
mate Q̂ that is used for the policy as

Q̂(s, a) = Q(s, a) + λQC(s, a). (6)

As in DQN, we use parameterized neural networks Q and
QC that are trained via replay samples, the Bellmann error,
and back-propagation: For a set of transitions, we have two
Bellmann optimality equations for utility and risk:

Q∗(s, a) = r(s, a) + γmax
a′∈A

Q∗(s, a′) (7)

QC
∗(s, a) = c(s, a) + γ min

a′∈A
Q∗C(s, a′). (8)

From these, we can calculate the Bellmann error for Q and
QC , and update their weights using minibatch stochastic gra-



Algorithm 1 SafeDQN.

1: procedure SAFEDQN(Env, ϑ, λ0, N )
2: Initialize estimators Q, QC
3: Initialize targets Q′, QC ′

4: Initialize replay buffer R
5: Initialize trade-off λ← λ0

6: for t← 1 to N do
7: Store trajectories from Env into R
8: Sample transitions (s, a, r, c, s′) from R
9: Calculate Q target q̂ ← r + maxQ′(s′, a)

10: Calculate QC target r̂ ← c+ minQC
′(s′, a)

11: Update Q, QC
12: Update Q′, QC ′ via polyak averaging
13: Every λ update frequency steps:
14: λ← λ+ α 1

N

∑N
1 (Cn − vartheta)

15: end for
16: return Q, QC , λ
17: end procedure

dient descent. For simplicity, we use the same set of transi-
tion samples to update Q and QC .

The trade-off parameter λ is updated as

λ′ = λ+ α
1

N

N∑
1

(Cn − ϑ), (9)

where α is a learning rate, n iterates over the last N episodes,
Cn is the cumulative cost of constraint violations in episode
n, and ϑ is a threshold on the probability of constraint vio-
lations that should be upheld. Intuitively, this updates λ by
adding the probability of constraint violations that exceeds
the given threshold, multiplied by the learning rate. We found
that updating λ with a small frequency (every 2000 steps), as
proposed for RCPO [7], leads to stable and efficient updates.

VI. EXPERIMENTS

We describe our experimental setup and hyperparameters
in Sec. VI-A. We evaluate SafeDQN on five different traffic
scenarios, see Fig. 2. Sec. VI-B describes these scenarios in
more detail. Sec. VI-C discusses the results.

A. Algorithm and Hyperparameters

Our algorithm implementations are based on an extended
version of stable-baselines3 [27], which uses the original
implementation of DQNs [15]. We employ multi-step tar-
gets [13], [28], i.e., our targets at step t are computed as

Q̂(st, at) =

n−1∑
k=0

γkrt+k+1 + γn max
a∈A

Q(st+n, a). (10)

We apply these targets for both estimators, replacing r with c
and the max-operator with min for the risk estimator. Addi-
tionally, we experimented with a dueling-DQN-like decom-
position of Q and QC , but found that it did not improve
performance on our tasks. We manually tweaked hyperpa-
rameters for DQN and applied the same set for our method

TABLE I: Hyperparameters used during training.

All Algorithms
γ 0.99
Total training duration 2 mio. ts
Policy network size 2 layers with 256 nodes

DQN & SafeDQN PPO & RCPO+
learning rate 0.001 learning rate 0.003
train frequency 4 ts train frequency 2048
batch size 32 batch size 64
τ 1.0 epochs 10
target update interval 10 000 ts entropy coefficient 0.0
gradient ts 1 GAE-λ 0.95
n-step estimates 8 clip range 0.2
Exploration
fully random 50 000 ts
initial ε 1
epsilon decay 200 000 ts
final ε 0.05

Only SafeDQN Only RCPO+
Cost threshold ϑ 0.001 Cost threshold 0.01
initial trade-off λ0 100
Trade-off learning rate α 1
λ update frequency 2 000 ts

and the DQN baseline. Table I lists all hyperparameters. In
particular, we train for 2M time steps in all environments.

Baselines: To evaluate the performance of SafeDQN, we
compare it to three baselines: DQN with reward shaping,
PPO with reward shaping, and RCPO+. RCPO+ is similar
to RCPO [7] but uses two critics (similar to SafeDQN and
CPPO [8]) that estimate reward and safety separately.

In addition, we evaluated a version of SafeDQN with a dif-
ferent objective function, shown as SafeDQN-AltObjective.
In this changed objective we find target actions for both net-
works with the Lagrangian combination as arg maxaQ+λR.
The idea behind this changed objective is to optimize both
estimators in a way that includes information from the other.
In particular, this changed objective could reduce overesti-
mation in states where the best action (according to Q) has
a high risk and should not be taken. This idea is similar to
Double DQN [29], which uses the best action of the tar-
get network to reduce overestimation bias. CDQN [25] also
includes constraints, but in a stricter way.

We ran four repetitions for each algorithm on all environ-
ments to account for variance between different seeds.

B. Environment
We evaluate SafeDQN and the baselines on a custom sim-

ulation environment based on the open-source traffic simula-
tor SUMO [30], [31]. In particular, we constructed six driving
scenarios of varying complexity as depicted in Fig 2, where
the goal for the agent is to successfully complete each sce-
nario along a predefined route without a collision. We in-
clude three typical highway tasks (merge, drive, split) and
inner-city scenarios (left/right turns and a roundabout). In
particular, the street networks of scenarios Right-Turn, Left-
Turn, and Roundabout are part of the Town03 map from
the CARLA simulator [32], which were integrated utilizing
SUMO’s tooling scripts.

Reward: The driving task uses a reward function

r = rdense + rterminal (11)



(a) Left turn (b) Right turn (c) Roundabout

(d) Highway merge

(e) Highway drive

(f) Highway split

Fig. 2: Visualization of driving environments (ego-vehicle in green).

that is comprised of a dense driving speed reward

rdense = vt/vmax, (12)

where vt is the current driving speed at timestep t and vmax
the maximum driving speed, and sparse terminal rewards

rsparse =


+100, if reached goal
−100, if crashed or off-route
0, otherwise,

(13)

where the environment returns a positive reward of +100 if
the agent reaches the goal, and a negative reward of -100 if
the agent leaves the route or collides with another vehicle.1

Constraints: We treat the collision case as a safety con-
straint with ct = 1 if the agent crashed at time step t, and
ct = 0 otherwise. Note that we also include this situation in
the reward with a dedicated penalty of -100. This allows even
our non-safe baselines to find constraint-satisfying behavior.

Action Space: As mentioned in Sec. IV a key ingredi-
ent for algorithmic transparency in RL are semantic actions.
Given the route from start to end goal, we condense the set of
possible actions A into actions for switching between lanes,
as well as choosing the desired target speed. We discretize
the continuous range of possible driving speeds into a finite
set via equidistant sampling. In addition, the agent is free to
choose a No-Op-action that maintains the current lane and
target speed. Formally, the set of actions A is defined as:

A = {No-Op,SwitchLaneLeft,SwitchLaneRight, (14)
TargetSpeed0,TargetSpeed1, . . .TargetSpeedN , }

We realize the semantic actions by sampling a set of lane-
centered waypoints from the current lane, which can then be
tracked by a low-level controller such as PID or MPC. We
resort to a simplified approach, where we adjust the ego ve-
hicle position and rotation w.r.t. the next waypoint via linear
interpolation under the current driving speed (as we see the
integration of a low-level controller as a separate topic). We
use N = 5 different target speeds from v = 0ms to v = 14ms .

Observations: The agent receives observations of the ego
vehicle state, non-ego traffic participant information inside a
radius around the ego vehicle, the set of current lane way-
points, as well as available lane switching options. The ego

1Note that, due to our action space, the agent cannot leave the streets.
Hence, we only need to penalize the agent for ”taking a wrong turn”.

state is defined as a vector [x, y, v, θ, vtarget], where x, y are
the ego coordinates, v is the actual driving speed, vtarget the
desired target speed and θ the yaw angle. Non-ego vehicle
states are defined as vectors [x′, y′, v′, ϕ, d] and are calcu-
lated relative to the agent, where ϕ is the rotation angle rel-
ative to the ego vehicle and d the distance to the ego vehicle.
Waypoint observations are calculated analogously without a
value for velocity. Available lane switching options are given
as a one-hot encoding. The full observation vector is stan-
dardized into the [−1, 1] ∈ R range and given as inputs to
the respective feed-forward networks.

Randomization: A key ingredient of our environment is
different kinds of traffic randomization techniques. These can
be summarized as follows:
1) Traffic participants are spawned at their predefined sce-

nario entry points based on a probability p, which differs
between scenarios and entry points and that is sampled
uniformly from the range p ∈ [0.2, 0.6],

2) the preferred driving speeds of traffic participants (which
is the speed limit of the street in the standard setting) is
multiplied by a scalar s ∼ N (µ = 0.7, σ = 1.0) which
we clamp into the range [0.4, 2.0],

3) every 3 seconds, a random vehicle inside a cone of 60◦

in front of the vehicle performs an emergency brake, and
4) at every timestep, a scalar s ∼ N (µ = 0, σ = 1.0) mul-

tiplied by 5ms is added to the desired driving speed of a
random vehicle inside the cone for 3 seconds.

We argue that this facilitates better generalization of the
agent policy across a wider range of possible traffic scenar-
ios. In particular, we found the addition of random brakes
and driving speed changes to yield a noticeable improvement
in safety in initial experiments.

C. Results
In Fig. 3 we show the cumulative number of constraint vi-

olations (top row) and the average return per episode (bottom
row) of SafeDQN along with the baselines. As the perfor-
mance of value-based RL methods is prone to drop after
some point during training, we report maximum returns and
the respective number of crashes in Table II. Because our
principal focus lies on policy safety, we only consider poli-
cies with crash rates within the 10-th percentile of a training
run. In general, SafeDQN operates much safer than all base-
lines on five out of six scenarios (except for Highway-Drive)
while achieving competitive performance to PPO at points in



TABLE II: Maximum returns (Rmax) and respective crash rate (C, in %) averaged across multiple runs for all algorithms
and environments, where each policy was evaluated for 100 episodes every 50M timesteps. Data points with crash rates
greater than the training run’s 10th-percentile are prefiltered beforehand.

Left-Turn Right-Turn Roundabout Highway-Drive Highway-Merge Highway-Split

Algorithm Rmax C Rmax C Rmax C Rmax C Rmax C Rmax C

DQN 78±78 0±00 74± 4 30± 26 42± 31 4± 6 14±10 20± 5 4± 5 0± 0 40±15 0± 0
PPO 141± 5 8± 2 111±79 10± 7 118±11 18± 1 144± 7 20± 3 45±30 2± 5 148± 4 6± 1
RCPO+ 149± 3 4± 2 71±49 4± 5 66±29 6± 3 153 ± 4 16± 2 21± 2 0± 0 66±60 0± 0
SafeDQN 150± 8 0± 0 156±47 0± 0 44±22 0± 0 107±53 18± 8 5±17 0 ± 0 132± 55 0± 0
SafeDQN-Alt. 158± 1 0± 0 151±56 0± 0 97±28 0± 0 96±31 38±10 4±17 0 ± 0 88±58 1± 0
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Fig. 3: Training results over simulation time steps. Top row: cumulative evaluation constraint costs; Bottom row: reward.

training on five scenarios (except for Highway-Merge). The
results prove that SafeDQN yields highly competitive behav-
ioral policies while at the same time being algorithmically
transparent.

On Highway-Drive, SafeDQN is unable to find a safe pol-
icy quickly. Highway-Drive is different from the other sce-
narios in that a random policy performs competitively. A
random policy generally drives at speeds below the traffic’s
average and random lane changes are easier to compensate
for by the traffic’s lane-changing model. We hypothesize that
this allows PPO to find an adequate policy much quicker by
relying on the inherent policy stochasticity, whereas DQN is
taking longer to find a deterministic policy. Similar reason-
ing applies to Highway-Merge, where SafeDQN is unable
to find a highly rewarding strategy. This indicates that our
action space is not perfectly suited to deterministic policies
on highway scenarios.

From our baselines, PPO and RCPO+ outperform classical
DQN. This clearly shows that our additions, as well as our
additional focus on safety, transform DQN into the highly
competitive and safe value-based RL approach.

Our alternate objective (SafeDQN-AltObjective) gives
mixed results. It fails to learn an appropriate policy for
Highway-Drive and performs slightly less safely. However,
we noticed that SafeDQN sometimes oscillates, which is
less noticeable with the changed objective.

VII. UNDERSTANDING RISK ESTIMATES

The main benefit of our algorithm is its algorithmic trans-
parency. The unique structure of our algorithm allows us to
understand risk estimates separately from utility estimates,

which gives us new tools to assess and validate the gener-
ated policies. To demonstrate this, we evaluate our learned
risk estimators in terms of their precision and recall metrics
and investigate the importance of specific input values (in
particular, of other cars) for the risk assessment.

A. Cost recall and precision

We first evaluate the quality of our risk estimates. Our
risk estimators QC are trained to approximate the discounted
future sum of costs under the optimal policy π∗

QC
∗(s, a) = Ea∝π∗(s),s∈P

∑
t

γtct. (15)

During training, however, we do not know π∗. Also, it is
impossible to approximate the expectation via sampling. In-
stead, we employ two relatively simple metrics inspired by
supervised evaluation metrics: cost recall and cost precision.

To define these metrics, we convert the regression task
into a classification task by defining a threshold t. Actions
that have a risk assessment of QC(s, a) > t are assumed
to be high-risk, whereas actions with lower risk estimates
are sorted into a low-risk class. We define the true label for
a state-action-pair by the transition cost c(s, a) that occurs
directly after taking an action, with c(s, a) = 1 belonging to
the true-cost class and c(s, a) = 0 regarded as no-cost.

Given these classes, we can now define the cost recall as

Cost Recall =
nc=1,QC>t

nc=1,QC>t + nc=1,QC≤t
, (16)

where nX is the number of samples in the current replay
buffer that satisfy condition X . For example, nc=1,QC>t de-
fines the number of samples belonging to the true-cost class
and having estimated risk values greater than the threshold.



TABLE III: Cost Recall and Cost Precision results for
SafeDQN across all evaluation environments.

Environment Cost Recall Cost Precision

Left Turn 0.96±0.01 0.97±0.01
Right Turn 0.93±0.03 0.98±0.01
Roundabout 0.93±0.01 0.98±0.01
Highway-Merge 0.87±0.07 0.88±0.12
Highway-Drive 0.86±0.04 0.21±0.13
Highway-Split 0.81±0.02 0.97±0.03

The cost recall is a crucial evaluation metric, since it mea-
sures the fraction of critical high-cost situations that were
correctly anticipated by the risk estimator. A good risk esti-
mator should always adhere to a cost recall close to one. A
low cost recall indicates that the estimator often underesti-
mated the risk of actions that lead to immediate violations.

Using the same classes, the cost precision is given by

Cost Precision =
nc=1,Qc>t

nc=1,Qc>t + nc=0,QC>t
. (17)

The cost precision calculates the number of true positives
among the situations that were estimated to have high risk.
An accurate estimator should approach a precision of one. A
low-cost precision indicates an over-cautious risk estimator
that severely overestimates constraint costs on safe actions.

Overall, cost recall and cost precision can give a good
overview of potential over- and underestimation errors of the
risk estimator. In our experiments, we found that our risk es-
timators often achieve a very good cost recall (larger than
0.9 in the city scenarios, and above 0.85 in the more chaotic
highway environments). We found that the cost precision of
our estimators improves massively during training and ap-
proximated 100% after around 1M training time steps on all
environments except Highway-Drive. Table III summarizes
these results. Remarkably, our risk estimators achieve these
metrics very reliably, with standard deviations on cost recall
and precision lower than 0.05 in most cases.

Fig. 4 exemplary shows a typical cost recall/precision
curve recorded while training SafeDQN on the right turn
traffic scenario, along with the costs received during train-
ing. Cost recall (bottom, blue curve) stays at acceptable levels
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Fig. 4: Cost recall and precision on ”Right Turn”.

Fig. 5: Traffic scene showing the roundabout scenario. The
green rectangle in the center is around the ego vehicle, and
the dotted green line visualizes the currently chosen action
for the agent. All other cars are surrounded by a rectangle
colored according to their importance for the risk estimate,
as assigned through integrated gradients, high importance is
colored orange, unimportant dark purple or black.

close to 1 throughout the training, with a small drop at 0.5M
time steps. Cost precision (bottom, orange curve) quickly
climbs to levels close to 1 after around 1M time steps. Note
how relatively low-cost precision at the beginning of training
correlates with a high number of crashes (top, green curve).

B. Risk Interpretation

An additional benefit of the explicit disentanglement of
risk and utility estimates lies in the possibility of indepen-
dently explaining the risk estimator. We demonstrate this by
using integrated gradients (IG) [33] to assign a saliency (or
”importance”) for the risk estimate to individual elements of
the observation vector o. IG estimates the saliency of an input
element by summing up the gradients when stepping from a
baseline (we use the zero vector) to the real input value. As
IG expects a single individual estimate (instead of a vector
of per-action risk estimates), we sum up the risk estimates
for all actions into one combined situative risk assessment
for the visualizations. Alternatively, an expert could assess
the risk estimator for each action separately.

As we use an interpretable, semantic observation space, we
can use IG to calculate the importance of individual seman-
tic elements to our overall risk estimate. Here, we are most
interested in how the risk estimator uses information about
neighboring vehicles for its prediction. Because non-agent
vehicles are represented by multiple real-valued elements in
our observation vector, we can sum up the contribution of
all of these elements to calculate the per-car risk saliency
metric, see Fig. 5. Visualizations like this can be very effec-
tive in the assessment of cars that the agent considers most
important for its current situational risk estimate.

When we visualized the per-car risk saliency, we found
that many of our agents sensibly base their risk estimates on
cars that are close to the agent and that potentially cross the
agent’s path. Additionally, we became aware that both esti-
mators were relatively sensitive to small variations in the ob-



servation. This can be very sensible (e.g., in scenarios where
a small difference in position applies to a large difference
in predicted trajectory), but could also indicate a potential
source of problems and wrong decisions. We leave an inves-
tigation of possible remedies for future work.

VIII. CONCLUSION

This work introduces SafeDQN, a novel algorithm that
combines explicit risk estimation and Lagrangian learning
to find optimal solutions for constrained Markov decision
processs (CMDPs). SafeDQN learns an optimal, constraint-
satisfying trade-off without requiring manual tuning of
hyper-parameter, in particular to the reward function.
SafeDQN outperforms baselines in terms of both safety and
average return across multiple traffic scenarios. In addition,
SafeDQN’s separated risk and utility estimators allow for
independent interpretation, bootstrapping, and training.

Our findings on interpretability highlight the need for an
independent assessment of safety components. We found that
the risk estimators show a high-cost recall and cost preci-
sion, and use overall sensible information on nearby cars to
make their decisions. This conclusion could only be drawn
by SafeDQN’s unique structure and explicit safety compo-
nents.
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