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A Semantic-Guided LiDAR-Vision Fusion Approach for Moving
Objects Segmentation and State Estimation

Songming Chen', Haixin Sun' and Vincent Frémont!

Abstract—Moving Objects Segmentation (MOS) is critical
and indispensable for secure intelligent vehicle operation in the
dynamic environment. For the state estimation task which is
based on the assumption of static surroundings, to identify and
filter out the moving objects plays an important role in robust
ego-motion estimation. In this paper, a LiDAR-Vision fusion
approach is developed to segment moving objects in the scene,
which utilizes the LiDAR-based semantic segmentation as a
prior and vision-based geometric information for validation.
The effectiveness of our approach to segment moving objects
is highlighted by the comparison with the traditional robust
kernel-based outlier rejection methods. Our approach is bench-
marked with three city category sequences in the KITTI dataset,
which outperforms the kernel-based methods and achieves the
leading results of 77.9% average fitness and 7.65 cm RMSE
respectively.

I. INTRODUCTION

Exteroceptive sensors are crucial for the intelligent trans-
portation system to perceive the surroundings and realize
self-state estimation in the dynamic and unknown envi-
ronments. Among them, the Light Detection and Ranging
(LiDAR) and the camera sensors are commonly employed
to measure the changes in the environment, on which basis,
the high-level tasks such as object detection, state estimation
and obstacle avoidance could be performed. On the one
hand, the visual sensor captures the rich representation of
the scene, which includes the color, texture and semantic
information. However, the frame-based cameras are very
sensitive to the illumination changes and do not work well in
the aggressive motion situation. Besides, the scale ambiguity
remains another challenge for the vision-based perception
and state estimation. On the other hand, the LiDAR sensors
are illumination-invariant and provide all-round Field Of
View (FOV) perception. They could also accurately acquire
the depth information for scale-aware estimation. Neverthe-
less, the the performance of LiDAR sensors degrades a lot
in the extreme weather conditions, such as undergoing dense
fog and heavy rain. Another drawback of LiDAR-based
perception is the sparsity of 3D point clouds, which brings
the difficulty for feature extraction and data association.
The complementary features of the visual and range sensors
encourage us to adaptively combine them for robust percep-
tion and state estimation, which efficiently compensates the
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individual sensory modality weakness.

With the advent of deep learning, object detection neural
networks could be applied to predict the object position and
class on the image plane [1] and 3D point clouds [2] [3] in
an end-to-end manner. These neural inference frameworks
are mature and can achieve the real-time performance for
object detection, which facilitates the on-board integration.
Nonetheless, for the objects with the same class, their states
of motion (static or dynamic) are not distinguished during
the neural inference. Moving objects are considered as the
most unstable traffic participants, which will corrupt the state
estimation and mapping process. Thus, more attention should
be given to them when we design an intelligent transportation
system. In this paper, we focus on the problem of moving
objects segmentation and investigate their impact on the state
estimation. A LiDAR-Vision fusion approach is proposed to
combine the LiDAR-based semantic cues and vision-based
geometric clues to identify the objects position and state
of motion jointly. These non-permanent moving objects are
then filtered out beforehand for the efficient state estimation
and scene reconstruction. The contributions of this paper are
listed as:

1) An efficient moving objects segmentation approach
with the complementary LiDAR and visual sensors
is proposed, which adaptively fuses the semantic and
geometric information.

2) The extensive evaluation (qualitative and quantitative)
of our approach has been made, which is shown
to outperform the conventional robust kernel-based
methods for outliers rejection.

3) The robust semantic-guided state estimation and scene
reconstruction has been achieved in the highly dynamic
scenarios.

The rest of this paper has the outline as follows: In Section
II, the related work and recent hybrid methods for moving
objects segmentation will be covered. Then, the proposed
methodology will be presented in Section III. After that, the
experimental results and the corresponding analysis will be
shown in Section IV. Finally, a brief conclusion and future
perspectives will be given in Section V.

II. RELATED WORK
A. Vision-based method

The visual sensors provide dense texture and color in-
formation of the scene, which facilitates the geometric cor-
respondence establishment and contextual understanding. In
[4], a purely geometric mono-vision based approach is pro-
posed for moving objects segmentation in challenging urban



areas. The epipolar, trifocal tensor, and structure consistency
constraints are flexibly combined to classify the pixel-wise
non-static points. The dynamic pixels are then clustered by
the connected components labeler for instance-level moving
objects segmentation. The optical flow consistency analysis
also helps to segment the moving objects from the static
background. In [5], the dynamic objects are identified with
optical flow-based point trajectories clustering and these
moving objects are then excluded from dense SLAM estima-
tion in dynamic environments. In [6], the Flow Vector Bound
(FVB) constraint is combined with graph-based clustering
for incremental motion segmentation. Nonetheless, the afore-
mentioned methods only leverage geometric information for
the object clustering, which often fails in complex scenes. A
novel Semantic-Guided RANSAC approach is thus presented
in [7] for moving objects segmentation in heavy traffic
scenarios. The semantic constraint provides potential moving
objects prior and the geometric epipolar residuals are used
for the final moving objects verification, which exhibits
promising results. Despite of the efficient moving objects
segmentation on the visual image plane, the scale metric
remains ambiguous, which can be solved by the integration
of stereo vision system [8] or range-based sensors [9].

B. LiDAR-based method

For LiDAR-based perception and state estimation, robust
kernels are commonly adopted to ease the negative impact
of outliers. The identified outliers could then be clustered
to construct the moving objects in the scene. It is shown
in [10] that, the outlier filters such as Tukey, Huber and
Cauchy kernels could greatly mitigate the outliers effect for
point clouds registration. Besides, the data-driven ResNet50-
based method is proposed in [11] to infer the point-wise
probability of being dynamic with only a single frame.
On this basis, the scene reconstruction module takes the
network output of dynamic objects probability for static
components mapping. Then, the SpSequenceNet is designed
in [12] to operate directly on 4D point clouds (consecutive
3D point clouds) for moving objects segmentation. Both the
spatial and temporal information of LiDAR point clouds
are exploited to extract the motion status. However, the
SpSequenceNet training and prediction are computationally
intensive due to the massive point clouds size. Recently, an
innovative range image-based algorithm named Removert is
presented in [13]. In the Removert framework, the dynamic
objects are pruned from the query LiDAR scans via scan-
to-map consistency check. Meanwhile, the pre-built map
is corrected with the multi-scale false prediction reverting.
As the prior map is not trivially accessible, the map-free
method in [14] inputs the inter-frame range-image residuals
to the semantic segmentation networks for the real-time
class-agnostic moving objects segmentation. Nonetheless, the
end-to-end network needs the ground truth binary masks for
training that are quite time-consuming to prepare and refine.

C. Hybrid Methods

In order to overcome the individual sensor limitations,
the hybrid methods which take advantage of the LiDAR
and visual sensors are proposed in [9] [15] [16] [17]. The
stereo vision systems are adopted in [9] to improve the
object detection and tracking results of the LiDAR-based
perception. Specifically, the vision-based system confirms the
surrounding objects existence and their dynamic behavior are
better modeled due to the dense visual measurements. In
[15], the vision-based segmentation result is fused with the
planar LiDAR-based prediction, which achieves an improv-
ing 2D Intersection-Over-Union (IOU) rate on the Bird-Eye-
View (BEV) plane. Besides, the RGB images are converted
to a polar-grid representation in [16], which augments the
LiDAR point clouds with the color information for the
efficient semantic segmentation. A novel architecture to fuse
the precise LiDAR depth information and ERFNet-based
visual semantics is presented in [17], which is shown to
obtain satisfying objects segmentation results both on the
image and BEV plane.

III. PRESENTATION OF THE METHOD

In this section, the proposed LiDAR-Vision fusion ap-
proach for real-time moving objects segmentation is detailed.
And its overall pipeline is shown in Fig. 1. To start with, the
LiDAR measurements are used to extract the 3D regions of
interest (ROI) for movable objects prediction (see Section I1I-
A). Then, with the given calibration parameters, 2D ROI on
the image plane can be generated via the 3D-2D perspective
projection. In order to determine the state of motion for
the potentially moving objects, the temporal consistency
check is conducted via the optical flow tracking and epipolar
geometry (see Section III-B). Subsequently, the instance-
level moving objects are back-projected and removed in the
LiDAR point clouds for efficient state estimation and static
scene mapping (see Section III-C).
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Fig. 1. Overview of the proposed LiDAR-Vision fusion approach for
moving objects segmentation and state estimation

A. LiDAR Sensor-Based MOS Prediction

1) 3D MOS Prediction: In order to locate the movable
objects and identify their semantic classes in the LiDAR
point clouds, the center-based framework CenterPoint [3] is
adopted for MOS prediction. The CenterPoint network fol-
lows the well-known encoder-decoder architecture pipeline,
where the point clouds height and intensity information are



encoded in the Bird-Eye-View (BEV) map representation.
A resnet-based backbone is used to extract features on the
flattened BEV images, which is followed by the center
heatmap head and property regression heads. Specifically, the
center heatmap head helps to locate the object centers and
infer their semantic classes. And the attributes of objects’ 3D
size and yaw orientation can be obtained from the up-scaled
feature maps with the property regression heads.

The outputs of the CenterPoint network are expressed as
{(c;,Ci,Ch), (L', W' ,H"),0',8'} i, which represent center
coordinates, dimensions, heading angles and semantic classes
(vehicles, cyclists or pedestrians) of n detected objects
respectively. The center-based 3D object detection gives
absolute range and captures real-scale shapes of the objects,
which is perspective distortion-free and facilitates the interac-
tive perception and state estimation. Compared with anchor-
based 3D object detection methods, the center-based method
is more robust to predict the heading orientation through the
rotation-invariant points fitting, especially during the ego-
turning phases! (see Fig. 2).

Fig. 2. The LiDAR-based 3D object detection results (rendered in green)
with the CenterPoint network at the road intersection

2) 3D-2D Projection: In order to develop the LiDAR-
Vision fusion approach, it is essential to transform the
LiDAR-based detection results from the LiDAR frame %
to the image frame .%#; (see Fig. 3). We assume that the
sensors are well synchronized and pre-calibrated with known
extrinsic and intrinsic parameters. The perspective projection
first takes eight corners 7~ {x;}i=1...s of the 3D bounding box
expressed in %, and left-multiplies them with the LiDAR-
Camera rigid transformation matrix T; and image projec-
tion matrix /P¢ sequentially to get the corner coordinates in
F.

Fix; =l Pe ST +70 x; (1)

Then the 2D bounding box boundaries can be extracted
trivially from the span of the corner coordinates -/ {xi}iz1..8
It is notable that the perspective projection constructs the
one-to-one mapping correspondences for the 3D bounding
box in %, and 2D bounding box in .%#;, which provides
the possibility for the bounding box back-projection. And
during the 3D-2D perspective projection, the semantic labels
of detected objects remain unchanged.

IThe LiDAR scan and RGB-image are extracted from the KITTI
2011.09_26_drive_0014_sync sequence

Fig. 3. The LiDAR-based 3D object detection results mapped on the image
plane through the perspective projection

B. Visual Sensor-Based MOS Validation

1) 2D Point-Wise MOS: Given the predicted regions of
interest with the LiDAR measurements, the visual multi-
view geometry provides a sanity check for the moving ob-
jects segmentation validation. To start with, the Shi-Tomasi
corners features, which remain invariant under the rotation,
translation and scaling operation, are detected in the image
frame. Then, the detected features are associated with the
pyramidal Lucas-Kanade optical flow tracking between two
consecutive image frames. And the optical flow backward
check is also implemented to reduce the risks of mismatch-
ing. During the optical flow-based tracking, if the features
lying on the movable objects (rendered in green, shown in
Fig. 3) are not semantically consistent across two frames,
they will be directly identified as dynamic points. After
that, the matched features which belong to the background
(rendered in blue, see Fig. 4), are used to estimate the
fundamental matrix F within the RANSAC framework. Since
the movable objects points (rendered in green, see Fig. 4)
are excluded from the estimation, the RANSAC process will
converge quickly and provide a reliable fundamental matrix
estimation. With the paired background points (xi,xg) i=1..n
and the estimated fundamental matrix F, the corresponding
epipolar line I ~ F x; with reduced coefficients [ai,bi,ci]T
can be obtained. And the Signed Epipolar Distance (SED)

dSEP from the point x; = (u},v}) to line I} is calculated as:

/ /
JSED _ aju; +byvi+c;
pED — 1 L

1/al-z+bi2

Assuming that the measurement noise is normally dis-
tributed, then the calculated signed epipolar distance
{diSED }i—1..» will follow the Gaussian distribution as shown
in Fig. 5, which lays the basis for outlier rejection. As the
fundamental matrix transformation compensates the inter-
frame ego-motion on the image plane, the static points will
have close to zero (noise corruption) SEDs. On the contrary,
the points on moving objects tend to get the SEDs exceeding
the 3-sigma bounds, which will be classified as outliers
and segmented from the static background. Nonetheless,
it also needs to be mentioned that for objects following the
degenerate motions within the epipolar plane, the epipolar
constraint alone is not sufficient. This kind of degenerate
motion usually happens when the ego-vehicle is following
the moving object forward and constantly maintains the
straight-line motion. In this case, the Flow Vector Bound
(FVB) constraint [18] can be leveraged to detect such moving

2



Fig. 4. The background corner points (rendered in blue) are tracked with
sparse optical flow and are used for robust fundamental matrix estimation
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Fig. 5. The Signed Epipolar Distance distribution of background points

(rendered in blue)

points with low SEDs. Given the sequential images, the
pixels parallax dfV® of paired points (x;,x!) between two
consecutive frames can be computed as:

1
X, — KRK'x; = Kt
Z

dfVB = |x - KRK'x;

3)

where the scalar z represents depth value and the ma-
trices K, R and t stand for the camera intrinsics, inter-
frame rotation and translation respectively. With a set of
matched background points {(X;,X})i=1.,}, their parallax
bound [d@fYB, alVB] can be easily found by Eq. 3. For the
points with degenerate motions, if their parallax value is not
within the interval of [dFYB, dlVE], they will also be labeled
as dynamic outliers.

2) 2D-3D Instance-Level MOS: The vision-based MOS
validation further exploits the underlying geometric and
semantic cues, to identify the truly dynamic points lying on
the movable objects. The combination of semantic, epipolar
and FVB constraints allows for better MOS recognition even
in degenerated cases. From the statistical point of view, the
likelihood of an object being dynamic depends on proportion
of outliers lying inside, on which basis, we can obtain the
instance-level MOS probability. In our case, the threshold
of 50% is set for the instance-level MOS decision making.
It means that for each movable object, if there are more
than 50% of the points inside are classified as mobile, the
object itself will be considered as a dynamic object. Then,
the object bounding box 2D-3D back-projection as depicted
in Fig. 7, is implemented to get the depth information. And
all the points inside the truly moving objects (rendered in

red, shown in Fig. 6) will be cleared for the following robust
state estimation and consistent scene mapping. In brief, 2D-
3D instance-level MOS algorithm can be summarized as:

Algorithm 1 2D-3D Instance-Level MOS Algorithm

Input: Predicted Movable Objects ROI {R;}??
Output: Validated MOS {S;}7” *”

1: Detect the Shi-Tomasi corners and track them with LK-
optical flow between two consecutive image frames.

2: Estimate the fundamental matrix F with the feature
matches belonging to the background.

3: Compute the SED residual distribution (uSEP, oSEP)
using Eq. 2 and the flow vector bound [dfYB  dfVB]
using Eq. 3 for the background points.

4: Check the motion status of points inside {R;}?2, |
on the semantic, epipolar and FVB constraints.

5: Classify the movable object {R;}?” as validated dynamic
object {S;}?P if the proportion of outliers in {R;}*"
exceeds the threshold 50%.

6: Implement the {S,;}*” back-projection to obtain {S;}3".

7: Exclude the points inside {S;}*P for the following robust
state estimation and consistent scene mapping.

i=l...r

based

Fig. 6. The 2D instance-level moving objects segmentation (rendered in
red), along with their probability of being dynamic

e

el

Fig. 7. The 3D instance-level moving objects segmentation via back-
projection, and all the points inside will be classified as outliers

C. Robust State Estimation and Mapping

The robust state estimation is driven by the reliable
correspondence matches across frames, where the estimated
transformation /T; tends to minimize the overall distance
between the paired correspondences {(p;,p;) € M}. In our
pipeline, the 3D LiDAR scans are iteratively matched with
the point-to-plane metric to deduce the vehicle ego-motion,
which reaches centimeter-level precision. However, the ex-
istence of dynamic objects in the scene tends to cause the
scan misalignment, thus degrading the registration accuracy
of sequential LiDAR scans. In order to mitigate the impact
of outliers in the objective function F(/T;) minimization, the



robust kernel functions p(r;;) adaptively adjust the weights
of the matches with large residuals.

Y p((p;—/ Tip)nj) 4)
(pipj)EM

F(T;) =

where (p;,pj) are the correspondences belonging to the
matched points set M, and i’ ; is the normal vector around p;
for calculating the point-to-plane distance. Nevertheless, the
kernel-based Iterative Closest Point (ICP) method is not suf-
ficient to handle the constant dynamic objects corruption. To
solve this problem, our approach distinguishes the instance-
level moving objects with the semantic and geometric in-
formation fusion. With the segmented moving objects back-
projected to the 3D LiDAR scans, the weighting coefficients
p(r;;) for the paired points lying inside the dynamic objects
are uniformly assigned as zero, which further reduces the
influence of dynamic objects in challenging scenarios. In
order to align the LiDAR scans in the global frame, the poses
from the state estimation thread will then be leveraged for
static point clouds registration.

IV. EXPERIMENTAL RESULTS

In this section, the effectiveness of the proposed sensor
fusion-based MOS and state estimation system is validated.
The experimental evaluations are conducted with the chal-
lenging city category sequences’ in the KITTI dataset [19],
which were recorded in heavy traffic hours. The LiDAR-
Camera sensor setup is adopted with the known calibration
parameters, where the 64-layer Velodyne HDL-64E LiDAR
gives accurate range information and the RGB-camera pro-
vides more contextual knowledge of the scene. In the KITTI
dataset, only the front-view images are provided. So we focus
only on the moving objects segmentation and static scene
mapping within the visual sensor field of view. Extensive
qualitative and quantitative results demonstrate that, the
proposed semantic-guided MOS helps to robustify the pose
estimation process in challenging heavy traffic scenarios.
Moreover, the ghosting effect in scene reconstruction process
is remarkably eliminated due to the moving objects removal.

A. Evaluation Metrics

The semantic-guided MOS efficiently reduces the outliers
effect in the 3D LiDAR scan matching. In order to quantify
the performance of LiDAR scan matching, the evaluation
metrics of Relative Fitness (RF) and Relative Root Mean
Square Error (RMSE) of the inlier correspondences {I} are
used. They are defined as follow:

I 1
=—, RMSE=— Y
M| il (pipj)el

RF Ipi —pjl?

where |-| is taking the cardinal number of a set. On the one
hand, Relative Fitness (RF) measures the proportion of as-
sociated inliers {I} among all the matched point pairs {M},
and higher relative fitness represents better scan matching
results. On the other hand, RMSE measures the root mean

Zhttp://www.cvlibs.net/datasets/kitti/raw_data.php?type=city

square errors of all inlier correspondences {(p;,p;) €I}, and
lower RMSE stands for greater scan alignment.

B. Results Analysis

1) Qualitative results: The ability to segment dynamic
components in surrounding environments is essential for the
intelligent transportation system. In our approach, the mov-
able objects ROI are predicted with the CenterPoint neural
network. Then, the visual multi-view geometry constraints
provide a sanity check for instance-level MOS validation.
Such a combination allows for better recognition, which
is capable of detecting tiny objects (see Fig. 8) and even
partially occluded objects (see Fig. 6). The right-side vehicle
in Fig. 6 is occluded on the image plane, which is quite
difficult to detect with only visual hints. Nonetheless, the
high-resolution LiDAR sensor receives the reflection from
part of occluded vehicle and manages to predict its existence,
as depicted in Fig. 7. Moreover, it is demonstrated in Fig.
8 that, the epipolar constraint compensates the vehicle ego-
motion which accurately classifies the parked car as static.
And the flow vector bound constraint efficiently helps to
identify the dynamic vehicle performing degenerate motions
on the lane, which facilitates better contextual understanding

of the driving area’.

Fig. 8. The tiny moving object with degenerate motions (move along the
epipolar plane) is successfully segmented with the FVB constraint

I

Fig. 9. The static car parked on the roadside (in blue) and dynamic car
driving on the lane (in red) are distinguished and back-projected to the 3D
LiDAR scan

Since the moving objects are not temporally consistent,
they do not belong to the permanent components of the
scene. Therefore, moving objects should be eliminated from
the mapping process in order to build a consistent represen-
tation of the scene, as shown in Fig. 10. The reconstructed
static map will promote high-level tasks such as map-based
localization and path planning.

2) Quantitative results: It is shown in Tab I and Tab
IT that, our semantic-guided MOS approach achieves the
leading results of 77.9% average fitness and 7.65 cm RMSE
respectively. Since the optimization-based state estimation is
usually built upon the static environment assumption. The

3The LiDAR scan and RGB-image are extracted from the KITTI
2011-09_26_drive_0013_sync sequence



Fig. 10. The ghosting effect of a moving car is greatly reduced due to the
semantic-guided moving objects segmentation and removal

presence of dynamic objects in the scene may degrade the
ego-motion estimation and complicate the map maintenance
task. A two-stage prediction-then-validation pipeline is thus
designed to segment instance-level objects in the scene. It
is more efficient than the traditional kernel-based methods,
since we concentrate on the ROIs instead of the whole
points clouds. Compared to the end-to-end DL-methods,
our approach relieves from motion segmentation ground
truth annotation and training. The multiple constraints com-
bination also ensures the robustness of dynamic outliers
rejection in complex situations, such as handling objects with
degenerated motions.

TABLE I
REGISTRATION RESULTS BENCHMARKING WITH RF(%)

Dataset Methods Tukey Huber Cauchy | Ours
2011.09-26_13 572% | 55.6% 55.6% 57.7%
2011.09-26_17 94.7% | 94.7% 94.7% 95.7%
2011.09-26_18 78.9% | 79.5% 79.1% 80.2%

Average 76.9% | 76.6% 76.5% 77.9%
TABLE 11

REGISTRATION RESULTS BENCHMARKING WITH RMSE (CM)

Dataset s Tukey | Huber | Cauchy | Ours
2011.0926_13 10.18 10.37 10.39 9.98
2011.0926_17 5.73 5.75 5.75 5.66
2011.0926_18 7.37 7.41 7.41 7.31

Average 7.76 7.84 7.85 7.65

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel pipeline to perform the
efficient MOS that robustifies state estimation and facilitates
consistent scene mapping in dynamic environments. The
complementary range and visual sensors are combined to ef-
ficiently detect the truly moving objects, even in degenerated
cases. The qualitative and quantitative experimental results
demonstrate that, the proposed approach can outperform
the traditional kernel-based methods in the complex traffic
scenes. The future work plan will be devoted to onboard
multi-camera and LiDAR fusion, where the front, side and
rear camera images will be stitched for panoramic percep-
tion. The ablation study of different 3D object detection
neural networks will also be conducted, which ensures the
MOS robustness in various scenarios such as high-speed
motion and mutual occlusion.
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