
Figure 1. Data acquisition platform and coordinate system.
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Abstract— The next-generation high-resolution automotive
radar (4D radar) can provide additional elevation measurement
and denser point clouds, which has great potential for 3D
sensing in autonomous driving. In this paper, we introduce a
dataset named TJ4DRadSet with 4D radar points for
autonomous driving research. The dataset was collected in
various driving scenarios, with a total of 7757 synchronized
frames in 44 consecutive sequences, which are well annotated
with 3D bounding boxes and track ids. We provide a 4D
radar-based 3D object detection baseline for our dataset to
demonstrate the effectiveness of deep learning methods for 4D
radar point clouds. The dataset can be accessed via the following
link: https://github.com/TJRadarLab/TJ4DRadSet.

I. INTRODUCTION

Autonomous driving technology [1] has recently received
much attention. The high-level autonomous driving system
mainly consists of modules such as environment perception,
road planning, and decision execution [2]. A highly reliable,
low-cost, high-resolution perception module is necessary for
self-driving vehicles. At the current stage, the perception
module mainly uses sensors such as cameras, lidars, and
automotive radars to obtain environmental information of
different modes [3]. Undeniably, the camera and lidar are
vulnerable to harsh conditions such as rain, fog, and intense
light, whose performance will decline significantly with the
increase of adversity. In contrast, the automotive radar is
essential because of its strong robustness [4] and
cost-effectiveness. Due to low azimuthal resolution,
conventional automotive radar is only used for blind-spot
detection, collision warning, and other driving assistance
applications. The emergence of new-generation 4D radar [5]
makes up for the low definition of conventional automotive
radar and provides elevation measurement, which is well
suited for applications in high-level autonomous driving. The
four dimensions of 4D radar are range, azimuth, elevation,
and Doppler velocity. It also provides some other low-level
features such as radar-cross-section (RCS) or signal-to-noise
ratio (SNR).

3D object detection and tracking are essential to
environment perception. With the development of deep
learning and artificial intelligence, an enormous amount of
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neural networks have been applied to 3D perception [6].
Training a 3D object detection network requires large-scale
data, which should cover many diverse and complex
conditions. What’s more, the ground truth of data needs to be
accurate for supervised learning to ensure the trained network
is valid. Compared with camera and lidar, few autonomous
driving datasets contain 4D radar, which limits the research
and application of deep learning in the 4D radar point cloud.
To fill this gap, we proposed a 4D radar dataset for
autonomous driving called TJ4DRadSet. The data collection
platform contains multi-sensors, including 4D radar, camera,
lidar, and Global Navigation Satellite System (GNSS), as
shown in Figure 1. We hope the dataset will facilitate the
research of 4D radar-based perception algorithms. Our
contributions are listed as follows:

 We present a dataset named TJ4DRadSet, an
autonomous driving dataset containing 4D radar point
clouds in continuous sequences with 3D annotations,
which also provides multi-modal complete
information on lidar, camera and GNSS.

 TJ4DRadSet contains 40K frames of synchronized
data, where 7757 frames, 44 sequences with
high-quality annotated 3D bounding boxes and track
ids. The 3D annotation system uses joint multi-sensor
annotation and multi-round manual checks.

 TJ4DRadSet covers various road conditions, such as
elevated roads, complex intersections, one-way roads,
and urban roads. It also includes bad lighting
conditions such as intense light and darkness. The
dataset is suitable for developing 3D perception
algorithms based on the 4D radar to facilitate its
application in high-level autonomous driving.
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 Based on TJ4DRadSet, we provide a baseline for 4D
radar-based 3D object detection. The results show that
4D radar has a promising potential for high-level
autonomous driving.

The paper is organized as follows: Section II introduces
related work on other datasets. Section III describes our
dataset in detail. In Section IV, we perform the baseline result
of 3D object detection based on 4D radar. A brief conclusion
and future work are presented in Section Ⅴ.

II. RELATED WORK

Deep learning technique is playing an increasing role in
autonomous driving. It relies on a large amount of high-quality
data. Therefore, a growing number of open dataset
benchmarks have appeared in recent years, such as KITTI [7]
and Waymo Open [8], which have contributed to the
advancement of autonomous driving technology. With these
benchmarks, we can evaluate the performance of different
algorithms for various tasks.

Automotive radar has proven to be an effective sensor due
to its robustness in all weather and low price. However, many
datasets do not contain radar sensors, which limits the
application of data-driven algorithms based on radar data.
Since the nuScenes [9] dataset was released, some datasets
with radar data started to appear, which has aroused people's
interest in radar. The comparison of each dataset containing
radar data is shown in TABLE Ⅰ. Some datasets contain
low-resolution FMCW radars, such as nuScenes, and
RadarScenes [10], whose radar point clouds lack elevation
information for accurate 3D perception. Some datasets use
scanning radar to collect data, such as RadarRobotCar [11],
RADIATE [12], and MulRan [13], whose radar data are
mainly interpreted as image data and lack Doppler velocity.
For the new-generation 4D imaging radar, the 4D point cloud
will be the primary output format, containing spatial and
velocity information. Currently, Astyx [14], RADIal [15] and
VoD[16] dataset have high-resolution 4D radar sensor. Astyx
has only 545 frames of point cloud data, which is small and
lacks tracking information. RADIal contains complete radar
formats, such as range-Doppler maps and point clouds, which
only has 2D labeled boxes and a “Car” label. VoD dataset is a

novel automotive dataset, which is the work of the same period
as ours. VoD contains 8600 frames of synchronized and
calibrated lidar, camera, and 4D radar data acquired in urban
traffic, which also provides 3D annotations and track ids.
Compared to the VoD dataset, our dataset contains much
richer and more challenging driving scenario clips.

III. THE TJ4DRADSET DATASET

In this section, we introduce sensor parameters, calibration,
data collection and annotation, then provide statistical analysis
and visualization.

A. Sensors

The TJ4DRadSet mainly contains 4D radar, lidar and
camera. As shown in Figure 1, the camera and lidar are
mounted on the roof bracket, and the 4D radar is installed in
the middle of the front ventilation gride. The lidar can do
360-degree scanning of environmental information, while the
camera and 4D radar capture the information in the field of
view (FOV) ahead, covering the forward driving view. The
main parameters of each sensor are shown in TABLE Ⅱ. In
addition, the GNSS information is included and corrected by
real-time kinematic (RTK) to achieve high-precision
positioning, which has the speed and location information of
the ego vehicle.

B. Sensor Calibration

Multi-sensor calibration is the basis for perception
algorithms. The process mainly consists of intrinsic
parameters calibration, extrinsic calibration, and temporal
alignment. The intrinsic parameters and distortion coefficients
of the camera are calibrated by MATLAB Toolkit [17] and a
checkerboard. The distortion coefficients are used for
correction to obtain rectified images. The intrinsic parameters
of 4D radar and lidar have been calibrated offline at the
factory.

It can be divided into two processes for extrinsic
parameters: camera and lidar extrinsic calibration; 4D radar
and lidar extrinsic calibration. The extrinsic parameters of the
camera and 4D radar can be obtained by performing matrix
operations on the remaining two extrinsic parameters. The

TABLE I. CURRENT DRIVING RADAR DATASETS

Dataset Size Radar Type Other Modalities
4D Radar
Point Cloud

Object
Detection

Object
Tracking

3D
Annotations

nuScenes[9] Large Low Resolution Lidar&Camera    

RADIATE[12] Middle Scanning Lidar&Camera    

MulRan[13] Middle Scanning Lidar    

RadarScenes[10] Large Low Resolution Camera    

RadarRobotCar[11] Large Scanning Lidar&Camera    

Astyx[14] Small High Resolution Lidar&Camera    

RADIal[15] Middle High Resolution Lidar&Camera    

VoD[16] Middle High Resolution Lidar&Camera    

TJ4DRadSet(ours) Middle High Resolution Lidar&Camera    



Figure 3. Locations of the data collection.

(a) 4D radar point clouds (b) Lidar point clouds

Figure 2. 4D radar and lidar point clouds projection.

extrinsic parameters between the different sensors are
represented as translation and rotation matrix. For camera and
lidar extrinsic calibration, we used a checkerboard to perform
2D-3D alignment of the point cloud and image data to
complete a rough calibration. Then, we manually fine-tune the
extrinsic parameters by static objects such as trees and poles in
the environment. For 4D radar and lidar extrinsic calibration,
we consider it as 3D-3D point cloud alignment in space.
Firstly, the distance between the two sensors is measured as a
rough translation parameter. Then extrinsic parameters are
fine-tuned by using multiple angular reflectors in space.

All sensors work under the ROS driver. Since each sensor
runs at different frame rates, we align the data by using the
arrival time of the data as the timestamp. The final 4D radar
and lidar point clouds are projected into the image, as shown in
Figure 2.

C. Data Collection and Annotation

TJ4DRadSet was collected in Suzhou, China, in the fourth
quarter of 2021. Figure 3 records the location of the data
collection. The dataset covers a wide range of driving
conditions, including various lighting conditions, such as
normal lighting, bright light and darkness, and different road

types, such as urban roads, elevated roads, and industrial zones.
There are complex scenarios such as object-dense
intersections and simple scenarios such as one-way streets
with a few objects. Our acquisition system is based on ROS
and all sensor data are recorded in “rosbag” completely.

The ground truth annotation of the dataset mainly includes
a 3D bounding box, class and track id for each object. The
lidar sensor has a higher point cloud density than 4D radar,
which provides a more detailed description of objects’ shapes.
Therefore, our annotation system mainly relies on lidar point
clouds and images for joint annotation. However, some
objects that have few lidar points due to occlusion may still
appear in 4D radar FOV because of the multipath effect, and
we still label them. We finished the annotation manually and
reviewed many rounds to ensure the quality of the dataset.

The 3D bounding box of each object includes the center
point ( , , )x y z , length, width, height ( , , )l w h , and orientation
angle (yaw). In addition, we provide occlusion and truncation
indicators to distinguish different difficulty levels. The dataset
has eight classes (Car, Bus, Truck, Engineering Vehicle,
Pedestrian, Motorcyclist, Cyclist, and Tricyclist). In order to
have a balanced label distribution and to improve the
performance of networks, we map the “Bus” and “Engineering
Vehicle” (large) to “Truck”, the “Motorcyclist” to “Cyclist”.
The class of other objects is mapped to “Other Vehicle”. The
original classes are retained so that the mapping can be
customized as needed.We assign a unique id to each object for
the tracking task. Finally, 40K frames of synchronized data are
extracted, of which 7757 frames in 44 consecutive sequences
are labeled.

D. Dataset Statistics

In this part, we perform some statistical analysis of the
dataset. Figure 4(a) shows the number of objects for each
class, with “Car” being the most numerous, followed by
“Cyclist”. The amount of “Truck” and “Pedestrian” is
approximately the same. Figure 4(b) shows the speed
distribution of the ego vehicle. The distribution of the point
cloud density of lidar and 4D radar is shown in Figure 4(c)(d).
It can be seen that the 4D radar point cloud is sparser than the
laser point cloud, but radar points contain more features, such
as Doppler velocity. In addition, we also count the
distribution of the distances and orientations of the main
classes, shown in Figure 5. Some typical scenarios are
visualized in Figure 6.

IV. BASELINE EXPERIMENTS

This section establishes baselines of 3D object detection
based on 4D radar and lidar. We divide the dataset into a
training set and test set by sequence and keep the test set with

TABLE II. SPECIFICATION OF THE TJ4DRADSET’S SENSOR SUITES

Parameters
Sensors

Resolution FOV
FPS

Range Azimuth Elevation Range Azimuth Elevation

Camera 1280px 960px 66.5° 94° 30

Lidar 0.03m 0.1°-0.4° 0.33° 120m 360° 40° 10

4D Radar 0.86m <1° <1° 400m 113° 45° 15



good coverage. In this way, we get 5717 training and 2040 test
samples and keep the data split fixed.

The original annotations are under the lidar coordinate
system, and we transfer the labels to the 4D radar coordinate

system through the lidar-radar extrinsic matrix. Due to the
sparsity of radar point clouds, some of the existing networks
are difficult to be applied directly to this data format. In this
paper, we use PointPillars [18] as the baseline algorithm for

(a) Number of objects (b) Ego-vehicle velocity (c) Lidar point density (d) 4D radar point density

Figure 4. Some basic statistics.

Figure 5. Distribution of the distances and orientations of “Car”, “Truck”, “Pedestrian” and “Cyclist”.

TABLE III. BASELINE RESULTS (4D RADAR)

Class
BEV-50m 3D-50m BEV-70m 3D-70m

AP@0.5 AP@0.25 AP@0.5 AP@0.25 AP@0.5 AP@0.25 AP@0.5 AP@0.25

Car 23.06 36.73 12.63 27.96 26.19 40.14 16.85 33.30

Truck 16.76 36.37 12.64 31.33 13.46 30.49 10.07 25.51

Pedestrian 35.24 27.64 35.26 27.19

Cyclist 21.62 40.26 18.34 38.42 21.38 39.80 17.70 38.20

TABLE IV. BASELINE RESULTS (LIDAR)

Class
BEV-50m 3D-50m BEV-70m 3D-70m

AP@0.5 AP@0.25 AP@0.5 AP@0.25 AP@0.5 AP@0.25 AP@0.5 AP@0.25

Car 69.69 69.79 69.47 69.72 52.76 52.77 52.67 52.76

Truck 37.45 49.06 30.47 43.34 24.72 33.42 22.74 31.89

Pedestrian 56.28 56.09 49.23 49.07

Cyclist 53.00 54.12 49.28 54.12 44.72 48.32 43.09 48.59



Figure 6. Visualization of typical samples of TJ4DRadSet.



4D radar and lidar because of its good adaptability and the
trade-off in both speed and precision. To adapt the 4D radar
data, we have partially modified the original configuration and
retrained the model using TJ4DRadSet. The detection range
along the x-axis is set to 69.12m. We use five-dimensional
features of radar point clouds, which include spatial
information ( , , )x y z , Doppler velocity ( )v and signal to noise

ratio ( )s . The Doppler velocity ( )v is the absolute radial
velocity after compensation by ego-motion. In terms of
network parameters, we choose the pillar size to be
(0.16 ,0.16 )m m . The anchor size format is defined as ( , , )l w h .
For the four classes (“Car”, “Truck”, “Pedestrian”, and
“Cyclist”), the anchor sizes are listed as
follows: (4.56 ,1.84 ,1.70 )m m m , (10.76 ,2.66 ,3.47 )m m m ,

(0.80 ,0.60 ,1.69 )m m m , (1.77 ,0.78 ,1.60 )m m m . Besides,
some data augmentations are used to enhance the robustness of
the network, including the world random rotation and random
scaling. We use the Adam optimizer [19] to train the model for
80 epochs.

In the evaluation stage, the average precision (AP) is chosen
as the metric to evaluate the detection results for each class.
Specifically, we use 0.5 and 0.25 IoU thresholds to test “Car”,
“Truck”, and “Cyclist”, and only use the 0.25 IoU threshold to
evaluate “Pedestrian”. We denote the AP under these two
thresholds as AP@0.5 and AP@0.25. TABLEⅢ and TABLE
Ⅳ show the baseline performance at different distances (50m
and 70m) and views(BEV, 3D) using 4D radar and lidar,
respectively. The results clearly illustrate that 4D radar has
potential for 3D perception. In the BEV view, the average
accuracy for all classes is over 30% at the 0.25 IoU threshold.
Although the baseline algorithm can achieve some results,
there is still a big gap between 4D radar and lidar. Under the
same algorithm (PointPillars), lidar detection results
completely outperform 4D radar, which can be due to several
reasons. First, 4D radar has a lower point density, which
maybe makes it difficult for the baseline network to extract
features effectively. In addition, different data augmentations
could also have an impact on the results. It is of great concern
how to better extract 4D radar point cloud features and fuse
information from other modalities.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce TJ4DRadSet, a multi-modal
autonomous driving dataset containing 4D radar point cloud.
The dataset is used to study 4D radar-based 3D perception
algorithms. We provide a detailed description of the dataset
and conduct baseline experiments. In the future, we will
further expand the dataset and research fusion algorithms,
point cloud enhancement and feature representation based on
4D radar.
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