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Abstract— Automated vehicles are gradually entering peo-
ple’s daily life to provide a comfortable driving experience for
the users. The generic and user-agnostic automated vehicles
have limited ability to accommodate the different driving styles
of different users. This limitation not only impacts users’
satisfaction but also causes safety concerns. Learning from user
demonstrations can provide direct insights regarding users’
driving preferences. However, it is difficult to understand a
driver’s preference with limited data. In this study, we use
a model-free inverse reinforcement learning method to study
drivers’ characteristics in the car-following scenario from a
naturalistic driving dataset, and show this method is capable
of representing users’ preferences with reward functions. In
order to predict the driving styles for drivers with limited data,
we apply Gaussian Mixture Models and compute the similarity
of a specific driver to the clusters of drivers. We design a
personalized adaptive cruise control (P-ACC) system through
a partially observable Markov decision process (POMDP)
model. The reward function with the model to mimic drivers’
driving style is integrated, with a constraint on the relative
distance to ensure driving safety. Prediction of the driving
styles achieves 85.7% accuracy with the data of less than
10 car-following events. The model-based experimental driving
trajectories demonstrate that the P-ACC system can provide a
personalized driving experience.

I. INTRODUCTION

Automated vehicles have attracted significant attention
from the research community because of their promising
ability to increase traffic safety and enhance the human
driving experience for various driving situations. Most auto-
mated driving technologies are currently at SAE level 2 [1]
relying on the development of advanced driver-assistance
systems (ADAS) [2]. Car-following is a fundamental build-
ing block of automated longitudinal motion control, various
ADAS are further developed to enable a safer driving expe-
rience, including cruise control (ACC) and forward-collision
warning [3].

Most available ADAS are generic and user-agnostic, which
limits their ability to fit drivers’ different styles while dif-
ferent drivers tend to have different driving styles [4]. For
example, an ACC can be too aggressive for a driver who
prefers a large distance gap to preceding vehicles, while
too conservative for a driver who prefers a smaller gap [5].
Personalized ADAS aims to integrate drivers’ preferences
into the system design and adapt to diverse drivers’ styles [6].
Because of the system ability to predict and mimic driving
behavior, it can provide optimal driving experience, improve
traffic safety [7], and enhance drivers’ trust [8].

Learning the individual driving styles allows to predict
drivers’ maneuvers, make a decision at the individual level,
and facilitate the design of personalized ADAS.

Fig. 1. Overview of the proposed method.

Driving preferences can be learn through simply demon-
strating driver’s driving style [9], rather than manually
tuning various parameters to adapt to drivers’ behaviors [10]
since this can be considered that drivers often maximize
some reward in their mind and trade-off different factors,
such as speed, acceleration, and distance to surrounding
vehicles in many Inverse Reinforcement Learning (IRL)
setting [11].

IRL was commonly used to infer the driving styles by
learning the cost function that best explains the observed
demonstrations [12], [13]. A cost function usually combines
various features and weights [14]. Using cost functions
to represent driving styles can also facilitate predicting and
imitating driver behaviors, and further generate comfortable
motions and predictable behaviors [15]. Currently, most IRL
methods rely on the prior knowledge of the transition model,
and it is often difficult to satisfy in real life [16]. Model-
free IRL methods relax this requirement [17], and it can
achieve a better performance than traditional model-based
IRL methods [18].

In real-life situations, driving observations from one spe-
cific driver may be insufficient to develop individual-based
personalized ADAS [19]–[21]. Group-based personalization
studies drivers’ behavior with a small number of repre-
sentative styles [21], [22]. The challenge lies in how to
adapt group-based personalization to individual-based per-
sonalization when only limited data from a specific driver is
available.

In this paper, we present a personalized car-following style
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learning method for drivers with limited data as shown in
Figure 1. We used a model-free IRL to learn each individual
driver’s style (i.e., reward function) from 42 drivers and
cluster them into four different groups. Furthermore, we
developed Gaussian Mixture Models (GMM), used the Kull-
back–Leibler (KL)-Divergence to measure the similarities,
and predicted the personalized reward function. In order
to validate this approach, we developed a car-following
model with a partially observable Markov decision process
(POMDP) to mimic drivers’ driving preferences with a
constraint on the minimum distance between the vehicle to
ensure safety.

We highlight the following contributions in this work:
• The effectiveness of the model-free IRL in learning

driving preference from naturalistic driving data is
demonstrated.

• Driving preferences are clustered into four representa-
tive styles based K-means.

• Personalized driving styles are learned for drivers with
limited data based on the KL-Divergence of GMMs.

• We designed a personalized ACC control utilizing the
learned IRL reward function and POMDP with a con-
straint on the minimum distance between the vehicle to
ensure safety.

The remainder of the paper is organized as follows:
Section II summarizes the related work, Section III shows an
overview of our method, Section IV describes the dataset and
the preprocessing, Section V introduces the car-following
preference learning based on the IRL, Section VI explains the
driving styles clustering, Section VII presents the prediction
using drivers’ limited information, Section VIII illustrates
the design of the POMCP model for the personalized ACC
controller, and Section IX draws the conclusion.

II. RELATED WORK

A. Personalized Advanced Driver-Assistance Systems
Various personalized ADAS are proposed to assist the

car-following scenarios. Group-based personalized ACC has
been developed by assigning drivers into a small number of
groups [21]. Gao et al. proposed a personalized ACC based
on three driving styles learned from 66 drivers by using
unsupervised clustering methods, and then the parameters
representing each style are fed into a model predictive
controller (MPC) [23]. Zhu et al. used KL-divergence to
measure the similarity among 84 drivers and classified them
into three groups [24]. A personalized ACC was further
designed to meet different groups’ driving characteristics in
speed control and distance control. Wang et al. developed a
learning-based personalized driver model based on bounded
generalized GMM for car-following scenarios [25]. Chen et
al. [26] proposed a learning model for personalized ACC that
can learn and replicate driver behaviors within acceptable
errors. Wang et al. developed a Gaussian Process Regression
algorithm for personalized ACC, where both numerical and
human-in-the-loop experiments verify the effectiveness of
the proposed algorithm in terms of reducing the interference
frequency by the driver [27] .

B. Inverse Reinforcement Learning

Ng and Russell [28] introduced an IRL to extract a
reward function for observed optimal behaviors. Abbeel and
Ng [11] used an IRL to learn five different driving styles
on a highway simulation, assuming the reward function can
be expressed as a linear combination of known features.
Kuderer et al. [14] introduced a feature-based IRL method
for learning individual navigation styles from the real driving
demonstrations on a highway. They demonstrated that their
method was able to achieve distinct mean acceleration and
jerk for two users. They concluded that distinct policies
can be learned for different users. [29] learned different
rewards for three different driving styles based on an IRL
method using locally optimal demonstration. Naumann et
al. [15] investigated the suitability of explaining human driv-
ing behavior with the cost functions. They explored various
features such as longitudinal acceleration and longitudinal
jerks from human driver trajectories. They inferred human
drivers’ preference over the features through the learned cost
function weights. Jain et al. [30] proposed a model-free IRL
using maximum likelihood estimation to investigate drivers’
preferences in the scenario of freeway merging based on 12
trajectories. The studies by Gao et al. [31] and Zhao et al.
[32] both show that their IRL algorithms can recover the
personalized car-following gap preference based on different
vehicle speed values, where a gap-speed matrix can be used
to design the control logic for personalized ACC systems.

III. RESEARCH OVERVIEW

In Figure 1, we summarized our method for learning the
personalized car-following preference for drivers with limited
data. We extracted car-following events from a naturalistic
driving dataset. We kept the 49 drivers with more than 10
car-following events. We considered 42 drivers with no more
than 60 events as the source group and the seven drivers as
the target group.

For the drivers in the source group, we employed a model-
free IRL method to infer their driving styles through the
reward functions. We further clustered these driving styles
into four representative styles using K-Means.

In order to demonstrate how to infer the driving style of a
driver with limited data, we separated 10 events as the test
events for each driver in the target group, and keep the rest
as the validation events. Assuming we would not be able
to learn the driving styles through the IRL directly with the
limited data in the test events, we developed a GMM for
them individually instead. Then we computed the individual
diver’s similarity with the GMM models of the 4 clusters
using KL-divergence, respectively. We inferred which cluster
that the driver is most similar with according to the KL-
divergence. Then we assigned that individual driver with the
centroid reward function of that cluster. Thus, we were able
to predict the personalized reward function with limited data.
To validate the effectiveness of this method, we used the
validation events to learn the reward function directly through
the IRL as the ground truth. We demonstrated the prediction
accuracy in Section VII.



Fig. 2. Car-Following events.

IV. DATASET

We extracted car-following data from the datasets of
DataWsu and DataFrontTargets in the project of Safety Pilot
Model Deployment (SPMD)1. The SPMD project collected
naturalistic driving data (i.e without any restriction of par-
ticular routes or driving time) in Ann Arbor, Michigan,
USA. Ninety-eight sedans integrated with data acquisition
systems (DAS) were provided to drivers. DataWsu recorded
data such as speed and acceleration via the vehicles’ Con-
troller Area Network (CAN) Bus at a frequency of 10 Hz.
DataFrontTargets recorded data such as relative distance
and relative speed using the Mobileye at a frequency of
10 Hz. Each vehicle had a unique device ID (eg. 10205).
We assumed that each vehicle was only assigned to one
individual driver, and we used the device ID as the driver
ID. We obtained the car-following data for 85 drivers with
the following criteria to select car-following events.
• The ego vehicle followed its closest preceding vehicle

for at least 30 seconds.
• The relative distance between the ego vehicle and

preceding vehicle was always shorter than 120 meters.
If the relative distance was longer than 120 meters, we
assume that the vehicle was under free driving [33].

• The speed of the ego vehicle was always between 18
m/s and 43 m/s.

In total, there were 36 drivers with no more than 10 car-
following events, and 49 drivers with more than 10 events.
We kept the 49 drivers for further study.

Figure 2 shows two car-following events: Driver 13101
was driving at relatively low speed (26.4± 0.08 m/s) while
the distance to the front vehicle was changing. The driver
focused on keeping the speed stable while being indifferent
to the changing distance. On the contrary, Driver 10139
increased the speed to shorten the distance, and then kept
at a stable speed and distance.

1https://catalog.data.gov/dataset/safety-pilot-model-deployment-data

Fig. 3. Weights of the reward function for Driver 10575.

V. INVERSE REINFORCEMENT LEARNING

A. Preliminaries

The reward function in reinforcement learning determines
the policy that the agent will adopt to act in an environ-
ment. However, the reward function is not always available.
Instead, an expert’s behavior is easier to observe. The IRL
aims to derive the reward function from the observed be-
haviors [34]. In the car-following scenario, different drivers
have their own driving styles and value the environmental
factors differently. Drivers’ driving styles determine their
driving actions as the reward function determines the agent’s
policy. We can learn different drivers’ driving styles using
the IRL as we derive the reward function from the recorded
car-following data.

The reward function is usually formed as a linear com-
bination of binary features φ : S × A → {0, 1}, where
S denotes the state space that the agent can perceive in
the environment, and A denotes the action space that the
agent can perform. The reward function for expert E can
be denoted as RE(s, a) =

∑M
m=1 ωm · φm(s, a), where M

is the number of features and ω is the weight. Ultimately,
the IRL is learning the weights such that the demonstrated
behavior is optimal.

Model-based IRL methods such as Bayesian infer-
ence [35], maximum entropy [36], and maximum likelihood
estimation [18] require prior knowledge of transition func-
tion, which is not easy to obtain in real life. Jain et al.
[30] proposed a model-free IRL method Q-averaging by
estimating the Q-value without knowledge of the transition
function and it achieves a higher log-likelihood compared
with an existing model-based method. We employed the Q-
averaging IRL method in this study.

B. Learning Car-Following Preference

In order to capture the variability of the driving states, we
aggregated data of every three seconds into one data point.
We summarized the setup of the car-following data with IRL
format as follows.
State Space. We defined the state space with two state
variables:
• d: The relative distance from the ego vehicle to its

closest preceding vehicle.



Fig. 4. Inertia and distortion with respect to the value of K.

• v: The velocity of the ego vehicle from the vehicle’s
CAN Bus.

We discretized the speed of the vehicles and their relative
distance to front vehicles into five intervals evenly, which
led to 25 states for each vehicle.
Action. We modeled the acceleration (in m/s2) as the
actions of the drivers.
• High brake (acc ≤ −1.46),
• Mild brake (−1.46 < acc ≤ −0.18),
• Minimal acceleration (−0.18 < acc ≤ 0.18),
• Mild acceleration (0.18 < acc ≤ 1.46),
• High acceleration (acc > 1.46).

Feature. We used 25 features to indicate the states of relative
distance and velocity of the vehicle.
Reward Function. Figure 3 shows the learned feature
weights for Driver 10575 using the model-free IRL approach.
It explains the driver’s preference over different driving
states. The weight of the 12th feature (speed between 28
m/s and 33 m/s, distance between 24 m and 48 m) is
the greatest, corresponding to the state that Driver 10575
is most comfortable with. The cumulative weights over the
states with the distance between 24 m and 48 m are greater
than the weights over the states with speed between 28 m/s
and 33 m/s, indicating that he/she prefers maintaining a
stable distance rather than maintaining a stable speed. The
states with fewer weights (e.g., states with speed below 23
m/s, and states with distance above 96 m) show the driving
situations that the driver prefers not to be in.

VI. CLUSTERING

We obtained weights of the reward function for each driver
using the model-free IRL method as a 25-dimensional vector.
Then we normalized the vector into [−1, 1] for each driver
without losing the information of the driver’s preference
over different states. We divided the drivers into K separate
groups based on the normalized weights using K-means and
the elbow method.

The goal of K-means clustering is to divide observations
into K clusters such that each observation belongs to the
clustering with the nearest mean. The elbow method is
commonly used to find an optimal number of clusters.

Figure 4 shows the inertia and distortion with respect to
the value of K. Inertia is the sum of squared distances of
samples to their closest cluster center, and distortion is the

Fig. 5. Centroid of the normalized weights of the reward function for each
group.

average of the squared distances from the cluster centers of
the respective clusters using the Euclidean distance metric.
Both inertia and distortion will decrease with the increase of
clustering number K as the sample partition becomes more
refined. The decrease will be sharp before reaching the true
clustering number, and it will become flat afterward [37]. As
shown in Figure 4, the decrease is sharper before K reaches
4 and becomes relatively flat after reaching 4. Therefore, we
selected the number of representative driver groups in the
car-following scenario K as 4.

Figure 5 shows the centroid of the normalized weights for
each group. Drivers in Cluster 1 prefer to drive at a relatively
high speed with a short distance, representing a confident
driving style. The drivers in Cluster 2 and Cluster 3 prefer
the state with the speed between 28 m/s and 33 m/s, while
the drivers in Cluster 2 prefer greater distance. Drivers in
Cluster 4 prefer to drive at a relatively low speed and short
distance, which is usually the strategy when the traffic is
relatively heavy.

Figure 6 shows the histograms of the speed and the
distance for different clusters of drivers. It is evident that
the speed and the distance distributions for each cluster have
different shapes, indicating different driving styles. For the
speed histograms, Cluster 1 has a plateau between 32 m/s
and 36 m/s, Cluster 2 and Cluster 3 are skewed between 28
and 33 m/s, and Cluster 4 has a peak at 26 m/s.

Figure 7 shows the boxplots of the driving indicators,
including the speed and the distance for the drivers in
each cluster. It also demonstrates the difference between the
drivers in each cluster. For the speed boxplots, Cluster 1 has
the greatest median value and Cluster 4 has the least. Cluster
2 and cluster 3 are close. For the distance boxplots, Cluster
4 has the largest range. These characteristics are consistent
with the styles represented by the reward function for each
cluster.



Fig. 6. Histogram of the speed and the distance for each cluster of drivers.

Fig. 7. Boxplot of the speed and the distance for each cluster of drivers.

VII. PREDICTION

GMM has proven its effectiveness in modelling various
driving behaviors [24]. The driving data can be modelled as
a linear combination of Gaussian distributions:

p(x) =

M∑
i=1

πip(x|µi, σi), (1)

where M is the number of Gaussian distribution, the ith

component is a multivariate Gaussian distribution G(µi, σi)
with weight πi.

We considered the drivers with more than 60 car-following
events as the target set, the drivers with car-following events
between 11 and 60 as the source set. We further divided the
car-following events in the target set into two parts: 1) Ten
events for GMM modeling; 2) The rest events for validation
by applying the IRL directly.

We first modeled each driver with limited data (up to 10
events in Part 1) using a GMM f(x) individually, then we
modelled each cluster of drivers in the source set into a GMM
g(x). For each driver in the target set, we aim to find the

Fig. 8. Prediction accuracy.

most similar cluster of drivers. We used KL-divergence is
often used to measure the similarity. [24]:

D(f ||g) =
∫
f(x) log

f(x)

g(x)
dx (2)

Given that the integral is not tractable, the Monte-Carlo
sampling method is used to approximate the KL-divergence.
The smaller the KL-divergence, the greater the similarity. In
other words, we aimed to find the smallest KL-divergence.

We directly learned the reward function from the events
in Part 2 through the IRL, and used its closet cluster as the
ground truth. Figure 8 shows the prediction accuracy. When
the number of events used to build the GMM model is less
than 6, the accuracy is less than 60%. When the number
increased to 6 and beyond, the accuracy also increased. The
best accuracy is 85.7% for the event numbers 6, 8, and 9.
It demonstrates that our method has the potential to predict
a personalized reward function for the drivers with limited
data.

VIII. ONLINE CONTROLLER BASED ON
COST-CONSTRAINED POMCP

We designed a personalized adaptive cruise controller
based on cost-constrained partially observable Monte-Carlo
Planner (CC-POMCP) using the learned IRL reward.

A. Preliminaries

Formally, a POMDP is denoted as a tuple
(S,A, T , R,O, δ, γ), where S is a finite of state, A is a set of
actions, T is the transition function representing conditional
transition probabilities between states, R : S × A → R is
the real-valued reward function, O is a set of observations,
δ is the observation function representing the conditional
probabilities of observations given states and actions, and
γ ∈ [0, 1] is the discount factor. At each time step t, given
an action at ∈ A, a state st ∈ S evolves to st+1 ∈ S with
probability T (st+1|st, at). The agent receives a reward
R(st, at), and makes an observation ot+1 ∈ O about the
next state st+1 with probability δ(ot+1|st+1, at). The goal
of POMDP planning is to compute the optimal policy
that chooses actions to maximize the expectation of the
cumulative reward VR = E[

∑∞
t=0 γ

tR(st, at)]. Constrained
POMDP is a generalization of POMDP for multiple
objectives. Its goal is to compute the optimal policy that
maximizes VR while constraining the expected cumulative



Fig. 9. Transition model.

TABLE I
DISTRIBUTION OF ACCELERATION BASED ON A DIFFERENT INTENTION

Intention Acceleration
Break Maintain Acceleration

Hesitating 0.3 0.4 0.3
Normal 0.1 0.8 0.1

Aggressive 0.4 0.2 0.4

costs VC = E[
∑∞

t=0 γ
tC(st, at)], where C(st, at) below a

threshold c.

B. PACC POMDP model

We designed a POMDP model as shown in Figure 9 to
simulate the driving situation that one ego vehicle following a
leading vehicle on a straight highway. We used vego and yego
to represent the speed and the position of the ego vehicle,
respectively. We also used vlead, ylead, and ilead to represent
the speed, the position of the leading vehicle. In addition,
we modeled the intention of the leading vehicle’s driver as a
hidden state. The intention can take one of the three values,
namely hesitating, normal, and aggressive. The action a in
our POMDP model is the acceleration of the ego vehicle. In
our experiment, the acceleration can take of the three values,
namely −0.6 m/s2, 0, and 0.6 m/s2. The state transition can
be represented as below,


v′ego
y′ego
v′lead
y′lead

 =


vego
yego
vlead
ylead

+


at

vegot+ 0.5at2

aleadt
vleadt+ 0.5aleadt

2

 ,
where the time step is t.

We assume that the behavior of the leading vehicle is
dictated by its driver’s intention, as described in Table I. For
example, if the intention of the driver in the leading vehicle
is hesitating, we assume that the probability of breaking
((alead = −0.5 m/s2)) is 0.3, of maintaining (alead = 0)
is 0.4, and of accelerating (alead = 0.5 m/s2) is 0.3.

We designed a reward function as shown in Figure 10.
The reward represents drivers’ driving style. In addition,
we designed a cost value of 10 for the situation when the

Fig. 10. The reward function for PACC.

Fig. 11. The cumulative reward with respect to the number of simulations.

distance between the ego vehicle and leading vehicle is
smaller than 2 m to ensure safety.

C. CC-POMCP

We employed a CC-POMCP solver for our experiment
[38]. A state is sampled from the root node’s belief and
then further used to sample a trajectory. More simulations
tend to yield a higher cumulative reward (see Figure 11)
and lower cumulative cost (see Figure 12). However, more
simulations required a longer computational time. Since we
aimed to output control commands at 1 Hz, we limited
the computational time to be less than 1 second for each
command output.

D. Results

We generate 30 car-following trajectories. In each trajec-
tory, the ego vehicle followed the leading vehicle to the
destination on a straight way. As discussed above, we set
a cost constraint to ensure a safe distance. At the same
time, the acceleration controlled by the CC-POMCP solver
tries to mimic the driver’s driving preference. Figure 14
shows the scatter plot of the speed and distance of all the
30 trajectories, and their histogram, respectively. It shows
that the trajectories are mostly scattered in the states with
relatively high rewards as shown in Figure 10.

As shown in Figure 13, the average trajectory of the 30
trajectories is relatively stable. The speed maintains between
28 m/s and 33 m/s, and the relative distance maintains
between 24 m and 48, which is the most preferred state in
Figure 10.



Fig. 12. The cumulative cost with respect to the number of simulations.

Fig. 13. The average trajectory of the ego vehicle from 30 runs of the
experiment.

IX. DISCUSSION AND CONCLUSION

This work proposed a method to learn personalized driving
styles for drivers with limited data. We first extracted car-
following events from a naturalistic driving dataset, and
divided them into a source set and a target set. We adopted
a model-free IRL to learn the driving styles through reward
function in the car-following scenarios for the events in the
source set. We further clustered these driving styles into
4 representative groups. However, the IRL requires enough
data and it is not always available for newly-involved drivers.
We used GMM for the driver style in the target set using up
to 10 events. Then we used KL-divergence to find the most
similar cluster in the source set. To validate our method,
we used more than 50 events in the target set to learn the
reward function as the ground truth to verify whether the
prediction-based KL-divergence is valid or not. We achieved
a prediction accuracy of 85.7% in this study. Furthermore,
we employed a CC-POMCP solver for the control of the ego
vehicle in a car-following experiment. By incorporating the
reward function learned from drivers, we are able to mimic
drivers’ driving styles and provide a personalized driving
experience.

There are a few directions for future work. First, we would
like to expand intervals of the states and incorporate more
features. We believe it will provide a more comprehensive
analysis of drivers’ preferences. Another important future
work is to adapt the personalized model to a more complex
driving situation.

Fig. 14. The scatter plot and histogram of the speed and distance of the
ego vehicle.

ACKNOWLEDGEMENT

This work was supported in part by National Science
Foundation grants CCF-1942836, CNS-1755784, and Toyota
Motor North America “Digital Twins” project. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the grant sponsors.

REFERENCES

[1] S. A. Bagloee, M. Tavana, M. Asadi, and T. Oliver, “Autonomous
vehicles: Challenges, opportunities, and future implications for trans-
portation policies,” Journal of modern transportation, vol. 24, no. 4,
pp. 284–303, 2016.

[2] A. Shaout, D. Colella, and S. Awad, “Advanced driver assistance
systems-past, present and future,” in 2011 Seventh International
Computer Engineering Conference (ICENCO’2011), IEEE, 2011,
pp. 72–82.

[3] Z. Wang, Y. Bian, S. E. Shladover, G. Wu, S. E. Li, and M. J. Barth,
“A survey on cooperative longitudinal motion control of multiple
connected and automated vehicles,” IEEE Intelligent Transportation
Systems Magazine, vol. 12, no. 1, pp. 4–24, 2020.

[4] O. Taubman-Ben-Ari, M. Mikulincer, and O. Gillath, “The multidi-
mensional driving style inventory—scale construct and validation,”
Accident Analysis & Prevention, vol. 36, no. 3, pp. 323–332, 2004.

[5] D. Yi, J. Su, C. Liu, M. Quddus, and W.-H. Chen, “A machine
learning based personalized system for driving state recognition,”
Transportation Research Part C: Emerging Technologies, vol. 105,
pp. 241–261, 2019.

[6] B. Gao, K. Cai, T. Qu, Y. Hu, and H. Chen, “Personalized adaptive
cruise control based on online driving style recognition technology
and model predictive control,” IEEE transactions on vehicular tech-
nology, vol. 69, no. 11, pp. 12 482–12 496, 2020.

[7] B. Zhu, S. Yan, J. Zhao, and W. Deng, “Personalized Lane-Change
Assistance System with Driver Behavior Identification,” IEEE Trans-
actions on Vehicular Technology, vol. 67, no. 11, pp. 10 293–10 306,
2018.

[8] A. P. Bolduc, L. Guo, and Y. Jia, “Multimodel approach to person-
alized autonomous adaptive cruise control,” IEEE Transactions on
Intelligent Vehicles, vol. 4, no. 2, pp. 321–330, 2019.

[9] D. Silver, J. A. Bagnell, and A. Stentz, “Learning autonomous
driving styles and maneuvers from expert demonstration,” in Ex-
perimental Robotics, Springer, 2013, pp. 371–386.

[10] S. Rosbach, V. James, S. Großjohann, S. Homoceanu, and S. Roth,
“Driving with style: Inverse reinforcement learning in general-
purpose planning for automated driving,” in 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2019,
pp. 2658–2665.

[11] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning, 2004, p. 1.



[12] L. Sun, W. Zhan, and M. Tomizuka, “Probabilistic prediction of
interactive driving behavior via hierarchical inverse reinforcement
learning,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), IEEE, 2018, pp. 2111–2117.

[13] X. Liao, Z. Wang, X. Zhao, Z. Zhao, K. Han, P. Tiwari, M. Barth,
and G. Wu, “Online prediction of lane change with a hierarchical
learning-based approach,” in Proceedings 2022 IEEE International
Conference on Robotics and Automation, IEEE, 2022.

[14] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles
for autonomous vehicles from demonstration,” Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2015-
June, no. June, pp. 2641–2646, 2015.

[15] M. Naumann, L. Sun, W. Zhan, and M. Tomizuka, “Analyzing the
suitability of cost functions for explaining and imitating human
driving behavior based on inverse reinforcement learning,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2020, pp. 5481–5487.

[16] S. Arora and P. Doshi, “A survey of inverse reinforcement learn-
ing: Challenges, methods and progress,” Artificial Intelligence,
p. 103 500, 2021.

[17] E. Uchibe, “Model-free deep inverse reinforcement learning by
logistic regression,” Neural Processing Letters, vol. 47, no. 3,
pp. 891–905, 2018.

[18] M. C. Vroman, “Maximum likelihood inverse reinforcement learn-
ing,” Ph.D. dissertation, Rutgers University-Graduate School-New
Brunswick, 2014.

[19] C. Lu, F. Hu, D. Cao, J. Gong, Y. Xing, and Z. Li, “Transfer learning
for driver model adaptation in lane-changing scenarios using man-
ifold alignment,” IEEE Transactions on Intelligent Transportation
Systems, 2019.

[20] Z. Li, C. Gong, C. Lu, J. Gong, J. Lu, Y. Xu, and F. Hu, “Transferable
driver behavior learning via distribution adaption in the lane change
scenario,” in 2019 IEEE Intelligent Vehicles Symposium (IV), IEEE,
2019, pp. 193–200.
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