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Abstract— To operate safely, an automated vehicle (AV) must
anticipate how the environment around it will evolve. For that
purpose, it is important to know which prediction models are
most appropriate for every situation. Currently, assessment of
prediction models is often performed over a set of trajectories
without distinction of the type of movement they capture, result-
ing in the inability to determine the suitability of each model for
different situations. In this work we illustrate how standardized
evaluation methods result in wrong conclusions regarding a
model’s predictive capabilities, preventing a clear assessment
of prediction models and potentially leading to dangerous on-
road situations. We argue that following evaluation practices
in safety assessment for AVs, assessment of prediction models
should be performed in a scenario-based fashion. To encourage
scenario-based assessment of prediction models and illustrate
the dangers of improper assessment, we categorize trajectories
of the Waymo Open Motion dataset according to the type of
movement they capture. Next, three different models are thor-
oughly evaluated for different trajectory types and prediction
horizons. Results show that common evaluation methods are
insufficient and the assessment should be performed depending
on the application in which the model will operate.

I. INTRODUCTION

Automated vehicles (AVs) have become popular in recent
years since they have the potential to increase road safety,
efficiency and comfort [1]–[3]. To operate safely, an AV must
accurately anticipate the future motion of other road users
(RUs) in its surroundings [4]. To build trajectory prediction
models, deep learning (DL) techniques are gaining attention
[5], since they can effectively learn complex interactions
between different RUs [6], [7] and the road infrastructure
[8], [9] from past observations to produce more accurate
predictions. Traditionally, training these models effectively
was a problematic task since the amount of data required was
not easily available. However, this issue has been alleviated
in recent years with the release of several large public
datasets [10]–[14]. A common practice to assess a model’s
predictive accuracy is to consider a fraction of the dataset
reserved for this purpose (commonly referred to as test
data), and to compare the model’s predictions with the real
trajectories. The output of prediction models may vary, hence
different metrics exist to quantify the disparity between the
real and predicted trajectories [4]. For example, some models
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Fig. 1. Example where a model that is accurate on average fails to predict
a pedestrian trajectory, leading to a dangerous situation.

produce a single prediction, while others produce a set of
feasible trajectories and associated confidence for each.

Despite the existence of various evaluation metrics for
prediction models, several challenges remain unaddressed in
current evaluation practices, such as the inability of these
metrics to capture a model’s robustness or generalization
capabilities [5]. Perhaps the most severe shortcoming is that
all trajectories are considered equal for error computation
despite capturing significantly different behaviors, which
can lead to dangerours situations due to misjudgement of
a model’s suitability for specific situations. For instance,
consider the situation shown in Fig. 1, where an AV (A)
predicts the future trajectory of surrounding RUs (B-K) in a
crowded urban scenario. Current evaluation practices would
deem this model suitable for RU trajectory prediction in
crowded urban scenarios, since its predictions are highly
accurate on average. It accurately predicts pedestrians on the
sidewalk (B-D), crossing at designated crossings (E,F), and
lane-following cyclists and vehicles (G-I). However, in this
example only a few of these RUs are relevant to the AV (I,
J). Additionally, failure cases like the pedestrians crossing at
non-designated crossings (J, K) can go unnoticed since all
trajectories are considered equally for error computation.

The importance of a thorough evaluation for different
types of trajectories has been recognized previously [15].
However, current efforts to improve evaluation of prediction
models focus mainly on interactions between pedestrians
(e.g. collision-avoidance [15]), and disregard interactions of
RUs with the road infrastructure (e.g. pedestrian stops at
a red traffic light). Additionally, the evaluation procedure
should provide a transparent assessment of a model’s suit-
ability for the intended application. For instance, for AVs, an
inaccurate prediction for a pedestrian walking in front of the
vehicle should be considered more important or severe than
one of a pedestrian that is walking behind the vehicle or far
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Fig. 2. Overview of a scenario-based assessment pipeline. The orange arrow indicates the standard approach to evaluate prediction models. Green blocks
concern prediction-specific activities. Blue blocks are currently lacking but required steps for thorough evaluation of prediction models. White blocks are
relevant for vehicle level assessment, but out of the scope of this work.

from the road. As a second example, consider the purpose of
vehicle fuel and energy optimization, where accurate long-
term predictions are required for optimal path planning. On
the contrary, for the development of emergency advanced
driver-assistance system features (e.g. emergency braking or
emergency steering) accurate short-term predictions become
more relevant. Thus, it is important to assess the suitability
of models with respect to the functional applications they
will be used in, in other words, their operational design
domain (ODD), and therein test for various scenarios and
their overall impact with vehicle level performance metrics,
not only prediction metrics (Fig. 2).

Current evaluation practices reporting averaged errors over
all predicted trajectories are beneficial for ease of comparison
between different models. If a model achieves a lower error
over all the trajectories in the dataset, one can confidently say
such a model is more accurate, at least on average. However,
it remains unclear under which circumstances this model is
preferred over others. To show that an improved assessment
of prediction models is needed, and working towards that
goal, the contribution of our work is as follows:

1) We illustrate the extent to which common evaluation
methods, which only report average errors over all tra-
jectories, result in misleading conclusions of a model’s
predictive capabilities, and argue that a scenario-based
assessment is a more suitable approach.

2) We facilitate scenario-based evaluation of prediction
models providing an open source framework1, which
will allow for a transparent evaluation of a model’s
capabilities for different situations, leading to an optimal
choice of prediction model depending on the applica-
tion.

The remainder of this article is structured as follows.
Section II introduces common trajectory prediction metrics
and datasets, and presents related work on scenario-based
evaluation. Section III introduces the prediction models
compared and outlines how the comparison will be done
using standard evaluation practices. Section IV presents an
analysis of the results, and Section V concludes the work
and highlights future improvements.

1Code available at https://github.com/manolotis/SBEP

II. PRELIMINARIES

This section summarizes the most commonly used perfor-
mance metrics, recent datasets used to develop AV applica-
tions, and related work on scenario-based evaluation.

A. Common Trajectory Prediction Metrics

A plethora of performance indicators exist to evaluate
trajectory prediction models [4], with average displacement
error (ADE) and final displacement error (FDE) being the
most popular [5]. ADE measures the difference between
the predicted and ground truth trajectories, averaged over
all prediction horizons. FDE measures this difference at
a specific horizon. To allow comparison of deterministic
models that produce a single trajectory with probabilistic
models that produce multiple feasible trajectories, variants
of these metrics are used which report the errors of the
trajectory that achieved the best accuracy. These variants are
commonly referred to as minADE and minFDE. Although
these metrics have several limitations [4] and new metrics
have been introduced recently to address some of these
limitations [10], we use them in this work since they remain
the most common performance indicators at the moment.

To formally define these metrics, let Ŝ denote a set of
trajectory predictions for a set of road users N at future
prediction horizons T. The minADE of the predictions for
prediction horizon t is given by

minADE(Ŝ, t) =
∑
n∈N

min
ŝ∈Ŝn

∑
t′∈T
t′≤t

‖ŝt − snt ‖2
|N| × |T|

, (1)

where Ŝn denotes the set of predictions for a road user n,
ŝt denotes the predicted position at time t, and snt denotes
the true position of road user n at time t. Additionally, |.|
denotes the size of a set and ‖.‖2 denotes the L2-norm of a
vector. Similarly, the minFDE at a given prediction horizon
t is defined as

minFDE(Ŝ, t) =
∑
n∈N

min
ŝ∈Ŝn

‖ŝt − snt ‖2
|N|

. (2)

B. Recent Datasets & Waymo’s Motion Prediction Challenge

Several large datasets are publicly available for develop-
ment and evaluation of prediction models, with some of the
most recent and often used ones as summarized in Table I.



For this research we chose the Waymo Open Motion Dataset
(WOMD) since it has the longest horizon, covers several
cities, and contains extra information such as traffic light
states.

With the release of WOMD, the Waymo motion prediction
challenge2 (WMPC) was introduced. In this challenge, the
task is to predict the trajectories of a subset of RUs for 8
seconds into the future, given their history for the past 1
second and corresponding map of the area. The trajectories
required to be predicted are selected to include interesting
behavior and a balance of RUs as specified in [10]. In this
work, we refer to those trajectories as trajectories to predict
(TTP), which make up about 7% of all trajectories present
in the dataset.

TABLE I
OVERVIEW OF DATASETS (ADAPTED FROM [10])

Lyft NuSc Argo. Inter. WOMD

Reference article [13] [12] [11] [14] [10]
Prediction horizon [s] 5 6 3 3 8
Number of segments 170k 1k 324k - 104k
Segment duration [s] 25 20 5 - 20
Sampling rate [Hz] 10 2 10 10 10

Cities 1 2 2 6 6
Map available X X X X X

Traffic light states X X

C. Scenario-based Assessment

The need for a more complete assessment of a model’s
predictive capabilities has been briefly recognized in previous
works. Some authors recognize that the largest prediction
errors occur in non-linear regions of the trajectory and
report the ADE for these regions separately [16], [17]. Some
other works report on average maximum errors along the
entire predicted trajectory to give an indication of worst-
case predictions [18], [19]. However, these practices have not
become the standard and lack the ability to capture relevant
situations from the point of view of an AV.

In the area of safety assessment for driver assistance sys-
tems and AVs, a scenario-based approach has been adopted.
This approach presents several benefits, such as the ability
to evaluate the coverage of the assessment, and the possi-
bility of a direct translation between test outcomes and an
assessment of the AV’s performance with respect to a specific
ODD, ultimately facilitating legal and public acceptance of
AVs [20].

In the area of trajectory prediction assessment, this
scenario-based approach has not been generally adopted
yet. TrajNet++ is a recent benchmark with the goal of
standardizing trajectory prediction applying similar con-
cepts [15]. However, the focus is on interacting RUs (mainly
pedestrians) and disregard other interactions with the road
infrastructure (e.g. a traffic light). Additionally, specification
of scenarios should consider relevant situations for the AV.
For example, failing to predict the trajectory of a pedestrian

2https://waymo.com/open/challenges/2021/motion-prediction/

that ends up on the road to avoid another pedestrian is
irrelevant to the AV if this interaction occurs behind or
far from the vehicle. However, if it occurs immediately
in front of the vehicle, it would be highly relevant. The
authors of [21] proposed a framework for scenario-based
testing of prediction models in a simulated environment. The
framework supports modeling and generation of scenarios
involving interactive RUs for a thorough evaluation of predic-
tion models. This approach overcomes several limitations of
current evaluation methods. However, it is important to also
evaluate how prediction models perform with real driving
data, and the impact on the entire AV architecture with
vehicle-level performance metrics.

III. METHODOLOGY & EXPERIMENTS

To perform a thorough analysis of the performance of a
prediction model for different types of trajectories, we first
need to systematically detect these trajectory types in existing
datasets. As a first step towards a scenario-based evaluation
framework for prediction models, we consider individual RU
trajectories present in WOMD and categorize them assigning
one or more of the tags summarized in Table II. These tags
are chosen to explore differences in performance between tra-
jectories of different shapes (T1 and T2), different behaviors
(T3-T5), different availability of observations (T6-T9), and
the same or different trajectories as specified in the WMPC
(T10 and T11). Future iterations of this work will include
more complex scenarios (e.g. pedestrian at non-designated
crossing ahead of the AV). Examples of trajectories from
some of the selected tags are shown in Fig. 3.

TABLE II
TAGS USED TO LABEL TRAJECTORIES

Tag Description

T1 Straight - RU closely follows a straight path
T2 Non-straight - RU deviates from a straight path
T3 Starting - RU is still during observation and moves in the future
T4 Stopping - RU moves during observation and stops in the future
T5 Still - RU is still during observation and in the future
T6 Late - RU is detected late (≤ 0.3 sec before prediction)
T7 Very Late - RU is detected very late (0.1 sec before prediction)
T8 Full - RU is detected during the entire observation period
T9 Reappearance - The same RU disappears during observation and

reappears in the future
T10 TTP - Trajectories To Predict - Required trajectories to predict

for Waymo’s Motion Prediction Challenge
T11 NTTP - Trajectories that were not required for Waymo’s Motion

Prediction Challenge

To illustrate the importance of a thorough assessment, the
performance of three different models is compared, first in a
manner that adheres to common current evaluation practices,
and then considering additional aspects and revealing obser-
vations that are crucial for understanding the limitations of
each of the methods but that could not be concluded from
the initial evaluation.

A. Evaluated Models
Three different prediction models are compared, in in-

creasing level of complexity. The inputs and outputs of each
model are summarized in Table III.

https://waymo.com/open/challenges/2021/motion-prediction/


Fig. 3. Examples of trajectories labeled with different tags. All RU trajectories start at the origin with heading pointing along the positive X axis.

a) A Constant Velocity (CV) model, which is often used as
a baseline [22]. CV assumes every RU maintains the same
velocity over all prediction horizons, considering only the
last observed RU state and disregarding the static (e.g. walls)
and dynamic (e.g. other RUs) environment.

b) An LSTM encoder-decoder neural network. Virtually
any state of the art DL method has some recurrent neural
network component to encode the past of RUs, with LSTM-
based architectures being a popular choice [23], [24]. The
implemented LSTM considers past observations of RUs and
does not exploit any knowledge about road topology or
surrounding RUs, meaning that its predictions will not avoid
overlap with other RUs or static obstacles similarly to CV.

c) MotionCNN [8], the 3rd place solution of the WMPC.
MotionCNN provides an elegant solution to exploit different
types of information (i.e. past of RUs, surrounding RUs,
and road infrastructure) with an architecture based on con-
volutional neural networks only, and it produces 6 feasible
trajectories. We downloaded a pre-trained model from an
open repository provided by the authors3.

TABLE III
OVERVIEW OF COMPARED MODELS AND THEIR INPUTS AND OUTPUTS

Model
Input Output

Past Other RUs Map Single Multiple
RU state Trajectory Trajectories

CV X
LSTM X X

MotionCNN X X X X

B. Evaluation Criteria

To assess the accuracy of the predictions at various
prediction horizons, the horizons on which the models are
evaluated start with the first future timestep (correspoding to
0.1 seconds into the future), and follow the same sampling
rate of 2Hz as in the WMPC. Thus, we compute minADE
and minFDE as defined in (1) and (2) for T = {0.1 + t

2 |
0 ≤ t < 16 ∧ t ∈ Z} seconds.

IV. RESULTS

An iterative approach is taken to report the performance
of the evaluated models. At each iteration, we analyze the

3https://github.com/kbrodt/waymo-motion-prediction-2021/releases

models’ performance in increasing detail and draw conclu-
sions regarding their capabilities. Subsequent, more detailed
iterations reveal different, possibly conflicting conclusions,
showing that current evaluation methods can be misleading.

A. Overall Evaluation

Table IV shows the performance of the models for trajec-
tories of vehicles (veh.), pedestrians (ped.) and cyclists (cyc.)
aggregated over all prediction horizons, for the required
trajectories in the WMPC. From these results we might
conclude:
C1) DL models are superior when compared to CV, espe-

cially for predicting vehicles’ trajectories, as can be seen
by the large difference in minADE and minFDE.

C2) MotionCNN is clearly the most suitable model to pre-
dict trajectories of vehicles and cyclists.

C3) LSTM is better suited for pedestrian trajectory predic-
tion than the other two models.
Many works report the performance of their method in

a similar fashion as presented in Table IV [8], [9], over
all prediction horizons and only for a subset of trajectories
deemed interesting, raising the question of whether or not
performance remains the same for other trajectories. Table V
summarizes the models’ accuracies after evaluation on all
trajectories not considered previously. From this table, addi-
tional conclusions can be made:

TABLE IV
MODEL PERFORMANCE OVER ALL PREDICTION HORIZONS (TTP)

Model
Metric

minADE minFDE
Veh. Ped. Cyc. Veh. Ped. Cyc.

CV 3.893 0.633 1.632 10.468 1.477 3.964
LSTM 2.025 0.545 1.481 5.681 1.295 3.618

MotionCNN 1.482 0.564 1.247 3.855 1.315 3.012
Red and blue indicate highest and lowest error per RU

TABLE V
MODEL PERFORMANCE OVER ALL PREDICTION HORIZONS (NTTP)

Model
Metric

minADE minFDE
Veh. Ped. Cyc. Veh. Ped. Cyc.

CV 0.640 0.565 1.070 1.834 1.284 2.816
LSTM 0.391 0.320 1.014 1.114 0.728 2.441

MotionCNN 0.806 0.637 1.178 2.297 1.575 3.291

https://github.com/kbrodt/waymo-motion-prediction-2021/releases


C4) A simple model such as CV outperforms complex DL
methods such as MotionCNN, which contradicts C1 and
C2. It seems that trajectories deemed uninteresting (NTTP)
originate from RUs moving at constant velocity.

C5) MotionCNN achieves the lowest accuracy for all three
types of RUs, contradicting C1 and C2. This suggests
MotionCNN suffers from overfitting, since it does not
generalize well to different trajectories, which is problem-
atic since in real-world applications one does not know
beforehand if a trajectory would be considered TTP or not.

C6) LSTM presents the highest accuracy for prediction of
pedestrian trajectories (C3 still holds), and additionally
vehicles and possibly cyclists (contradicting C2).

C7) The errors are significantly lower, so these trajectories
are less challenging to predict.

Following C7, the reader might wonder how it is possible
that MotionCNN performs the best for selected challenging
trajectories, yet it performs the worst for easier trajectories.
The reason might not be obvious, since we purposely left
out some practical details on how the models were trained to
emphasize the importance of reporting practical development
details of data-driven models. LSTM was trained using all
the available trajectories, and MotionCNN using only those
required to be predicted in the WMPC. As such, it is not
extraordinary to observe the differences in Tables IV and
V, as evaluation on only TTP or NTTP trajectories would
give an advantage to the model trained with those trajec-
tories. However, this reveals yet another pitfall of standard
metrics: they do not provide any indication of a model’s
performance for trajectories that are uncommon in the data.
This generalization issue, which is quite common in data-
driven models, has already been recognized in the context
of motion prediction [5], but it remains unaddressed. If we
were to further train MotionCNN also using the unseen
trajectories, its performance would improve for these, but it
remains unclear if its performance on the selected trajectories
would be negatively affected.

B. Evaluation Per Time Horizon

A model’s performance might vary significantly depending
on the prediction horizon considered, so it is important take
that into account, since different applications have different
accuracy requirements for different horizons. Evaluating ac-
curacy at different horizons is also common in trajectory pre-
diction literature [25], [26]. Additionally, further analyzing
other derived metrics such as standard deviation or maximum
prediction errors, which is not commonly done, might reveal
interesting insights. Table VI summarizes such an analysis
(only for trajectories labeled TTP), revealing new insights
that were not obvious from the previous superficial analysis
from Table IV:

C8) CV can match and even outperform complex DL meth-
ods, for very short prediction horizons, which contradicts
C1-C3 and C6, and further details C4.

C9) CV can no longer match the performance of the other
models for horizons longer than 1 second, which adds
detail to C4.

C10) LSTM presents the highest errors for very short pre-
diction horizons, even for pedestrians, which contradicts
C3 and C6.

C11) LSTM predictions of pedestrian trajectories are the
closest to the real trajectory overall, but not necessarily for
long prediction horizons (as seen by the lowest minADE,
but not minFDE at time 7.6 seconds).

C12) MotionCNN is best suited for trajectory prediction
of vehicles and cyclists overall, but its worst predictions
can be less accurate than those of LSTM, even when
considering the best out of the 6 predicted trajectories.

Several additional observations could be made from Ta-
ble VI, which would either contradict or confirm the initial
conclusions with a finer level of detail. Thus, it is important
to always keep the intended application in mind and analyze
the aspects that are most relevant for this purpose.

TABLE VI
MODEL PERFORMANCE AT DIFFERENT PREDICTION HORIZONS (ONLY TRAJECTORIES LABELED TTP)

Time [s] 0.1 1.1 3.1 5.1 7.6
std max std max std max std max std max

Model RU Metric [m]

CV

Veh. minADE 0.034 0.084 6.90 0.393 0.717 72.889 2.187 3.021 205.598 5.26 6.805 336.425 9.878 12.312 465.797
minFDE 0.034 0.084 6.90 0.842 0.971 72.889 5.663 4.303 205.598 14.142 9.796 336.425 27.323 17.929 465.797

Ped. minADE 0.023 0.025 0.825 0.124 0.163 6.123 0.434 0.573 17.715 0.847 1.114 29.263 1.415 1.858 43.429
minFDE 0.023 0.025 0.825 0.235 0.211 6.123 0.969 0.85 17.715 1.974 1.703 29.263 3.473 2.929 43.429

Cyc. minADE 0.054 0.048 0.449 0.285 0.333 3.567 1.061 1.59 53.026 2.177 3.017 58.425 3.798 5.186 67.002
minFDE 0.054 0.048 0.449 0.539 0.41 3.567 2.431 2.278 51.616 5.271 4.623 58.425 9.659 8.238 67.002

LSTM

Veh. minADE 0.051 0.109 9.492 0.223 0.425 66.493 1.076 1.617 68.542 2.655 3.952 68.542 5.313 7.957 119.801
minFDE 0.051 0.109 9.492 0.435 0.564 65.049 2.762 2.481 61.582 7.368 6.487 63.179 15.828 13.615 119.801

Ped. minADE 0.059 0.056 2.79 0.114 0.127 2.852 0.36 0.514 8.716 0.72 1.04 14.252 1.236 1.761 25.532
minFDE 0.059 0.056 2.79 0.183 0.173 2.541 0.808 0.812 8.716 1.719 1.656 14.252 3.124 2.859 25.532

Cyc. minADE 0.216 0.184 2.558 0.30 0.272 2.925 0.923 1.496 54.011 1.936 2.887 62.589 3.462 5.004 72.982
minFDE 0.216 0.184 2.558 0.428 0.347 2.925 2.109 2.23 54.011 4.793 4.555 62.589 9.029 8.047 72.982

MotionCNN

Veh. minADE 0.038 0.058 4.487 0.219 0.432 66.633 0.888 1.404 68.55 1.973 3.138 94.614 3.64 6.001 150.044
minFDE 0.038 0.058 4.487 0.419 0.584 65.263 2.141 2.198 63.885 5.089 5.358 94.614 10.08 11.026 150.044

Ped. minADE 0.022 0.019 0.477 0.108 0.134 1.723 0.384 0.523 7.25 0.758 1.049 16.647 1.261 1.745 35.719
minFDE 0.022 0.019 0.477 0.202 0.173 1.723 0.868 0.801 7.25 1.777 1.654 16.647 3.05 2.822 35.719

Cyc. minADE 0.047 0.039 0.321 0.215 0.257 2.803 0.814 1.429 53.809 1.67 2.676 62.243 2.887 4.578 72.027
minFDE 0.047 0.039 0.321 0.404 0.326 2.803 1.874 2.12 53.809 4.062 4.365 62.243 7.213 7.775 72.027



C. Evaluation Per Type of Trajectory

Next we analyze model performance for different types of
trajectories according to the tags described earlier. Table VII
shows the results and new observations can be made:
C13) Some behavior is missing in the trajectories used for

evaluation. There are not pedestrian or cyclist trajectories
where the RU stands still during the observation period
and either remains still or moves in the next 8 seconds4

(denoted by “-” in Table VII). Additionally, there are no
trajectories where the RU disappears shortly before making
the prediction. Thus, if an AV is presented with these
situations, it will not be possible to determine which model
is most suitable.

C14) CV is most suitable for predictions where the RU
remains still (trivial). MotionCNN performs the worst by
far in these cases. If an AV is presented with this situation,
it might use a model that is not the most appropriate in
this case despite being the most accurate overall.

C15) CV is most suitable for predicting starting behavior.
This conclusion could be misleading, as CV naively pre-
dicts the RU remains still, and it does not predict starting
behavior. If the RU remains still for most of the future
8 seconds, the overall error will be low, but it does not
capture CV’s ability to predict when movement will start.

C16) LSTM is particularly well suited for prediction of all
types of pedestrian trajectories, which supports some of
our previous conclusions (i.e. C3, C6 and partially C11),
but contradicts some others (i.e. C8, C10 and C14).

C17) MotionCNN is well suited for prediction of trajectories
labeled TTP, straight trajectories of vehicles and cyclists,
and non-straight trajectories of vehicles. However, for other
types of trajectories, such as late detections or trajectories
labeled NTTP, it can even be outperformed by CV.

4An RU was considered still if its speed did not exceed 0.01 m/s.

After analyzing model performance considering different
aspects like various prediction horizons and trajectory types,
it is still not possible to conclude on the potential suit-
ability of a data-driven model, since their performance is
heavily affected by the data used to train them. Recall that
MotionCNN was trained to predict only those trajectories
labeled TTP, while LSTM was trained using all trajectories.
Figure 4 shows the percentage of trajectories labeled with
each tag, both for the entire dataset and only considering
trajectories labeled TTP, which partly explains the difference
in performance between LSTM and MotionCNN:
C18) LSTM outperforms MotionCNN for most trajectory

types because it has been trained with more instances of
each type. MotionCNN was trained on trajectories labeled
TTP, which are only about 7% of available data.

C19) Within the sets of trajectories used to train each model,
the relative frequency of some behaviors is very different.
For instance, MotionCNN is unable to predict starting and
still trajectories accurately because this behavior is signifi-
cantly underrepresented in TTP trajectories (approximately
0.08 and 0.1%), as opposed to their frequency in the entire
dataset used to train LSTM (18 and 53%).
Even if a model’s performance can be better explained

by an in-depth analysis of the training data, it does not
mean it is always necessary to do so. If a model will
only be used in specific situations (e.g. late detections),
then it must be accurate in these situations no matter how
innacurate it might be in others. Similarly, if a model’s
purpose is to increase safety or fuel efficiency, then vehicle-
level performance metrics after integrating this prediction
model in the vehicle should be the main assessment criteria,
since a marginal improvement in predictive accuracy might
yield little to no improvement for the intended application.
Thus, evaluation of these models should be done according
to the application in which they operate.

TABLE VII
MODEL PERFORMANCE FOR DIFFERENT TYPES OF TRAJECTORIES

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
Model RU Metric [m] Straight NonStraight Starting Stopping Still Late VeryLate Full Reappear TTP NTTP

CV

Veh. minADE 2.872 2.747 0.821 1.442 0 1.387 1.316 1.089 - 3.893 0.64
minFDE 8.422 7.285 2.847 3.73 0 4.395 4.175 3.15 - 10.468 1.834

Ped. minADE 0.466 0.974 - 0.43 - 1.092 1.102 0.486 - 0.633 0.565
minFDE 1.127 2.226 - 0.908 - 2.721 2.752 1.152 - 1.477 1.284

Cyc. minADE 1.445 2.004 - 1.071 - 1.91 2.037 1.381 - 1.632 1.07
minFDE 3.67 5.208 - 2.357 - 4.976 5.38 3.54 - 3.964 2.816

LSTM

Veh. minADE 1.549 1.693 0.828 0.581 0.03 1.364 1.449 0.574 - 2.025 0.391
minFDE 4.679 4.748 2.853 1.608 0.027 3.692 3.642 1.739 - 5.681 1.114

Ped. minADE 0.401 0.597 - 0.182 - 0.715 0.843 0.344 - 0.545 0.32
minFDE 0.973 1.495 - 0.38 - 1.619 1.835 0.845 - 1.295 0.728

Cyc. minADE 1.327 1.93 - 0.967 - 2.308 3.143 1.234 - 1.481 1.014
minFDE 3.304 5.027 - 2.142 - 4.39 5.129 3.203 - 3.618 2.441

MotionCNN

Veh. minADE 1.342 1.297 1.058 0.861 0.629 1.868 2.745 0.836 - 1.482 0.806
minFDE 3.633 3.331 3.109 2.40 1.861 4.483 6.232 2.429 - 3.855 2.297

Ped. minADE 0.478 0.981 - 0.764 - 1.748 2.372 0.506 - 0.564 0.637
minFDE 1.126 2.425 - 1.833 - 4.285 5.708 1.277 - 1.315 1.575

Cyc. minADE 1.19 1.994 - 1.261 - 2.408 2.399 1.072 - 1.247 1.178
minFDE 2.854 5.222 - 3.185 - 5.967 6.104 2.782 - 3.012 3.291



Fig. 4. Percentage of trajectories with a specific tag for the entire dataset and the set of trajectories labeled TTP.

V. CONCLUSION AND FUTURE WORK

To operate safely, an AV must anticipate the future mo-
tion of other RUs in its surroundings through trajectory
prediction. Assessment of prediction models is commonly
performed over a set of trajectories without distinction over
the type of movement captured by each trajectory, which
does not provide a clear overview of the suitability of each
model for different situations. Furthermore, the impact of a
marginal increase in predictive accuracy at the vehicle level
remains unclear, as other components of an AV are normally
not considered for assessment of prediction models.

In this work, we have illustrated the extent to which
standard evaluation practices result in misleading conclusions
of a model’s predictive capabilities. Additionally, we have
made publicly available a scenario-based framework for
evaluation of prediction models, which allows classification
of individual trajectories according to the type of movement
they capture and facilitates a clear assessment of a model’s
suitability to predict each trajectory type.

Future work will extend the framework proposed in [20]
to model and capture relevant scenarios for prediction algo-
rithms, facilitating assessment for their intended application.
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