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Abstract— Accurate and robust object detection is critical
for autonomous driving. Image-based detectors face difficulties
caused by low visibility in adverse weather conditions. Thus,
radar-camera fusion is of particular interest but presents
challenges in optimally fusing heterogeneous data sources. To
approach this issue, we propose two new radar preprocessing
techniques to better align radar and camera data. In addition,
we introduce a Multi-Task Cross-Modality Attention-Fusion
Network (MCAF-Net) for object detection, which includes two
new fusion blocks. These allow for exploiting information
from the feature maps more comprehensively. The proposed
algorithm jointly detects objects and segments free space, which
guides the model to focus on the more relevant part of the scene,
namely, the occupied space. Our approach outperforms current
state-of-the-art radar-camera fusion-based object detectors in
the nuScenes dataset and achieves more robust results in
adverse weather conditions and nighttime scenarios.

I. INTRODUCTION

Autonomous driving is a rapidly growing field that has
the potential to revolutionize transportation. One of the key
components of autonomous driving is object detection, which
involves identifying and localizing objects in a scene [1].
While vision sensors provide rich texture information about
the environment, they are vulnerable to adverse weather
conditions, affecting their image quality. On the other hand,
millimeter Wave (mmWave) radar sensors are robust under
all weather conditions and excel in estimating the distance
and velocity of objects but provide less detailed information
about the targets compared to cameras. This leads to a
growing field in the research field of radar-camera fusion
[2].

The primary drawback of mmWave radar sensors utilized
in public datasets, such as nuScenes [3], is the low elevation
resolution, leading to the absence of height information in the
radar points [4]. Furthermore, compared to lidar point clouds,
radar point clouds are significantly sparser [3]. However,
they carry several properties of the detected object, such
as distance information, relative velocity, and Radar Cross
Section (RCS). Before fusing the radar data with visual
images, preprocessing is required. The most common method
for point cloud preprocessing involves projecting the points
onto the perpendicular image plane [5], [6], with various
techniques employed to deal with sparsity. For instance, [7],
[8] generate small circles around each radar detection after
the projection, while [4] utilizes height extension in a fixed
value to address the lack of height information. The authors
in [9], [10] further spread the created vertical line in the
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azimuth direction according to the angle accuracy of the
radar sensor.

The performance of the network is directly impacted
by the stage where fusion occurs. Integrating radar and
image information at the input level requires high-quality
data sources [2]. Therefore, many algorithms opt to fuse
information at the feature level instead [7], [8]. Some ap-
proaches attempt to fuse feature maps at various stages
to improve performance [9], [4]. Furthermore, while multi-
task learning has been extensively employed in lidar-camera
fusion algorithms, such as in [11], [12], it has yet to be
thoroughly explored in the context of merging data from
camera and radar.

The preprocessing techniques mentioned above aim to
increase the density of the radar point cloud, such as fixed-
value height extension and circular mapping on the image
plane. Nonetheless, these methods may also introduce erro-
neous information. Usually, the fusion of radar and image
features using simple element-wise operations like addition,
multiplication, or concatenation may not be optimal due to
the inherent heterogeneity between the two modalities. In
this study, we propose an Adaptive Height (AH) extension
method that utilizes distance and RCS information of radar
points to improve input radar data quality. We also perform
azimuth pixel extension resulting in an Azimuth Uncertainty
Extension (AUE). This helps to generate more reasonable
radar inputs and gain a 2% higher mean Average Precision
(mAP) compared with the preprocessing in [4]. We also
introduce two novel fusion blocks: the Self-Weighted Fusion
Block (SWFB) and the Similarity-based Attention Fusion
Block (SAFB), which allow for reweighting features from
the camera and radar branches before fusion. We compare
the effectiveness of our proposed fusion methods against
commonly utilized fusion techniques such as concatenation,
element-wise addition, and multiplication. Moreover, we also
compare our approaches with recently popular techniques
such as cross-attention [13] and Convolutional Block Atten-
tion Module (CBAM) [14]. Our fusion blocks exhibit bet-
ter performance, achieving approximately 1% higher mAP.
Furthermore, we put forth a multi-sensor, multi-task cross-
modality fusion strategy designed to carry out both 2D
object detection and free space segmentation tasks. This
multi-task learning framework primarily aids in augmenting
the radar latent space with additional information derived
from the segmentation mask. The employment of multi-task
learning results in a 1.5% enhancement in mAP compared
to conducting the detection task in isolation. We evaluate
our approaches on the nuScenes dataset. The results show
that our approach outperforms state-of-the-art radar-camera
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fusion algorithms with approximately 3% higher mAP.

II. RELATED WORK

This section provides an overview of the research on object
detection for autonomous vehicles, categorized into single-
modality and radar-camera fusion-based techniques.

A. Single Modality Object Detection

Early object detection solutions only focus on camera
images and are typically categorized into two classes: one-
stage and two-stage detectors. The two-stage detectors, such
as Faster-RCNN [15] and Mask-RCNN [16], operate in two
steps. In the first stage, they generate Region of Interest
(ROI)s using a Region Proposal Network (RPN) which
pinpoints the most crucial parts of the image. The ROIs
are then processed by a Region-based Convolutional Neural
Network (R-CNN) to refine the bounding boxes and perform
object classification. Although two-stage detectors usually
deliver better results, they often suffer from slow convergence
and high computational demands. In contrast, one-stage
detectors such as YOLO [17], SSD [18] and RetinaNet [19]
are designed to be faster since they replace the RPN with
pre-defined anchor boxes. This makes them a better choice
for real-time object detection tasks. In this paper, we propose
an architecture loosely inspired by the RetinaNet.

B. Radar-Camera Fusion Object Detection

Most of the radar-camera fusion methods first preprocess
the radar data to align with the camera image. Then the
suitable fusion methods and stages are chosen properly to
merge feature maps from different sensors and complete the
object detection task.

a) Radar Data Preprocessing: Point cloud-based radar
data is usually projected onto the 2-D image plane by the
camera intrinsic and both radar and camera extrinsic. Radar
information of each point, such as velocity and RCS value,
are stored in different input channels. John et al. [5] use
the projected pixel position for each radar detection directly,
resulting in a highly sparse radar channel. To solve this
problem, the authors in [7], [8] project each radar detection
as a solid circle and feed the information carried by the radar
detection into extra radar channels. Differently, Nobis et al.
[4] argue that projecting them as vertical lines is a better way
to deal with the lack of height information. A fixed extension
height value is used for all the radar detections. [9], [10]
follow the Fixed Height (FH) extension strategy and further
extend the vertical line in the horizontal direction. Given
the measured azimuth angle with its accuracy, each vertical
line can be then extended horizontally during the projection.
This results in a variable-width extension, where the width
depends on the angle accuracy and the distance. Meanwhile,
the probability density curve is assumed to follow a Gaussian
distribution, which is utilized to refine the extended pixels.

While the fixed height extension approach effectively
helps to relocate the radar points, it may also mislead and
bias the projection algorithm due to the neglect of other
information. Specifically, as shown in Fig. 1a, most of the

extended vertical lines are misaligned with the height of
the corresponding objects. Additionally, this variable-width
azimuth extension helps to solve the sparsity problem but
leads to a higher computational requirement and dramatically
increases the training time. Furthermore, azimuth extension
only on RCS channel results in the lack of other features in
the extended pixels, which further confuses the algorithm.

b) Fusion Methods and Stages: The prevailing methods
for input and feature-level fusion in existing literature mostly
rely on concatenating [9], [5], [4] the two feature maps
or using element-wise addition [7] or multiplication [8] to
merge them. However, these approaches overlook the signif-
icance of each pixel and the interdependence between the
feature maps of different sensors. Chang et al.[8] introduce
a spatial attention fusion block to solve this drawback. The
radar feature map is only used to generate a weighting matrix
utilizing convolutional layers with different kernel sizes.
After applying this weighting matrix to the image feature
map, no more radar information is involved in further steps.
Cross-attention [13] is another way to exchange and fuse
information between two features, however, it dramatically
increases the parameter size of the model.

It is well known that different fusion stages heavily
influence the network performance. Most of the works [7],
[8], [5] fuse the features only once, so choosing the right
fusion level is problematic. The work in [4] aims to solve this
problem by concatenating feature maps at different levels.
This enables the network to adjust its weight to the fusion
points during training and makes the algorithm more robust.

III. APPROACH

In this section, we highlight the innovations of the pro-
posed work. We first introduce our adaptive radar data
preprocessing method. Then, we describe the architecture
of our multi-task cross-modality fusion model. At last, we
illustrate the two new fusion blocks in more detail.

A. Radar Data Preprocessing

This section introduces the radar data preprocessing ap-
proaches that help to align radar points with image pixels. On
the one hand, radars have the ability to accurately measure
the distance and velocity of moving targets, even under
adverse weather conditions. On the other hand, they struggle
with poor elevation resolution, resulting in radar point clouds
only containing 2D positional information. Therefore, in this
work, we propose two novel approaches to preprocess the
radar data and generate denser radar channels.

a) Height Extension: As introduced in Sec. II-B.0.a,
the FH extension has certain drawbacks, while the height
should be estimated by other related factors. Generally, the
farther the object is located, the less accurate the detection is
since there are more obstacles and a decrease in signal power.
Additionally, RCS of the object has positive correlation with
its size. Therefore, this study proposes a novel AH approach
to extend the height based on the distance and the RCS value
of the radar detection. For the nth radar point pn ∈ P in a
dataset, its position is represented as (x, y) with RCS value



(a) Preprocessing of radar points with fixed height value [4].

(b) Distance- and RCS-based height extension.

Fig. 1: Visualization of Height Extension Comparison.

rn where rn ∈ R. The Euclidean distance, dn(xn, yn) ∈ D,
is calculated as

√
x2
n + y2n.

Under the aforementioned conditions, we propose a new
height estimation approach defined as follows:

Hn = max(Hmin, min
dn∈D,rn∈R

(α− dn
µd

, β +
rn
µr

)) (1)

where µd and µr are the mean distance and RCS values
over all radar points, respectively. In addition, parameters α
and β define two initial height estimations, which should be
reduced or increased along with larger distance and RCS,
respectively. Then we select the larger one and clamp it
with Hmin for the final estimation. Hmin, α, β need to be
determined according to the height range of the objects in
the dataset. Further details are explained in Sec. IV-A.

A visualization of the comparison between the FH and the
AH extension is shown in Fig. 1. As illustrated in Fig. 1b,
the radar projections are better aligned with the objects after
our AH extension.

b) Azimuth Uncertainty: In this work, we extend the
projection to a fixed number N of pixels on all radar
channels, including distance, RCS and velocities, namely
Azimuth Extension (AE). This method can significantly
reduce computational complexity than variable-width exten-
sion without losing the key radar features in each pixel. For
simplicity, we assume that the angle measurement follows
a Gaussian distribution with the measured angle θazi of
each radar point as mean and the azimuth angle accuracy
θacc as standard deviation. It is then mapped onto the 2-
D image plane and utilized to redistribute the RCS value
in extended pixels. This method is represented as Azimuth

Uncertainty Extension (AUE) that adapts the pixels to the
angle estimation uncertainty.

A visualization of the proposed preprocessing method is
shown in Fig. 2a. It displays the visual image combined with
the projected radar data, specifically the RCS channel. Fig.
2b is a zoomed-in version of the red rectangle, demonstrating
that the RCS undergoes a change when spreading a single
pixel width to multiple pixels.

(a) Camera image with the projected radar detections.

0 5 10 15 20 25 30

Radar Cross Section (dB)

(b) The closer look at the region highlighted in (a)

Fig. 2: The visualization shows a combination of a camera image
and the projection of the RCS value of the radar data. (b) is a closer
look at the region highlighted by the red bounding box in (a). The
projected radar data is depicted in the form of rectangles. The RCS
values inside a rectangle follow a Gaussian distribution.

The effectiveness of the proposed preprocessing methods
is further analyzed in Sec. IV-B.

B. Model Architecture

Our MCAF-Net accomplishes two tasks, namely object
detection and free space segmentation.

For object detection, we utilize Retinanet, an one-stage
detector, along with a pretrained Convolutional Neural Net-
work (CNN) backbone. In contrast, the radar feature extrac-
tion branch employs the CNN backbone without pretrained
weights. We acquire image feature maps (C1-C5) and radar
feature maps (R1-R5) by gradually increasing the number
of maps. Additionally, we apply an extra MaxPooling with
strides of 2 to R5 and R6 to adjust the shape of the radar
feature maps, resulting in R6 and R7, respectively. The
SWFB processes the feature maps from the same level, such



as C3 and R3, before they are fed into the Feature Pyramid
Network (FPN). Finally, the classification and box regression
subnets utilize the fused feature maps to generate a set of
bounding boxes along with their corresponding classification
results and 2D box coordinates.

The segmentation branch aims to enhance the quality of
image and radar features, which guides the feature to focus
more on the space with objects. To this end, we create a two-
channel segmentation mask for each input image based on
the bounding box annotations. The first channel has a value
of 1 for free space and 0 for occupied space, while the free
spaces in the second channel have a value of 0. This mask
is created to locate object positions. The SAFB is applied to
R5 and C5, and the resulting features are passed through a
decoder network consisting of blocks that employ a 3 × 3
transpose convolution and a 3 × 3 convolutional layer. The
output has two channels and the same shape as the input
image.

Fig. 3 illustrates the network architecture, where the
features are merged at various levels and before multiple
branches. In the object detection task, the image and radar
feature maps are fused at different stages of the FPN. For the
segmentation task, two features are merged using the SAFB,
and the result is fed as input to the segmentation subnet. This
structure results in a multi-task multi-level cross-modality
fusion.

The network is trained end-to-end with three losses: the
classification loss Lcls, the regression loss Lreg , and the
segmentation loss Lseg . We compute the Lcls with the
focal loss [19] to address the imbalance between foreground
and background classes. Lreg is calculated by a smooth
l1 loss [20] on each dimension of the 2D bounding boxes
(x1, y1, x2, y2) and summed over positive samples for the
regression head. For the segmentation branch, we use binary
cross-entropy to compute Lseg between the predicted masks
and the ground truth masks.

C. Fusion Block

As mentioned in Sec. III-B, we introduce two new fusion
blocks: the SWFB and SAFB, which help to address the issue
of immature fusion operations discussed in Sec. II-B.0.b.
These blocks allow for better correlation between the features
of different sensors. Fig. 3 provides a visual representation
of the blocks, and we will discuss them in more detail.

a) Self-Weighted Fusion Block: Due to the intrinsic
property of the radar sensor, there are no radar detections
in most areas. Additionally, the camera image also contains
redundant information. Thus, it is beneficial to redistribute
the importance of each pixel before fusion. Let Fimg and
Frad be two feature maps with the same shape W ×H×C.
We introduce two trainable weighting maps, namely spatial
weighting map P s and channel weighting map P c, for each
feature map. These weighting maps assist in redistributing
the importance of each pixel and channel, respectively.
The result coming from this proposed fusion block can be

expressed as:

Ffuse(i, j, k) = Fimg(i, j, k)× P s
img(i, j)× P c

img(k)

+Frad(i, j, k)× P s
rad(i, j)× P c

rad(k)
(2)

where i, j, and k represent the pixel location and channel
index, respectively.

b) Similarity-based Attention Fusion Block: As illus-
trated in Fig. 2, some of the radar detections are unrelated to
any of the objects and may interfere with object detection.
To address this issue, we introduce the segmentation branch
that helps to filter the radar information and relocates the
object position for features of both sensors. The radar feature
map Frad is directly taken from the radar branch and serves
as the input to the segmentation branch. Meanwhile, we
propose three modules to refine the image feature map
Fimg , as shown in Fig. 3. The Enhanced Channel and
Spatial Attention Modules are inspired by CBAM [14], while
we multiply the output of each module with an additional
trainable weighting map, similar to SWFB. This results in a
channel attention weight Wc and a spatial attention weight
Ws. These modules help to find the inter-relationship of the
image feature map both channel and spatial-wise. Further-
more, the Similarity Weight Module generates a weighting
map Wsim by calculating the similarity between Frad and
Fimg , which indicates the pixel relationships between the
two feature maps. These three weights are multiplied with
Fimg to scale the importance of each pixel, resulting in a
modified image feature map F ′

img . Then, the fused feature
map Ffuse is computed according to the Eq. 3:

F ′
img(i, j, k) =Fimg(i, j, k)×Wsim(i, j)

×Ws(i, j)×Wc(k)

Ffuse(i, j, k) = Frad(i, j, k) + F ′
img(i, j, k)

(3)

By employing the SAFB, we adjust the significance of
individual pixels and channels in the image feature map
based on its own characteristics and the interplay with the
radar feature map. This yields a more comprehensive feature
map, which aids in pinpointing the location of the objects
and enhancing the radar features.

IV. EXPERIMENTS

In this section, we first explain the implementation details.
Afterwards, we analyze the effectiveness of our radar pre-
processing method. Then, we present the quantitative results
with ablation studies of our proposed approaches. At last,
we show the qualitative results compared with the CRF-Net.

A. Dataset and Implementation Details

We use the nuScenes dataset, a state-of-the-art public
dataset for autonomous driving, to train and evaluate our
proposed network. It includes data from multiple sensors,
including five radars, one lidar, and six cameras, and contains
3D bounding box annotations for 27 classes. As in [4], we
obtain 2D bounding boxes by projecting the 3D annotations
onto the image plane and using the front camera and radar
data. The dataset is split into 3:1:1 ratios for training, vali-
dation, and testing, including 20480, 6839, and 6830 frames,
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Fig. 3: Model Architecture.

respectively. To ensure robustness to different weather con-
ditions, we include a sufficient number of nightly and rainy
scenes in the validation and test set. For most experiments,
we group the 23 original object classes into seven high-
level classes: car, truck, human, bicycle, motorcycle, bus,
and trailer. We also conduct additional experiments using
five classes, excluding bus and trailer, to compare with [10].
In this study, we adopt the VGG16 [21] architecture as the
backbone in the experiments to align with the architectures
utilized in previous studies [4], [9], [10].

We resize the images in the nuScenes dataset to 360×640
pixels to reduce the computational requirements. Afterwards,
pixel values are further scaled to the interval [−127.5, 127.5].
For each image frame, a corresponding input of the radar
branch is a four-channel image (d, r, vx, vy), where d indi-
cates the distance, r represents the RCS value, and vx and
vy denote the velocities along different axes. Pixels without
corresponding radar points are filled with zero values in all
radar channels. In overlapping entries, we retain the values
of the radar points closest to the radar sensor. In addition,
the parameters mentioned in Sec. III-A are chosen according
to the nuScenes dataset. The set of distance values D, and
absolute RCS values R, are defined as follows: D = {di |
di ∈ R, di ∈ (0, 260)}, R = {ri | ri ∈ R, ri ∈ (−5, 53)},
respectively. The height of the objects being detected is in

the range of one to five meters. Under these constraints, we
choose the parameters for AH extension as: Hmin = 1,
α = 6 and β = 0.5. For the azimuth extension, the ARS
408-21 radar sensor used in the nuScenes dataset has an
azimuth angle accuracy of θa = ±0.3◦ which is used as
the variance of the Gaussian distribution. In addition, we
spread the vertical line to three pixels in both left and right
directions.

We implement the networks using TensorFlow and train
them on Nvidia® Tesla® P40 GPUs. The performance of
object detection is evaluated based on the mAP metric, and
we incorporate weights into the mAP calculation to address
the class imbalance, using an Intersection-over-Union (IoU)
threshold of 0.5. We implement training using the Adam
optimizer over 40 epochs with a batch size of 12 for networks
based on VGG. The learning rate set initially to 2e−4,
is reduced by a factor of 0.75 whenever the optimization
process hits a plateau.

B. Radar Preprocessing Analysis

To assess the effectiveness of our proposed radar prepro-
cessing methods, we conduct two experiments to compare
the proposed methods with FH.

Firstly, on the 2D image plane, we compute the ratio of
projected radar points that fall outside the 2D ground truth



TABLE I: Quantitative Evaluation

Car Truck Human Bicycle Motorcycle Bus Trailer mAP Night mAP Rain mAP

Seven
Classes

RetinaNet [19] 53.33% 25.00% 40.25% 7.14% 19.36% 17.19% 5.95% 43.58% 45.80% 41.03%
CRF-Net [4] 53.81% 19.09% 41.28% 14.28% 25.16% 12.28% 14.80% 43.83% 46.12% 41.04%
REF-Net [9] – – – – – – – 44.76% 47.64% 41.23%
MCAF-Net 55.25% 29.11% 44.49% 18.10% 31.44% 42.94% 24.74% 47.70% 49.77% 44.91%

Five
Classes

RetinaNet [19] 53.64% 24.28% 41.19% 9.85% 9.07% – – 45.63% 44.55% 43.82%
CRF-Net [4] 52.57% 28.96% 38.48% 9.83% 13.21% – – 44.75% 42.20% 42.92%
UwRCS+FPP† [10] 55.94% 35.60% 37.77% 25.74% 28.82% – – 46.73% 50.53% –
MCAF-Net 54.73% 31.99% 45.54% 18.91% 33.00% – – 48.82% 49.62% 46.75%

† These results come from [10] based on a different data splitting (Mainly 6000 more training frames), which leads to the mAP metric
being less comparable.

bounding box. This ratio is quantified as a mean squared
error (MSE) using the following formula:

MSEk =
(nk

t − nk
in)

2

(nk
t )

2
(4)

For each frame k, after the radar points are projected onto
the image plane, nk

t pixels carry radar information. Among
these, nk

in pixels are located within the 2D ground truth
bounding boxes. In Fig. 4, we visualize the distribution of
MSE across the complete dataset for different preprocessing
methodologies. Compared with FH, it’s evident that the
use of AH brings about a reduction in the average MSE.
Moreover, with the use of AH, 25% of the dataset achieves
an MSE of less than 0.3, a noteworthy decrease from the
lower quartile mark of 0.4 attained by the FH extension. By
using AUE, we are able to augment the density of the radar
projection channels without leading to an escalation in the
MSE in comparison to AH.
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Fig. 4: Projection Error Measurement on 2D plane.
Next, we assess the error related to height within the 3D

domain, taking the height of the 3D bounding box as the
ground truth. We compute the height error δhk

i of the ith

radar point in the kth frame as follows:

δhk
i =

{
|Hk

m − hk
i | if i ∈ Bk

m

hk
i if i /∈ Bk (5)

If the radar point is inside mth bounding box Bk
m, the height

error is defined as the absolute difference between the height
of the bounding box Hk

m and the measured extended height
hk
i . Otherwise, we directly take the estimated height as the

error since the radar point does not belong to any objects.
The final height error ∆Hk, is calculated by averaging

the individual height errors δhk across all radar points. The

distribution of the height error over the dataset is visualized
in Fig. 5. By employing the AH extension, we successfully
reduce the average height error across the dataset from 2.9
meters to 1.7 meters. This remarkable improvement further
underscores the effectiveness of the preprocessing method
we propose.
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Fig. 5: Height Error Measurement in 3D space.

C. Quantitative Results

We demonstrate the superior performance of our approach
over state-of-the-art detectors in Table I, achieving higher
mAP across all classes and scenes. In our VGG-based
MCAF-Net, the radar data is preprocessed utilizing AH and
AUE. Additionally, SWFB and SAFB fusion approaches are
applied to merge the radar and image feature maps. Our
seven-class detector outperforms RetinaNet and CRF-Net by
over 3% mAP, with particularly significant gains of over
30% for the Bus class. Notably, our network also indicates
greater robustness in rainy-day scenarios, achieving a 3.68%
relative mAP increase compared to the REF-Net. In the case
of the five-class detector, the CRF-Net does not manage
to surpass its image-only baseline RetinaNet. However, our
approach outperforms the RetinaNet by 3.19% and achieves
approximately 2% higher mAP than the results reported in
[10] despite using less training data.

D. Ablation Study

In this section, we conduct ablation studies on the
nuScenes dataset to validate the effectiveness of our innova-
tions. Firstly, we compare different preprocessing methods
under the same network structure, as shown in Table II.



(a) Ground Truth of 2D bounding boxes. (b) CRF-Net Detection. (c) MCAF-Net Detection

Fig. 6: Qualitative comparison of detection results. Different classes are shown in different colors.

Preprocessing mAP Night mAP Rain mAP
FH [4] 45.79% 47.83% 42.83%
AH 46.77% 48.53% 43.53%
AH + AE 47.36% 48.97% 43.91%
AH + AUE 47.70% 49.77% 44.91%

TABLE II: Comparison of the benchmarked preprocessing meth-
ods. The performance of our proposed AH extension method is
compared with the FH extension technique introduced in [4].
Moreover, we demonstrate that extending pixels in the azimuth
direction can further enhance the network’s performance.

Next, we analyze the impact of multi-task learning. Pre-
vious works propose jointly training the network on ob-
ject detection and distance estimation to improve proposal
generation. However, our results in Table III show that
incorporating distance estimation into our work results in
declining network performance, despite adding over 2 mil-
lion parameters. This is due to the increased difficulty for
the network to prioritize object detection.

Finally, we compare the performance of our novel fusion
blocks with other widely used fusion approaches, including
concatenation, element-wise addition, multiplication, cross-
attention, and CBAM-based fusion. In the CBAM-based
fusion, the two feature maps undergo refinement by the
CBAM and are subsequently combined using element-wise
addition before being passed on to the downstream block.
The results are presented in Table IV. The use of cross-
attention or CBAM introduces over a million additional
parameters, but surprisingly, this leads to a decrease in
performance. This further reinforces that these two methods
are not optimal for refining and fusing information for the
camera and radar sensor. We ensure consistency in our
approach by applying the same fusion strategy across all
fusion stages. It is important to note that the presented results
are obtained from the model trained with seven high-level
classes, as in [4].

Model mAP Night mAP Rain mAP
Baseline 46.28% 47.12% 42.07%
+ DS 46.43% 47.99% 43.63%
+ Seg 47.70% 49.77% 44.91%
+ DS + Seg 47.28% 49.20% 44.32%

TABLE III: Ablation study of multi-task learning. “DS” and “Seg”
denote distance estimation and segmentation tasks, respectively.

Fusion mAP Night mAP Rain mAP
Concatenation 46.74% 47.82% 43.61%
Addition 46.80% 48.72% 43.77%
Multiplication 46.54% 48.85% 43.37%
Cross-Attention 45.61% 42.72% 43.20%
CBAM-based fusion 44.95% 46.06% 40.95%
SWFB + SWFB 47.23 % 49.48 % 44.53 %
SWFB + SAFB 47.70% 49.77% 44.91%

TABLE IV: Ablation study of fusion blocks. To demonstrate the
effectiveness of our two novel fusion blocks, we conducted an
experiment utilizing the SWFB at both fusion stages. Our results
show that the SWFB combined with the SAFB outperforms other
fusion methods in all scenarios.

E. Qualitative Results

Two examples of the qualitative results are illustrated in
Fig. 6 by visualizing bounding boxes, classes and confidence
probabilities. Compared with the CRF-Net, our proposed
MCAF-Net conduces to a more robust detector, especially
at night or under worse weather. The first row shows an
example of the night scene. All objects are captured by our
model, but the CRF-Net only detects the car and misses
both two humans. This further indicates our algorithm takes
better advantage of the radar information when the humans
are almost invisible due to the poor lighting condition.
Another example of the rainy scenario is represented in
the second row, where the image is partially blurred caused
by the raindrops. Meanwhile, the objects in this frame are
small and some are even occluded, which increases the
difficulty of detection. Thus, the fusion of radar data, with
an appropriate height extension, substantially improves the
network performance. The effectiveness of our approach is



proven as most of the objects are detected while the CRF-Net
only has one human in its detection.

V. CONCLUSION

This paper presents a multi-task detection model by fusing
radar and camera data that jointly detects objects and seg-
ments free space. This multi-task learning helps the network
learn better feature representations and concentrate on the
position of objects. In addition, two new radar preprocessing
techniques are proposed to handle the sparsity and uncer-
tainty of the radar data, including an adaptive height exten-
sion and an azimuth uncertainty extension. These techniques
help to generate denser radar input and better align the radar
data with the objects on the image. Furthermore, the cross-
modality fusion part is implemented through two new fusion
blocks, the SWFB and SAFB. The SWFB is designed to
redistribute the importance of pixels and channels for the
radar and image feature maps before feeding them into the
FPN. The SAFB aims more to reweight the image feature
based on its relationship with the radar feature and its own
inner-characteristics. Our approach outperforms RetinaNet
by over 4% mAP and achieves approximately 3% mAP
improvement compared to CRF-Net. In the future, we plan to
extend our cross-modality fusion approach to jointly address
the tasks of 3D object detection and depth completion.
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