
  

  

Abstract— Given the growing prevalence of diabetes, there 

has been significant interest in determining how diabetes 

affects instrumental daily functions, like driving.  Complication 

of glucose control in diabetes includes hypoglycemic and 

hyperglycemic episodes, which may impair cognitive and 

psychomotor functions needed for safe driving. The goal of this 

paper was to determine patterns of diabetes speed behavior 

during acute glucose to drivers with diabetes who were 

euglycemic or control drivers without diabetes in a naturalistic 

driving environment. By employing distribution-based analytic 

methods which capture distribution patterns, our study 

advances prior literature that has focused on conventional 

approach of average speed to explore speed deviation patterns. 

I. INTRODUCTION 

Given the global prevalence of diabetes [1], there have 
been ongoing and important research developments about 
how diabetes impacts instrumental daily activities, including 
driving. Drivers with diabetes may have an elevated risk of 
being involved in traffic accidents [2]. Hypoglycemia, 
prevalent in type 1 diabetes (T1DM) increases this risk and 
may reduce driver compliance to roadway speed limit ([3], 
[4]). The American Diabetes Association recommends that 
clinicians consider this factor when advising patients on 
driver safety [5].   

While hypoglycemia and driving have received 
significant research attention ([6], [7], [8]), less research has 
focused on hyperglycemic impacts on driving [9], [10]. 
Hyperglycemia may also impair abilities needed for safe 
driving ([11], [12]), is a prevalent diabetes complication [13], 
and may particularly impact driving on higher speed 
roadways suggesting increased risk [14]. Hyperglycemia is 
particularly prevalent in type 2 diabetes (T2DM) and some 
research has suggested that hyperglycemia may impact 
unsafe stopping behavior more than hypoglycemia [15]. This 
highlights the need to improve understanding of how acute 
hyperglycemia impacts driver safety in diabetes across real-
world context.   

Our goal was to improve understanding of how acute 
hyperglycemia, in the context of individual variation, affects 
diabetes speed control. This research fits within the broader 
goals of developing supportive in-vehicle technology to 
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support drivers with diabetes. To meet this goal, we 
investigated drivers’ deviation from speed limit patterns 
linked to acute hyperglycemia in T1DM and T2DM using 
quantile regression.  

Speed control was selected due to its association with 
fatal crashes [16]. Quantile regression advances prior work 
by going beyond population averages, to provide a more 
comprehensive examination of the entire speed control 
distribution. This analysis is focused on uninterrupted flow 
roadways, like interstates.     

II. DATA COLLECTION 

       Data for this study was taken from registries at the 
University of Nebraska Medical Center (UNMC). 
Participants consented to data collection and registry 
participation following UNMC IRB guidelines (IRBs #208-
18-FB and #462-16-FB).  

Drivers: Participants with type 1 diabetes mellitus 
(T1DM: N=17, male=7), type 2 diabetes mellitus (T2DM: 
N=62, male=36), and controls without diabetes (N=58) were 
included (Table I). Miles driven and the number of drives for 
each participant group is provided in Table I. Drivers were 
screened for eligibility at study start. Presence or absence of 
diabetes was confirmed based on HbA1c blood labs (T1DM: 
<12% HbA1c; T2DM: <7.5% HbA1c; Controls: <5.7% 
HbAlc), clinical exam, and diagnosis history. Clinical exams 
were conducted by an experienced endocrinologist.  

TABLE I.  SUMMARY OF STUDY PARTICIPANTS 

Variable Disease Type 1 (N=31) Disease Type 2 (N=106) 

 T1DM Control-1 T2DM Control-2 

Age (years) 

Mean (SD) 30.4 (7.9) 38.6 (10.7) 60.5 (5.9) 59.7 (8.0) 

Range 21-52 21-55 44-70 39-70 

Sex 

Female (%) 10 (58.8%) 10 (71.4%) 26 (41.9%) 18 (40.9%) 

Male (%) 7 (41.1%) 4 (28.5%) 36 (58.0%) 26 (59.0%) 

Total 

Participants 
17 14 62 44 

Miles 

Driven 
16233 17752 57385 88158 

Number of 

Drives 
1999 1634 12367 7652 

 

All drivers were legally licensed, experienced, active 
drivers. All participants met Nebraska Department of Motor 
Vehicle (DMV) standards (visual acuity of <20/50 OU 
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corrected or uncorrected). All drivers had no significant, 
confounding medical conditions (e.g., peripheral nerve, renal, 
neurological, cardiovascular, or major psychiatric diseases; 
significant mobility impairment; substance use in the past 
year) or medication usage (e.g., narcotics, sedating 
antihistamines, and major psychoactive medication). Eye 
diseases (e.g., retinopathy) were permitted in drivers with 
diabetes if they met Nebraska state licensure standards for 
vision. Control drivers were matched drivers with diabetes 
based on age (within 5 years), sex, season of driving in the 
study (winter or not winter), and similar medical history 
(except for diabetes). T1DM drivers used insulin at least 
daily. T2DM drivers were on insulin, a sulphonylurea drug, 
or any two diabetic drug combinations.  

NDD: All drivers had a sensor system installed into their 
personal vehicle for the duration of the study. T1DM drivers 
participated for 4-weeks and T2DM drivers participated for 
6-weeks. Drivers drove as typical around Omaha, NE, and 
surrounding areas during the study. Driving data were 
collected at a frequency of every second from on- to off-
ignition. The collected data included video recordings of the 
forward roadway and the vehicle cabin, as well as vehicle 
sensor data such as GPS, speed, and accelerometer.  

CGM Data: Glucose levels were monitored throughout 
study participation in drivers with diabetes using the FDA 
approved Dexcom G4 Platinum Professional continuous 
glucose monitor (CGM). CGMs were blinded (the drivers 
could not see their glucose levels) and sampled glucose levels 
every 5 minutes. Drivers with diabetes could not be using a 
CGM prior to study participation. CGM data were post-
processed for quality according to FDA standards [17]. 
Drivers with diabetes calibrated CGMs twice daily by 
entering self-sampled blood glucose readings from their 
blood glucose meter.  

Acute Glucose Episodes: Acute glucose levels were 
labeled as diabetic hyperglycemia (DHR; >180 mg/dL) and 
euglycemia (DN; 71-179 mg/dL) according to the American 
with Diabetes Association guidelines [18]. Control data were 
labeled as HC.  

III. DATA PROCESSING 

Data were cleaned to remove missing data. Missing GPS 
and speed data represented 4% of total driving data in T1DM 
and T2DM datasets. Missing CGM data accounted for 5.5% 
(T1DM) as documented in reference [15], and an analogous 
approach was undertaken when addressing missing CGM 
data for T2DM. 

Vehicle speed data were aggregated into 45-second time 
chunks, from start to end of drive (N =113397). This process 
summarized the data within each time chunk (e.g., average 
vehicle speed), and reduced noise from second-by-second 
driver speed variation.  

Speed limit data were extracted by mapping vehicle 
GPS data to GIS databases for Nebraska from the US TIGER 
Road files and Here Maps databases. We retrieved posted 
speed limits (PSLs) spanning 10 mph to 75 mph. Next, the 
data were filtered to only include PSLs 75, 70, and 65 mph, 
to study deviation from speed limits on interstate segments. 
This included 34% and 27.4% of data available in Nebraska. 

To ensure adequate sample sizes for analysis across the DHR, 
DN, and HC groups, PSLs for 70 mph were removed from 
further analysis due to insufficient hyperglycemia 
observations (N=45, 5.8% of 70 mph data) (see Table II for a 
listing of data across three distinct speed limits).  

TABLE II.       DATA ACROSS SELECTED SPEED LIMITS 

Disease 

Type 
Glucose Episode 

Speed Limits (mph) 

75 70 65 

T1DM 

Control 1223 535a 2715 

Normal 794 181a 1322 

Hyperglycemic 257 45a 402 

 Total Participants 12 21a 30 

 Road Segments 25 46a 28 

T2DM 

Control 1111 1250 10923 

Normal 1378 1858 6861 

Hyperglycemic 257 490 611 

 Total Participants 23 78 101 

 Road Segments 26 110 354 

a. Not selected in data analysis. 

IV. DATA ANALYSIS 

 The deviation from speed limit outcome was 
calculated as the difference between the vehicle’s speed and 
the posted roadway speed limit for each second of the drive 
and then averaged for each 45-second time chunk. Higher 
values indicate driver speeding.  

The primary predictors were either the driver with 
diabetes glucose status (DHR or DN) or the disease status 
of the driver (DN or HC).  

Traffic flow period control covariates captured day of 
the week (weekday vs. weekend) and time of day (peak vs. 
off-peak hours) based on typical traffic flow. For weekday 
drives, the peak hours are defined as the period between 6:00 
AM and 9:30 AM, and between 2:00 PM and 6:30 PM. On 
weekends, the peak hours are classified as the period between 
11:00 AM and 6:00 PM. All other drives outside of these 
specified peak hours are considered off-peak hours. The 
impact of these temporal elements as well as sex, on speed 
selection has been a subject of prior investigation ([19]-[23]). 
Heightened traffic flow during peak hours, and potentially 
during shoulder weekdays, elevated the probability of 
adhering to speed limits ([19], [20]).  

Sex was another control covariate included to account for 
males showing typically higher tendency to speed compared 
to females ([21]-[23]). 

Analytical Method 1: Initially, we used the non-
parametric Kolmogorov-Smirnov Test (KS test) to assess if 
differences in deviation from speed limit were seen across the 
selected PSLs. The KS test was selected because it makes no 
assumption regarding the data’s distributional properties.  

Analytical method 2: Quantile Regression (QR) was 
used for the inspection of changes associated with acute 
glucose or driver disease across the entire driver’s deviation 
from speed limit distribution. QR approaches do not assume a 
distributional shape to the outcome, allowing robustness to 



  

data extremes and outliers. QR explores how the relationship 
between x and y varies across different points of the 
distribution, providing a full picture of the entire conditional 
distribution of y [24]. Equation (1) explains QR. 

 

 

where, βq is the vector of unknown parameters associated 

with the qth quantile.  

We modeled the five quantiles (0.25, 0.50, 0.75, 0.85, 

0.90) across the drivers’ deviation from speed limit stratified 

by PSLs (dependent variable). In each PSL, we assessed if 

acute glucose status or disease (DN, DHR, HC) impacted 

deviation from speed limit, while controlling day of week, 

time of day, and sex. For QR modeling, we performed one-

hot encoding to treat categorical glucose variables and 

covariates (Table III). 

TABLE III.  VARIABLE DESCRIPTION FOR ONE-HOT ENCODING 

Variable  Variable Type Variable Levels 

Deviation from 
Speed limit  

Continuous - - - 

Glucose Episode  Categorical DNb HC DHR 

Traffic Flow 

Period 
Categorical 

Off-peak 

hoursb 

Peak 

hours 
 

Type of Day Categorical Weekendb Weekday  

Sex Categorical Maleb Female  

b. Reference category selected for one-hot encoding. 

V. RESULTS 

A. Cumulative Distribution Plots and KS Test Results 

The KS test results are shown in Table IV.  Except for 65 

mph in T1DM, the KS test confirms that there were 

significant differences in speed limit adherence associated 

with acute glucose status (DN vs DHR) and disease status 

(DN vs HC) in T1DM and T2DM. Since the p values are 

less than 0.05, we conclude that there are significant 

differences in terms of speed deviation distribution between 

DHR vs DN and HC vs DN in T1DM and T2DM.  Fig. 1 

(T1DM) and Fig. 2 (T2DM) shows the overlaid cumulative 

distribution plots (CDFs) for deviation from speed limit 

across the PSLs 75, 70, and 65 mph. The distribution of data 

for 65 mph in T1DM shows an overlap between DHR and 

DN, consistent with the findings of the KS test. 

TABLE IV.  KOLMOGROV-SMIRNOV TEST RESULTS 

Category 
Speed Limit 

(mph) 

KS Stat (p-value) 

Normal vs 

Control 

Normal vs 

Hyperglycemia 

T1DM 
75 0.432(<0.05) 0.389(<0.05) 

65 0.313(<0.05) 0.068(0.104) c 

T2DM 

75 0.429(<0.05) 0.299(<0.05) 

70 0.244(<0.05) 0.186(<0.05) 

65 0.186(<0.05) 0.172(<0.05) 

c. Not significant at 95% level of confidence. 

B. Quantile Regression (QR) Results  

Since speed deviation metric showed discrimination 
power in KS test results, next we performed a QR to 
understand the difference in DHR vs DN and HC vs DN on 
deviation from speed limit at different quantiles. Table V 
shows the estimated parameters and their p-value for T1DM 
and T2DM models. While most of the coefficients are 
significant at 99% confidence level, coefficients at 95% 
confidence level are also reported. The coefficients were 
identified relative to specific reference categories as 
mentioned in Table III.  

Quantile Regression Results for T1DM Drivers 

• Deviation from speed limit during DHR was statistically 
significant in most of the quantiles except for 85th (at 75 
mph) and 50th and 75th (at 65 mph) in T1DM.  

• Compared to DN, DHR in T1DM contributed to the 
highest positive deviation (2.6 mph) from 75 mph in the 
lower portion of the distribution. Contrastingly, higher 
quantiles showed higher deviating speed from 65 mph for 
DHR.  

• On comparing HC drivers to T1DM drivers, a noticeable 
distinction can be seen for 75 mph and 65 mph. While HC 
drivers had operating speeds above 75 mph throughout the 
distribution, HC at 65 mph traveled at speeds below the 
speed limit.  

• Traffic Flow Period: The insignificance of the traffic flow 
period was predominantly observed within the middle and 
higher quantiles for both the 75 mph and 65 mph PSLs. 

• Type of Day: Speed distribution at 75 mph revealed that 
weekday drives had lower deviation from speed limit as 
compared to weekends across all quantiles. Contrasting 
results are seen for 65 mph PSL. 

• Sex: A higher deviation from speed limit was observed for 
females than males at 75 mph for all quantiles except for 
25th. In contrast, differing outcomes were observed for the 
65mph posted speed limit where females showed lower 
deviation than their male counterparts. 

     Although our hypothesis regarding the impact of 
glucose episodes on deviation from speed limit aligns with 
the previous study [25], our investigation reveals 
contrasting trends for hyperglycemia. Unlike the previous 
study, which observed negative deviation from speed limit 
during hyperglycemia episodes among individuals with 
T1DM, our findings differ in this regard [25]. We also 
observed insignificant differences for 65 mph (25th, 50th, 
75th quantiles) and 75 mph (85th quantile). A significant 
factor contributing to this difference may stem from their 
utilization of a linear mixed effects model (LMM), which 
estimated the mean deviation from speed limit during 
hyperglycemia. Furthermore, their negative deviation from 
speed limit during hyperglycemia within T1DM were for 
speed limits above 15 mph in general. We suggest that the 
relationship between glucose episodes and deviation from 
speed limit may vary depending on the speed limit range 
being considered. 

yi= xiβq + ei (1) 



  

   Quantile Regression Results for T2DM Drivers 

• In T2DM, all the quantiles within every PSL indicated 
significant differences in DHR and DN speed limit 
adherence behavior.  

• Against DN group, the DHR group traveled below the 
75mph speed at 25th, 50th and 75th quantile, in contrast to 
85th and 90th percentile where the deviation from speed 
limit was positive.  

• The speed distribution at 70 mph showed that participants 
during DHR have deviation from speed limit higher than 
DN drivers, and the increase was higher in the lower 
portion of the distribution.  

• A similar speed behavior during hyperglycemia was seen 
for 65 mph and the highest speed variation occurred at 85th 
percentile (1.778 mph).  

• Additionally, a positive variation from speed limit was 
noticed for HC drivers in all the quantiles of 75 mph, 70 
mph, and 65 mph, except for the 90th quantile of 65 mph in 
T2DM.  

• Traffic Flow Period: At 75 mph, deviation from speed 
limit experienced a decrease during peak hours compared 
to off-peak hours. A parallel pattern emerged at the 25th, 
75th, and 85th quantiles for 70 mph, as well as at the 25th 
and 50th quantiles for 65 mph. 

• Type of Day: Deviation from speed limit distribution at 75 
mph showed a propensity for individuals to display 
elevated deviation from speed limit on weekdays than 
weekends, across all quantiles except for 25th. Conversely, 
the examination of the 70 mph and 65 mph yields 
divergent findings. 

• Sex: Females showed a higher degree of deviation from 
speed limit than males at 75 mph, 70 mph, and 65 mph. 

Quantile Regression Results for T1DM vs T2DM Drivers 

• Additionally, a positive variation from speed limit is 
noticed for control group (HC) in all the quantiles of 75 
mph, 70 mph, and 65 mph, except for the 90th quantile of 
65 mph in T2DM.  

• Like T2DM drivers, T1DM drivers during hyperglycemic 
episodes (DHR) showed higher deviation from speed limit 
from regulatory speed limits (75 mph and 65 mph) as 
compared to their euglycemic episode (DN) counterparts. 
However, this observation was reversed for 25th, 50th and 
75th quantiles of 75 mph for T2DM drivers. Insignificant 
differences were also captured at different quantiles for 75 
mph and 65 mph in the T1DM category. This aspect, 
which couldn’t be captured by the linear models (LMM) in 
the earlier study, was illuminated by our findings through 
the QR model [10]. 

 

Fig. 1. 75 mph (left), 70 mph (middle), 65 mph (right) Cumulative Distribution Plots for T1DM Disease Type 

 

 

 

 

 

 

Fig. 1. 75 mph (left), 70 mph (middle), 65 mph (right) Cumulative Distribution Plots for T1DM Disease Type 

 

 

Fig. 2. 75 mph (left), 70 mph (middle), 65 mph (right) Cumulative Distribution Plots for T2DM Disease Type 

 



  

• Among both T1DM and T2DM drivers, the HC drivers 
exhibited a notable increase in deviation from speed limit 
from the 75 mph posted speed limit compared to DN 
driving. Nevertheless, an opposing trend was observed for 
T1DM drivers at 65 mph. 

The comparable speed adherence patterns observed in 
T1DM and T2DM drivers align with previous research 
indicating a connection between hyperglycemia and reduced 
cognitive performance in both type 1 and type 2 diabetes 
individuals [26]. Additionally, the impact of acute 
hyperglycemia on speed management, when contrasted with 
normal blood sugar levels (euglycemia), aligns with prior 
research indicating that individuals with T1DM impair both 
hazard perception and speed management abilities during 
DHR situations [10]. Nonetheless, variations in speed 
adherence behavior arise, likely attributed to the greater 
impact of hyperglycemia on driving behavior among T2DM 
subjects compared to T1DM. This aligns with a study 
showing that disruptive hyperglycemia was reported by 8% 
of T1DM drivers, in contrast to 40% of T2DM drivers [13].  

VI. CONCLUSIONS AND FUTURE AVENUES 

 This study provides novel results on how acute 
hyperglycemia impacts real-world driving in diabetes and 
uninterrupted traffic flow environments, like interstates, 
which may carry higher risks of fatal crashes.    

Key results confirm previous reports linking deviation 
from speed limit to acute glucose episodes in T1DM and 
T2DM and advance understanding of hyperglycemia’s role in 
diabetes speed control. Hyperglycemia may impact speed 
control in T2DM to a greater extent than T1DM. This aligns 
with newer research reporting that hyperglycemia in diabetes 
may impact driving more than previously estimated [14] 
along with the greater prevalence of hyperglycemia in T2DM 
compared to T1DM [13]. Results underscore the need for 
analytic approaches that better capture individual variability 
in driver safety and highlight the non-linear nature of these 
effects. An apparent factor contributing to the lesser use of 
quantile regression is its perceived interpretational 
complexity. Unlike linear regression, which provides a 
straightforward measure, quantile regression generates 

PSL 

(mph) 
Variable 

T1DM  T2DM 

25th  50th  75th  85th  90th   25th  50th  75th  85th  90th  

             

75 

 

Intercept 
3.0417 

(0.000) 

1.9557 

(0.000) 

3.3923 

(0.000) 

3.1707 

(0.000) 

3.8070 

(0.000) 

 -1.8590 

(0.000) 

-0.5468 

(0.000) 

-0.1653 d 

(0.124) 

0.3365 

(0.003) 

-0.1245 d 

(0.433) 

HC 
0.4438 

(0.000) 

2.5374 

(0.000) 

1.9944 

(0.000) 

2.3947 

(0.000) 

2.3068 

(0.000) 

 1.7731 

(0.000) 

1.4585 

(0.000) 

1.7913 

(0.000) 

2.1892 

(0.000) 

2.6750 

(0.000) 

DHR 
2.6068 

(0.000) 

1.6276 

(0.000) 

0.4956 

(0.003) 

-0.1056 d 

(0.663) 

0.4270* 

(0.049) 

 -3.4876 

(0.000) 

-1.6745 

(0.000) 

-0.4960 

(0.000) 

0.4821 

(0.001) 

0.8495 

(0.000) 

Peak-Hours 
0.7178 

(0.007) 

0.0387 d 

(0.872) 

0.2057 d 

(0.456) 

-0.6434 d 

(0.103) 

-1.3434 

(0.000) 

 -0.9297 

(0.000) 

-2.0890 

(0.000) 

-1.5370 

(0.000) 

-1.9724 

(0.000) 

-1.6970 

(0.000) 

Weekday 
-0.5562 

(0.000) 

-1.4480 

(0.000) 

-1.4866 

(0.000) 

-1.2433 

(0.000) 

-1.3660 

(0.000) 

 -0.5680 

(0.000) 

0.2379 

(0.000) 

1.3461 

(0.000) 

1.0870 

(0.000) 

1.9854 

(0.000) 

Female 
-2.5675 

(0.000) 

0.6887 

(0.000) 

1.5246 

(0.000) 

2.3866 

(0.000) 

2.7588 

(0.000) 

 2.2421 

(0.000) 

2.4923 

(0.000) 

2.6224 

(0.000) 

2.8130 

(0.000) 

3.0507 

(0.000) 
             

70 

Intercept - - - - - 
 -11.7768 

(0.000) 

-3.82 

(0.000) 

-0.816 

(0.001) 

1.065 

(0.000) 

2.47 

(0.000) 

HC - - - - - 
 6.225 

(0.000) 
4.35 

(0.000) 
3.783 

(0.000) 
2.862 

(0.000) 
2.034 

(0.000) 

DHR - - - - - 
 5.289 

(0.000) 

2.83 

(0.000) 

2.350 

(0.000) 

1.455 

(0.000) 

1.210 

(0.000) 

Peak-Hours - - - - - 
 4.154 

(0.000) 
0.294d 

(0.592) 
0.769 

(0.000) 
0.540 

(0.001) 
-0.218 d 

(0.522) 

Weekday - - - - - 
 -1.59 

(0.005) 

-1.973 

(0.000) 

-0.454 d 

(0.054) 

-0.355 d 

(0.104) 

-0.529 

(0.008) 

Female - - - - - 
 0.4067 d 

(0.396) 
1.978 

(0.000) 
0.850 

(0.000) 
0.118 d 

(0.506) 

0.1069 d 

(0.590) 

             

65 

Intercept 
   -3.087 

(0.000) 

0.6933 

(0.001) 

2.7636 

(0.000) 

4.488 

(0.000) 

2.88 

(0.000) 

 -5.76 

(0.000) 

-1.212 

(0.000) 

1.066 

(0.000) 

2.367 

(0.000) 

3.988 

(0.000) 

HC 
-2.633 

(0.000) 

-2.23 

(0.000) 

-1.915 

(0.000) 

-1.919 

(0.000) 

-0.126 d 

(0.761) 

 0.492 

(0.006) 

1.365 

(0.000) 

0.735 

(0.000) 

0.402 

(0.000) 

0.240 d 

(0.195) 

DHR 
0.5122d 

(0.104) 

- 0.0688 d 

(0.710) 

0.0613 d 

(0.810) 

2.537 

(0.000) 

2.0687 

(0.003) 

 1.62 

(0.000) 

1.378 

(0.000) 

1.543 

(0.000) 

1.778 

(0.000) 

1.131 

(0.003) 

Peak-Hours 
2.389 

(0.000) 

0.4335 

(0.032) 

0.2229d 

(0.548) 

0.158 d 

(0.903) 

0.598 d 

(0.444) 

 2.40 

(0.008) 

1.6474 

(0.000) 

-1.124 

(0.001) 

-0.041 d 

(0.935) 

0.580 d 

(0.46) 

Weekday 
0.3456 d 

(0.097) 

0.3535 

(0.003) 

0.579 

(0.003) 

0.923 

(0.001) 

0.859* 

(0.045) 

 -0.408 d 

(0.206) 

-0.091 d 

(0.408) 

-0.187* 

(0.046) 

-0.078 d 

(0.651) 

-0.067 d 

(0.804) 

Female 
-0.962 

(0.005) 

-2.467 

(0.000) 

-2.835 

(0.000) 

-2.930 

(0.000) 

-1.264 d 

(0.108) 

 -0.298 d 

(0.112) 

0.234 

(0.000) 

-0.032 b 

(0.695) 

-0.114 d 

(0.257) 

0.047 d 

(0.807) 

             

                                                  d.
 Not significant at 95% level of confidence (boldface); 

*
 Significant at 95% level of confidence; - Not Applicable 

TABLE V.  ESTIMATED COEFFICIENTS OF QUANTILES OF DEVIATION FROM SPEED LIMIT DISTRIBUTIONS. SIGNIFICANCE (P-VALUE) LEVELS ARE GIVEN IN 

BRACKETS 



  

multiple coefficients that may not provide a cohesive and 
easily understandable picture. 

Admittedly, this paper has limitations that we encourage 
investigators to address in future research. Notably, sample 
sizes for participants and glucose episodes were limited in 
this study. Video data, which was not used in this study, may 
improve understanding of how real-time traffic and roadway 
dynamics affect diabetes speed control. Future models may 
also further investigate other covariates (e.g., age, driving 
experience, and medication usage) on diabetes driver speed 
control. This may advance development of targeted, 
personalized interventions or strategies. An apparent factor 
contributing to the lesser use of quantile regression is its 
perceived interpretational complexity. Unlike linear 
regression, which provides a straightforward measure, 
quantile regression generates multiple coefficients that may 
not provide a cohesive and easily understandable picture. 

Results shed light on specific driver behavior patterns, in 
context of individual variation, that may be used for future 
development of supportive, personalized in-vehicle 
technology. In-vehicle advanced driving systems show 
promise for aiding drivers with diabetes, and those with 
related disorders, in maintaining safe mobility. Patterns of 
driver speed control may show promise for identifying and 
intervening in at-risk driving situations.   
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