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Abstract— Conducting real road testing for autonomous driv-
ing algorithms can be expensive and sometimes impractical,
particularly for small startups and research institutes. Thus,
simulation becomes an important method for evaluating these
algorithms. However, the availability of free and open-source
simulators is limited, and the installation and configuration
process can be daunting for beginners and interdisciplinary
researchers. We introduce an autonomous driving simulator
with photorealistic scenes, meanwhile keeping a user-friendly
workflow. The simulator is able to communicate with external
algorithms through ROS2 or Socket.IO, making it compatible
with existing software stacks. Furthermore, we implement a
highly accurate vehicle dynamics model within the simulator
to enhance the realism of the vehicle’s physical effects. The
simulator is able to serve various functions, including gener-
ating synthetic data and driving with machine learning-based
algorithms. Moreover, we prioritize simplicity in the deploy-
ment process, ensuring that beginners find it approachable and
user-friendly.

I. INTRODUCTION
Comprehensive testing is an essential and necessary as-

pect of autonomous vehicle development. While real-world
testing is a reliable method, achieving convincing validation
results often requires millions of kilometers of driving,
which makes it costly and time-consuming. The annual
Autonomous Mileage Report [1] published by the Califor-
nia Department of Motor Vehicles shows that numerous
manufacturers conducted over 10 million miles of testing
in 2022. However, such extensive testing is impractical for
small startups and research institutes. Additionally, real-
world testing often struggles to cover a sufficient number
of corner cases, as common traffic conditions tend to repeat.
Investigating vehicle performance under extreme scenarios
may require additional infrastructure costs. Given the wide
range of parameters in urban traffic environments, includ-
ing straight lines, corners, crosswalks, vehicles, cyclists,
pedestrians, and various weather conditions [2], it becomes
impossible to cover all combinations on the road or in a
test field. As a result, simulation plays a crucial role in
bridging the gap between algorithm development and real-
world testing. It allows researchers to create diverse scenarios
in virtual environments and conduct safety-critical tests, such
as emergency brakes and automated overtaking on highways,
without practical risks.
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Ideally, a simulator should provide platforms for vari-
ous functionalities, including perception, localization and
mapping, path planning, and control. This entails meeting
several requirements. Firstly, to accurately replicate real-
world features, the simulated environment must include high-
quality 3D objects such as buildings, roads, and vehicles.
Moreover, precise vehicle physics simulation is crucial for
an authentic experience. As autonomous driving usually
demands diverse sensors, a flexible sensor suite should be
available. With the advancements in deep learning, having
the ability to record training data is beneficial for algorithm
development. Additionally, a well-structured traffic system,
encompassing traffic lights, traffic signs, and other traffic
agents, allows researchers to test autonomous driving func-
tions under various traffic scenarios, including those that are
unlikely to occur in real life. Lastly, the simulator should
offer interfaces to external software, enabling the direct usage
of existing software packages for tasks like detection or path
planning.

In this paper, based on Unity 3D game engine [3], we
present a new autonomous driving simulator with pho-
torealistic scenes and physically precise objects. The 3D
environment is designed based on real-world cities. The
3D models and textures are created by a group of artists
specializing in game engineering and design. Furthermore,
we manually integrate traffic signs and implemented control
scripts for traffic lights. The movement of other traffic agents
follows the waypoint-based traffic flow. We have incor-
porated various sensors, including cameras, radar, inertial
measurement units (IMU), and global navigation satellite
systems (GNSS). The Unity perception camera allows for the
recording of ground truths for object detection or semantic
segmentation during driving. To accurately replicate dynamic
behaviors, we implement a vehicle dynamics model similar
to that in a daily car. Communication with external software,
such as PyTorch [4] and TensorFlow [5], is done through
either Socket.IO or ROS2. They both enable the system
to operate within a server multi-client architecture, offering
flexibility and scalability. Finally, we prioritize ease of de-
ployment, emphasizing a “plug-and-play” style for the plat-
form. The source code is released at “https://github.com/tum-
autonomousdriving/autonomous-driving-simulator”.

The rest of this paper is structured as follows: Section II
presents a review of previous simulation-related technologies
in the autonomous driving field. In section III, we depict
the features and capabilities of our simulator. Section IV
provides examples of various applications and algorithms
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Fig. 1: The framework of our autonomous driving simulator.

that have been tested within its environment. Section V
forms a conclusion and outlines potential avenues for future
development.

II. RELATED WORK

Simulation technology [6] plays a crucial role in the
development of vehicles. Initially, the focus was primarily
on vehicle dynamics simulation. Software like Carsim [7]
gained significant popularity as a widely used tool in this
domain. In recent versions, Carsim has also incorporated
modules for advanced driver assistance systems (ADAS) and
autonomous vehicle simulation. However, it lacks support for
common sensors such as cameras or radar. Instead, it relies
on a dedicated ADAS sensor to measure the range between
the ego vehicle and objects. Compared to other simulators,
Carsim’s 3D environment still falls short in terms of its
fidelity to the real world.

Gazebo [8] is a popular simulation platform within the
field of robotics. It is typically used together with Robot
Operating System (ROS) [9] [10]. Gazebo’s physics engine
offers a level of accuracy that surpasses traditional game en-
gines. However, creating large-scale 3D scenarios in Gazebo
can be challenging and time-consuming. Objects in Gazebo
are primarily created through code, lacking the more intuitive
graphical user interface found in other tools. In terms of
visual rendering, Gazebo’s capabilities do not match those
of professional game engines such as Unity [3] and Unreal
Engine [11].

Big companies have built their own simulators like Car-
craft [12] used by Waymo, and The Matrix [13] used by
Cruise. These simulators are restricted to internal use and
are not publicly available. Within the autonomous driving
community, there are also several dedicated open-source
simulators available. CARLA [14] is the first simulator to
incorporate autonomous driving functions. It is built upon
the Unreal Engine [11], and its 3D environment is created
from scratch by a team of digital artists. CARLA currently
supports a range of sensors, including cameras, LiDAR,
radar, IMU, and GNSS. However, due to its large-scale
nature, the process of installing the software and configuring
the necessary setups can be time-consuming. Many beginners
have also reported encountering some initial difficulties when
getting started with CARLA.

Another open-source simulator is LGSVL [15], which
utilizes the Unity game engine as its foundation. Unlike
CARLA, which has various functionalities built inside the
simulator, LGSVL is designed to connect with external
autonomous driving (AD) stacks such as Autoware [16] and
Baidu Apollo [17]. This connection is facilitated through dif-
ferent bridges, including ROS1/ROS2 bridge and Cyber RT, a
custom bridge for Apollo. A notable feature of LGSVL is its
ability to create, edit, and export HD maps based on existing
3D environments. Unfortunately, LG has decided to suspend
active development of the SVL simulator, effective January
1, 2022. Consequently, no further updates or improvements
to the simulator will be released.

There are also commercial autonomous driving simulators
available on the market. For example, MATLAB/Simulink
[18] by Mathworks. The Automated Driving Toolbox™ of
MATLAB offers tools for designing, simulating, and testing
ADAS and autonomous driving systems. One key advantage
of MATLAB is its code generation capability, allowing
for faster prototyping by generating C/C++ code. Another
commercial simulator is Prescan [19], developed by Siemens.
Prescan enables users to quickly replicate real-world traffic
scenarios using elements from its database. It also supports
hardware-in-the-loop (HIL) simulation, a common practice
for evaluating electronic control units (ECUs). Nevertheless,
the 3D environments created in these two simulators do not
provide a photo-realistic experience. Additionally, as they are
not open-source, customizing the settings and functionalities
may pose some challenges.

III. FEATURES

A. Software Framework

Our simulator is developed using the Unity game engine
[3]. We implement a design where the simulated environ-
ments and algorithms run independently. As shown in Fig. 1,
traffic system and sensor models operate within the simulator.
Along with 3D scene and vehicle dynamics models, the
simulator is able to present real traffic scenarios effectively.
Communication between the simulator and algorithms is
facilitated through either Socket.IO or ROS2. The concept
behind this architecture is to transmit sensor readings from
the simulator to the algorithms via the communication
interface. These sensor readings serve as inputs for the
algorithms, while the algorithms, in turn, send back control
signals such as throttle and steering angle. This system
architecture is particularly beneficial for users who require
simulations to run on multiple computers. With Socket.IO’s
server-client connection, the main simulation environment
can run on a powerful desktop equipped with a GPU, while
multiple laptops can control individual ego vehicles. Regard-
ing ROS2, it naturally supports a master-slave architecture,
enabling seamless communication between the master and
slave machines through a publisher-subscriber network. This
publisher-subscriber structure enables functionalities such as
vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X)
interactions.



(a) Rainy. (b) Snowy.

(c) Foggy. (d) Real world scene.

Fig. 2: Simulation environment under different weathers and real-world scene

B. HD Object and Building

We implement the High Definition Render Pipeline
(HDRP) of Unity to achieve a photo-realistic scene in our
simulator. For the simulated environment, we choose some
real-world cities around our workplace. The buildings, roads,
and crosswalks in the simulator closely resemble the actual
map of real cities. Our objective is to create test environments
that mirror the real world, enabling us to evaluate the sim-
to-real quality of the algorithms accurately. To achieve this,
a dedicated group of artists specializing in game engi-
neering and media design meticulously create 3D objects
from scratch. These objects are initially crafted with high-
precision surfaces in 3ds Max and subsequently imported
into the Unity scene editor. Through this process, we ensure
that the 3D objects in the simulator maintain a high level
of fidelity to their real-world counterparts. Furthermore, we
provide full customization options for weather and illumina-
tion conditions within the simulator. Fig. 2 demonstrates the
simulation environment under different weather as well as a
real-world scene. Users can tailor these parameters according
to their specific requirements.

C. Vehicle Dynamics

We use a specialized vehicle dynamics model in our sim-
ulator, allowing for the precise representation of realistic car
behaviors. This vehicle model encloses both internal com-
bustion engines (ICE) and electric drives, and various drive

Fig. 3: Waypoint-based traffic system

modes are available such as front-wheel drive, rear-wheel
drive, and full-wheel drive. Each drive mode accurately
captures the distinct dynamics of different vehicle setups,
enabling comprehensive testing to ensure algorithmic safety
across diverse scenarios. To ensure accurate control over
dynamics parameters, we implement Proportional-Integral-
Derivative (PID) controller. This controller is specifically
designed to facilitate rapid convergence to the desired set-
point, enabling efficient and effective control of the simulated
vehicle’s steering and speed.



(a) RGB camera. (b) Semantic camera. (c) Radar.

Fig. 4: RGB camera, semantic camera, and radar

D. Traffic System

In the traffic simulation, we manually define waypoints
that govern the behavior of other traffic agents. An exam-
ple of waypoints on the intersection is shown in Fig. 3.
This approach is particularly suitable for low-performance
computers. Basically, the simulated vehicles adhere to these
predetermined routes while also possessing the capability to
detect and respond to traffic lights. When the lights transition
to red, the vehicles will halt accordingly. Additionally, we
include an elementary collision avoidance system. Each
vehicle is equipped with a forward-facing ray that detects
potential obstacles. When the ray intersects with objects, the
system calculates the length of the ray and returns this value
to the relevant function. If the measured distance falls below
a predefined threshold, the vehicle will automatically come
to a stop, waiting for the critical situation to disappear. In
the extreme case that the collision does happen, the involved
vehicles are promptly relocated away from their current
positions and regenerated elsewhere within the simulated
environment. This guarantees that the ego vehicle remains
unaffected by accidents caused by other traffic agents and
potential traffic congestion is averted.

E. Sensors

Our simulator supports various sensors. Currently, the
supported sensors include cameras, radar, IMU, and GNSS.
Each of these sensors can be fully customized to meet
specific requirements. Fig. 4 depicts visualizations of some
sensors. The configuration parameters, such as ROS2 topics,
Socket.IO IPs, publishing rate, reference frames, as well as
sensor locations and orientations, can all be conveniently
adjusted via a YAML file.

1) Cameras: The camera module provides multiple cam-
era modes, including RGB camera, semantic segmentation
camera, and instance segmentation camera. Furthermore, the
intrinsic and extrinsic parameters of the camera can be easily
modified by the users.

2) Radar: We develop a radar system capable of accu-
rately measuring the distances to objects within specified
sector areas. By default, the simulator includes three radars
positioned at the front, left, and right sides of the ego vehicle

3) IMU: To facilitate tasks such as sensor fusion, our ego
vehicle model is equipped with an IMU that reports real-time
information on acceleration and angular velocity.

4) GNSS: The global position of the ego vehicle can be
easily accessed through the Unity Game Object properties.

F. Communication between Simulator and Algorithms

1) Socket.IO: We utilize Socket.IO to establish a con-
nection between the simulator server and various clients or
modules. It enables bidirectional and event-based commu-
nication, thus, is ideal for transmitting data and instruc-
tions between the simulator and other components of an
autonomous driving system. The simulator server can emit
events or data updates, which can then be received by the
connected clients or modules. Similarly, a client can do it in
a vice-versa way. This communication mechanism allows for
seamless integration of different components. For example,
the simulator server can send sensor data to a perception
module, and receive control commands from a planning
module. This architecture is also suitable for controlling
multiple ego vehicles in the simulated environment. The
real-time capabilities of Socket.IO facilitate the efficiency
of communication and reduce latency.

2) ROS 2: We implement an open-source communica-
tion solution between Unity and ROS2 middleware [20].
Compared to traditional bridging methods, this non-bridge
solution has a higher performance and considerably lower
latency. It uses the ROS2 middleware stack (rcl layer and
below), which means ROS2 nodes are directly running in the
simulation. As a result, ROS2 messages can be transmitted
to their corresponding topics and effortlessly received by
nodes operating outside of the simulator. The communication
solution provides flexibility for customizing published mes-
sages through scripts. Currently, the communication module
focuses on transmitting sensor readings while receiving steer-
ing, acceleration, and braking commands. This enables seam-
less integration with external autonomous driving software
stacks, such as Autoware. Additionally, the ROS2 interface
facilitates easy integration with existing ROS2 packages like
image pipeline and move base, providing researchers with
the ability to leverage these packages within the simulation
environment.

G. Easy Deployment and Portability

The simplified version of our simulator is provided as
an executable Unity file, which includes predefined ROS2
topics and Socket.IO interfaces. By default, the simulator is



Fig. 5: Automatic labeling

equipped with RGB cameras, radar, IMU, and GNSS sensors.
This version is primarily designed for educational purposes,
such as practical courses for students.

In addition to the simplified version, we also offer a
developer version of the simulator, which provides extensive
customization options. Users can tailor sensor combinations,
vehicle models, buildings, and other traffic agents according
to their specific research requirements. This highly cus-
tomizable version is particularly well-suited for research
purposes, allowing researchers to evaluate the performance
of algorithms related to autonomous driving in a controlled
and customizable environment.

The Unity file is compatible with both Windows and
Linux systems, ensuring cross-platform usability. ROS2 and
Socket.IO also support these two platforms.

IV. APPLICATIONS

A. Generating Synthetic Training Data

Recent advances in deep learning have led to great im-
provements in the field of autonomous driving. However, the
process of collecting real-world training data can be both
time-consuming and expensive. To address this challenge,
our simulator incorporates a dedicated mode for generating
synthetic training data. In this mode, users can specify the
types of objects they want to detect or segment within
the simulator. For object detection tasks, our simulator au-
tomatically generates ground truth 2D/3D bounding boxes
for each selected object, as shown in Fig. 5. Similarly, for
segmentation tasks, distinct color masks are applied to the
objects. As the 3D models of these objects are known in the
simulator, the generated bounding boxes and color masks
are more precise than those obtained through manual human
labeling. The labels, origin, and dimension of the bounding
box to each object will be saved in a JSON file under the
local folder.

B. Imitation Learning

Imitation learning (IL) is an intelligent learning strategy
that leverages expert trajectories to guide decision-making
and control[21]. Expert trajectories consist of state-action
pairs, which are extracted to create a dataset. IL aims to

Fig. 6: Imitation learning workflow in the simulator

learn the underlying relationships between states (repre-
senting features) and actions (displaying labels), with the
objective of maximizing the agent’s ability to replicate expert
trajectories. We use this autonomous driving simulator to
adequately provide a stable validation environment for large-
scale imitation learning strategies.

The current dominant frameworks for imitation learning
are based on an end-to-end learning approach [22]. That is,
the real-time sensor information is input, and a core model
processes this input to directly generate vehicle control
commands. However, validating such end-to-end approaches
directly in real-world scenarios is challenging due to as-
sociated risks and costs. A simulated environment is more
suitable for this validation task. The virtual vehicle in our
simulator can be tested in different scenarios and on different
roads without discrimination. Fig. 6 illustrates the workflow
our simulator provides for imitation learning applications.

We can artificially set the expert behavior by driving the
vehicle through keyboard commands. In the simulator, the
vehicle is equipped with cameras, which receive a live feed
from the simulated environment and transmit it to the client.
The trained convolutional neural network (CNN) in the
client processes the live input and simultaneously generates
a control signal that is sent back to the simulator via the
Socket.IO. Subsequently, the vehicle receives the control
commands and implements real-time control.

C. Reinforcement Learning

In addition to imitation learning, reinforcement learning
methods [23] have gained attention for training autonomous
driving algorithms in an end-to-end style. Reinforcement
learning is often considered a preferred choice over imitation
learning due to its ability to handle complex environments,
adapt to changes, and manage multi-objective tasks more
effectively [24].

Our autonomous driving simulator can be used to generate
large volumes of training data, including sensor readings,
environmental information, and vehicle status. This data
can be utilized to train reinforcement learning models,
enabling the agent to acquire driving skills and decision-
making strategies. The simulator automatically generates
observation information from the camera sensor based on
the current environment. Each observation ot ∈ O consists
of four sets of tensors from the previous timesteps, namely
ot = {[C,R,V,N]}. The C tensor represents a concatenated
640 × 320n × 3 camera image, comprising n number of
640×320×3 RGB camera sensor images placed at different



locations on the vehicle. The R tensor denotes road features,
V captures vehicle features, and N is a vector containing
navigational features. The simulator has embedded a wide
range of virtual driving environments. This includes city
roads, weather conditions, illuminations, motorways, inter-
sections, pedestrians, car parks, traffic flow, etc. By con-
structing virtual environments in the simulator, we provide
users with a convenient means to test and evaluate the
performance of reinforcement learning algorithms in various
driving scenarios.

D. V2V and V2X

A comprehensive autonomous system should not only
rely on its own sensor reading but also consider the shared
information from other intelligent agents. Acquiring precise
positions of surrounding traffic agents, rather than estimating
them solely from sensor data, will enhance the accuracy and
effectiveness of the ego vehicle’s decision-making process.
The vehicle-to-vehicle (V2V) architecture is designed to fa-
cilitate the exchange of information among different vehicles.
As other traffic participants, and even infrastructures, become
part of this communication scheme, the system evolves into a
vehicle-to-everything (V2X) framework. However, construct-
ing those infrastructures is usually costly and challenging in
the real world. Therefore the evaluation and testing are more
viable to be conducted in a simulated environment [25]. By
utilizing the node-topic architecture of ROS2, our simulator
can efficiently distribute information among all intelligent
agents.

V. CONCLUSIONS

We introduce an autonomous driving simulator named
after our workplace Garching, that is built on the Unity game
engine. By incorporating high-definition objects, buildings,
and precise vehicle physics models, the simulator is able to
reproduce real traffic scenarios and the dynamic behaviors
of a car. GarchingSim provides flexible sensor suites so that
users can customize them according to their preferences. The
simulator serves as an ideal platform for evaluating machine
learning-based algorithms. The communication between the
simulator and external software is done via ROS2 interfaces
or Socket.IO, enabling distributed simulation across multiple
computers. Additionally, the existing autonomous driving
software stacks or packages can be integrated into our sys-
tem. We design GarchingSim as an open-source platform and
remain committed to enhancing it by adding more features
upon the feedback of the users.
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