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Strategic Interactions in Multi-modal Mobility Systems:
A Game-Theoretic Perspective

Gioele Zardini1, Nicolas Lanzetti2, Giuseppe Belgioioso2, Christian Hartnik2,
Saverio Bolognani2, Florian Dörfler2, Emilio Frazzoli1

Abstract— The evolution of existing transportation systems,
mainly driven by urbanization and increased availability of
mobility options, such as private, profit-maximizing ride-hailing
companies, calls for tools to reason about their design and
regulation. To study this complex socio-technical problem,
one needs to account for the strategic interactions of the
heterogeneous stakeholders involved in the mobility ecosystem
and analyze how they influence the system. In this paper, we
focus on the interactions between citizens who compete for the
limited resources of a mobility system to complete their desired
trip. Specifically, we present a game-theoretic framework for
multi-modal mobility systems, where citizens, characterized
by heterogeneous preferences, have access to various mobility
options and seek individually-optimal decisions. We study the
arising game and prove the existence of an equilibrium, which
can be efficiently computed via a convex optimization problem.
Through both an analytical and a numerical case study for
the classic scenario of Sioux Falls, USA, we illustrate the
capabilities of our model and perform sensitivity analyses.
Importantly, we show how to embed our framework into a
“larger” game among stakeholders of the mobility ecosystem
(e.g., municipality, Mobility Service Providers (MSPs), and
citizens), effectively giving rise to tools to inform strategic
interventions and policy-making in the mobility ecosystem.

I. INTRODUCTION

In the past years, travel needs from, to, and within urban
environments have dramatically increased [1], mainly due to
urbanization (by 2050, 68% of the world’s population will
reside in cities [2]). This rapidly expanding setting poses
several critical questions, and cities need to take important
decisions, adapting current transportation systems to wel-
come larger and changing travel demands. In particular, cities
need to reshape current infrastructure and devise policies
to improve the performance of mobility systems, while
ensuring accessibility, fairness, and equity [3]. Furthermore,
the impact of policies on private Mobility Service Providers
(MSPs) such as micromobility (µM) operators, ride-hailing
companies, and, in the near future, Autonomous Mobility-
on-Demand (AMoD) systems, requires a careful analysis [4].
Indeed, while offering more choices to travelers, such sys-
tems often operate benefiting from public resources (such
as public spaces and roads), are profit-oriented, and could
lead to disruptive consequences for transportation systems
and society at large [5], [6]. Finally, cities are estimated to be
responsible for 78% of the world’s energy consumption and
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for more than 60% of the global greenhouse emissions [7],
posing important sustainability goals for the implemented
regulations.

These perspectives highlight the complexity of this socio-
technical system and call for tools to inform and drive
policymakers of the future. In this paper, we present a game-
theoretic framework to study citizens’ behavior in multi-
modal mobility systems from a game-theoretic standpoint,
and provide both analytical and numerical examples to
illustrate its features. Additionally, we show how our frame-
work can be integrated into an “upper-level” game among
stakeholders of the mobility ecosystem, recently proposed in
the literature [8], which can be readily used to reason about
policy-making in transportation systems.

a) Related Literature: Our work lies at the interface
of game-theoretic modeling of transportation systems and
policy-making related to future mobility systems. Ever since
the pioneering work of Pigou [9], applications in transporta-
tion systems have driven the development of many tools in
game theory, such as Wardrop equilibria [10] and congestion
games [11]. From the study of traffic equilibria [12], to
explaining apparent paradoxes [13], or to quantifying ineffi-
ciencies of selfish routing [14], game theory has been widely
used to model users’ behavior in mobility systems [15], [16].
This line of research, and in particular the theory of non-
atomic routing games with capacitated networks [17], [18],
will serve as the basis for our work.

Game theory has also been leveraged for policy-making,
for instance for designing pricing strategies for MSPs [19]–
[22], incentives and tolls to regulate congested net-
works [23]–[27], analysis of interactions between authorities
and MSPs [28]–[32], and between MSPs and users [33],
[34]. While [19], [20], [35] focus on pricing strategies for
MSPs at the network level, [21], [22] leverage game theory to
study management and subsidies of fleets of shared electric
vehicles. Game-theoretic approaches to regulate congestion
leveraging particular policies have been studied in [23]–
[25], via optimized routing and pricing in [26], and via
tolling policies in [27]. In [8] we propose the first game
formulation of a complete mobility system, considering equi-
libria across interactions between authorities, public transit,
MSPs, and users. Apart from game-theoretic tools, there has
been research on policy-making for future mobility systems,
focusing on reducing externalities and producing socially
efficient solutions [36]–[43].

b) Statement of Contribution: In this paper, we provide
a game-theoretic formulation to study interactions in multi-
modal mobility systems, whereby citizens have access to sev-
eral, but limited transportation options (e.g., due to bounds



on fleet sizes) and seek individually-optimal decisions (e.g.,
minimizing travel time and fare). We then study the arising
game. Among others, we prove existence of an equilibrium
and show that an equilibrium results from the solution
of a convex optimization problem. Finally, we perform a
case study for the classic scenario of Sioux Falls, South
Dakota, USA. Beside presenting the nominal behavior of
our model, we perform sensitivity analyses to study the
impact of parameters such as prices and fleet sizes and
show how our game-theoretic model of the mobility systems
can be embedded in a larger game, among stakeholders of
the mobility ecosystems, allowing us to reason about the
strategic interventions in the mobility ecosystem.

II. MODELING INTERACTIONS IN MULTI-MODAL
MOBILITY SYSTEMS AS NON-ATOMIC GAMES

In this section, we present a model for the interactions
between citizens traveling in a multi-modal mobility system.
Our model builds on non-atomic routing games with capac-
itated edges [18]. Proofs are provided in the Appendix.

A. Modeling of the Population

We consider N locations in a city, indexed by i ∈
{1, . . . , N}. From each location i, citizens want to travel to a
specific location j ∈ {1, . . . , N} \ {i}. Citizens are divided
into K populations, each representing a given category of
citizens (e.g., employees, students, etc.). We model each
population of citizens as a continuum; accordingly, dijk ∈
R≥0 is the demand of users (i.e., number of users per unit
time) of population k travelling from location i to location j,
with diik = 0 for all i ∈ {1, . . . , N} and k ∈ {1, . . . ,K}.

B. Modeling of the MSPs

Citizens have several options to reach their destination.
They can either use the service of one of the MSPs, or walk
to their destination. Specifically, we consider M different
MSPs providing mobility services. Each mobility provider m
has Cm

i,a available vehicles at location i (e.g., due to limited
fleet size) and can displace at most Cm

j,d vehicles to location j
(e.g., due to limited parking spots). The maximum number
of customers on a ride from i to j is Cm

ij,r. For notational
convenience, we associate the index m = 0 to walking.
Moreover, we drop the corresponding capacity constraints
(i.e., C0

i,d = C0
j,a = C0

ij,r = +∞ for all i, j ∈ {1, . . . , N}),
so that walking is always a feasible transportation mode.

C. Cost of Traveling

To each population, origin-destination pair, and mode of
transport, we associate a cost function cmij : R≥0 → R≥0,
which includes travel time, fare (converted to time via the
monetary value of time), and possibly other aspects, such as
discomfort and environmental impacts. Specifically, cmij (x)
is the cost which a citizen travelling from location i to
location j with mode of transport m incurs in when there
are x citizens (e.g., belonging to another population) who are
also travelling from i to j with the same mode. A classical
example is

cmijk(x) = tmij,nom(1 + αm
ijx) +

pmij
VT,k

, (1)

where tmij,nom is the nominal travel time, αm
ij is a positive

parameter indicating how much congestion (i.e., x) affects
travel time, pmij is the price of the ticket, and VT,k is the
value of time for population k. Another popular example in
road networks literature, which is the so-called BPR function
which relates the occupancy of a road with its travel time:

cmijk(x) = tmij,nom

1 + αm
ij

(
x

κm
ij

)β
+

pmij
VT,k

, (2)

where β is a coefficient determining the threshold at which
the function will rise significantly, κm

ij is the nominal capac-
ity of the road, and other parameters are as in (1).

D. Equilibrium

We collect the decisions of the (non-atomic) citizens in
the non-negative variables {xm

ijk}, henceforth referred to as
flows or configuration. In particular, xm

ijk indicates the flow
of customers of population k travelling from i to j who
opted for the transportation mode m to complete their trip.
Clearly, we are interested in configurations which satisfy the
transportation demand and respect the capacity constraints.
We call such configurations feasible.

Definition 1 (Feasible configuration). A configura-
tion {xm

ijk} is feasible if

1) xm
ijk is non-negative;

2) it serves the transportation demand, i.e.,∑
m

xm
ijk = dijk;

3) it satisfies the constraints, i.e.,∑
k

xm
ijk ≤ Cm

ij,r,
∑
i,k

xm
ijk ≤ Cm

j,d,
∑
j,k

xm
ijk ≤ Cm

i,a;

Given this definition, we can now define equilibiria. In this
context, we say that a configuration {xm

ijk} is a Nash equi-
librium if no agent can reduce its travel cost by switching to
another transportation mode. Feasibility represents the least
requirement for an equilibrium. The other one is optimality,
given the decisions of all other players. Formally:

Definition 2 (Nash Equilibrium). Let {xm
ijk} be a feasible

flow. We say that {xm
ijk} is a Nash equilibrium of the game

if for all i, j, k,m with xm
ijk > 0 every other mode m′ ∈

{0, . . . ,M} either (i) leads to higher cost, i.e.,

cmijk

(∑
k

xm
ijk

)
≤ cm

′

ijk

(∑
k

xm′

ijk

)
,

or (ii) it is saturated, i.e.,∑
k

xm′

ijk = Cm′

ij,r or
∑
i,k

xm′

ijk = Cm′

j,d or
∑
j,k

xm′

ijk = Cm′

i,a .

Intuitively, all modes used at equilibrium must yield
minimum cost among all modes which are not saturated;
else, an agent would transition to a mode with lower cost.



E. Analysis of the Game
The main tool for the analysis of the game consists of

a reformulation as a convex optimization problem, which
stems from a reformulation of the game as a non-atomic
routing game with capacitated edges [18]. Our reformulation
proves existence of equilibria and serves as an efficient
computational routine for their computation.

To recover our results, we require a few mild assumptions
on the cost of travelling:

Assumption 1 (Regularity of the cost function). The cost
functions cmijk : R≥0 → R≥0 can be decomposed (with a
slight abuse of notation) as

cmijk(x) = cmijk + cmij (x),

where cmijk ∈ R≥0 and cmij : R≥0 → R≥0 are non-decreasing
and lower semi-continuous.

In words, Assumption 1 predicates that the term of the
cost function coupling the agent is population-independent
(i.e., it does not depend on k). This assumption is readily
satisfied when an agent seeks to minimize travel time or the
“sum” of travel time and ticket price (see examples in (1)
and (2)). Then, our result takes the following form:

Theorem 1 (Equilibria of the game). Let Assumption 1 hold.
Let {xm

ijk} be a feasible configuration resulting from the
convex optimization problem

min
xm
ijk

∑
i,j,k,m

cmijkx
m
ijk +

∑
i,j,k

∫ ∑
k xm

ijk

0

cmij (z)dz, (3a)

s.t.
∑
m

xm
ijk = dijk, (3b)∑

j,k

xm
ijk ≤ Cm

i,a, (3c)∑
i,k

xm
ijk ≤ Cm

j,d, (3d)∑
k

xm
ijk ≤ Cm

ij,r, (3e)

xm
ijk ≥ 0. (3f)

Then, {xk,m
ij } is an equilibrium. In particular, an equilibrium

always exists.

Remark (Convexity). The optimization problem (3) is indeed
convex. All constraints are clearly linear in the decision
variables. To show convexity of the objective function
observe that (i)

∫ x

0
cmij (z)dz is convex since cmij is non-

decreasing R≥0, and so its integral is convex on R≥0, (ii)
the composition of a convex function and a linear function
(namely, (xm

ij1, . . . , x
m
ijK) 7→

∑
k x

m
ijk)) is convex; (iii)

the sum of convex functions is convex. In particular, the
optimization problem has N(N − 1)MK decision variables
and O(N(N − 1)MK) constraints (since xm

iik = 0 for
all i ∈ {1, . . . , N}).

In a nutshell, Theorem 1 states that an equilibrium of
the game results from a minimizer of a convex optimization
problem, which can be efficiently computed by off-the-shelf
solvers even in large instances. The “converse” of Theorem 1

1 2

c0121(x) = 1
c0122(x) = 5

c1121(x) = 1
c1122(x) = 1

C1
12 = 2

c2121(x) = 5 + x
c2122(x) = x

Fig. 1: Exemplary network, used to show that the converse of Theorem 1
does not necessarily hold. Here, all capacity constraints are dropped, except
for the green edge, which has capacity 2.

does not necessarily hold: There might exist equilibria which
are not minimizers of (3), as the next example shows.

Example 1. Consider the network reported in Fig. 1. Sup-
pose that there are two populations (i.e., K = 2), the
demand from node 1 to node 2 is 2 for both populations
(i.e., d121 = d122 = 2), and that the green edge is capacited
to 2 (whereas all other capacities are infinity). It is easy to
see that, at any equilibrium, the red edge is never used by
population 2 (since it leads to a delay of 5, which is always
worse than the blue edge) and that the blue edge is never
used by population 1 (since it leads to a delay of at least 5,
which is always worse than the red edge). Let xk ∈ [0, 2] be
the equilibrium flow through the green edge of population k.
Because of the edge capacity, it necessary holds x1+x2 ≤ 2.
For this simple system we can find equilibria by inspection.
In particular, we distinguish two cases:

1) x2 = 1 and so x1 ∈ [0, 1]. This configuration leads to
a delay of 1 for all agents of both populations. Since
no agent can achieve a lower cost by switching to an
alternative mode, this is indeed an equilibrium.

2) x1 ∈ (1, 2] and x2 ∈ [0, 1) so that x1 + x2 = 2. In
this case, the delay for all agents of population 1 is 1,
whereas the agents of population 2 traversing the green
edge incur a delay of 1, and the ones traversing the blue
edge in a delay of 2−x2 > 1. Still, the capacity of the
green edge hinders agents on the blue edge to transfer
to the green edge, so no agent can obtain a lower cost
by switching mode of transport. Thus, this is also an
equilibrium.

Let us now instead deploy Theorem 1 and solve the optimiza-
tion problem (3). As above, the red edge is never used by
population 2, and the blue edge is never used by population
2. So the optimization problem (3) reduces to

min
x1,x2

(2− x1) + x1 + x2 +
1

2
(2− x2)

2

s.t. x1 + x2 ≤ 2,

x1, x2 ≥ 0.

The optimization problem admits the optimal solution x∗
2 =

1 and x∗
1 ∈ [0, 1], which yields an objective value of 7/2.

This is precisely the equilibrium in 1). In particular, the
equilibrium in 2) leads to an objective value of 2 + x2 +



1 2

c0121(x) = x
c0122(x) = x

c1121(x) = x
c1122(x) = x

Fig. 2: Exemplary network showing that equilibria are generally not unique,
even if the cost functions are strictly monotone.

1
2 (2 − x2)

2 > 7/2 for all x2 < 1. Thus, the equilibrium in
2) does not result from the optimization problem (3).

Remark. In the literature, equilibria resulting from optimiza-
tion problems akin to (3) are referred to as Beckmann-
McGuire-Whinston (BMW) equilibria [18]. They enjoy
many properties which make them particularly realistic (e.g.,
for our case studies). We mention two. First, a BMW equi-
librium is an uncapacitated equilibrium for the game where
the shadow prices (i.e., dual multiplier of the capacity con-
straints) is included as an additional cost. Second, consider a
surrogate game where capacity constraints appear as barrier
terms in the latency functions. Then, as the barrier parameter
goes to zero, citizens behave as at a BMW equilibrium.

To obtain an if and only if statement in Theorem 1, we
need to drop the capacity constraints. In this case, we can
decouple the game in N(N − 1) independent games and
deploy standard results in non-atomic routing games [44]:

Corollary 2 (Equilibria of non-capacitated networks).
Let Assumption 1 hold and assume there is no capacity;
i.e., Ci,d = Ci,a = Cm

ij,r = +∞. Then, a feasible
configuration {xm

ijk} is an equilibrium if and only if for
all i, j ∈ {1, . . . , N} {xm

ijk}km lies in the set of minimizers
of the following optimization problem (parameterized in i
and j):

min
xm
ijk

∑
k,m

cmijkx
m
ijk +

∑
m

∫ ∑
k xm

ijk

0

cmij (z)dz (4a)

s.t.
∑
m

xm
ijk = dijk, (4b)

xm
ijk ≥ 0. (4c)

The optimization problem (4) provides us with a full
characterization of equilibria when all capacity constraints
are dropped. It might be tempting to claim uniqueness of
the equilibria when the costs cmij are strictly increasing and,
thus, its integral the strictly convex. However, because of
the term

∑
k x

m
ijk, the objective function (4a) only remains

convex and so equilibria are generally not unique (see the
next example).

Example 2 (Non-uniqueness). Consider the network re-
ported in Fig. 2, where all edges have strictly monotone
costs and are uncapacitated. Suppose, again, that there are
two populations with demand 2 from node 1 to node 2
(i.e., d121 = d122 = 2). With xk ∈ [0, 2] being the
flow corresponding to population k on the red edge, it is

readily verified that the optimization problem (4) (for i = 1
and j = 2) reduces to

min
x1,x2

1

2
(x1 + x2)

2 +
1

2
((2− x1) + (2− x2))

2

s.t. x1, x2 ≥ 0.

It is readily checked that any (x1, x2) ∈ {(α, 2 − α) : α ∈
[0, 2]} is optimal and yields a cost of 2 for all agents of
both populations. By Corollary 2, all these configurations
are equilibria of the game. In particular, the game possesses
infinitely many equilibria.

F. Discussion
A few comments are in order. First, we abstract away

from the topology of the road and public transport network.
This way, we are implicitly not allowing users to combine
different transportation modes to reach their destination (i.e.,
complete part of the trip by bus and part by bike). We
defer this analysis to future research. Second, we assume
that different transportation modes do not interfere. Nev-
ertheless, these assumptions can be readily relaxed via a
slight modification of the travel costs [17]. Third, if the
capacity constraints Cm

i,a and Cm
j,d are dropped, our game can

be decomposed as N(N − 1) games, one for each origin-
destination pair, which can be solved independently (as done,
for instance, in Corollary 2 for the special case Cm

ij = +∞).
Formally, this translates into an optimization problem which
can be decomposed into parallel independent subproblems.

III. CASE STUDIES

We consider the classic case study of Sioux Falls, South
Dakota, USA. Here, locations correspond to the 24 different
nodes of the well-known network, and each pair of locations
is characterized by particular demand patterns, which can be
inferred from the literature [45]. We consider a time window
of three hours during the weekly morning peak. For the sake
of the case study, we randomly split the travelers into three
populations, consisting of students, business travelers, and
leisure travelers. We consider four modes of transportation:
public buses, AMoD, shared bikes, and walking. To each
origin-destination pair, mode of transportation, and popula-
tion we associate the cost function

cmijk(x) =
pmij
VT,k

+ tmij (x),

where pmij is the price of the ticket for transportation
mode m, VT,k is the value of time of population k, and tmij (x)
is the travel time of transportation mode m between loca-
tions i and j. We detail the choices in the following.

Price and value of time: For the public transportation
system, pmij represents the price of a ride (and it is inde-
pendent of i and j). We consider a nominal ride cost of
2.5USD. For AMoD and shared bike services, the price,
instead, depends on the length of the trip. We model it
via a distance-based of 2.5USD/km for AMoD and for
0.4USD/km for bikes. Walking is clearly considered free
of charge. Finally, the value of time VT,k only varies across
populations. In line with existing studies [31], we consider
values of time of 15USD/h for students, 35USD/h for
business travelers, and 7USD/h for leisure travelers.



Travel time: For buses, shared bikes, and walking we
assume that travel time is independent of the total load
between i and j (i.e.,

∑
k x

m
ijk) and therefore directly con-

sider tmij (x) = tnomij . We infer the nominal travel time tnomij

from the distance between i and j assuming standard average
speeds for all modes. For AMoD, instead, we consider road
congestion, which we model via the so-called BPR function
(cf. Equation (2)), so that

tmij (x) = tnomij

(
1 + α

(x
κ

)β)
,

with α = 0.15, β = 4, and κ = 250.
We impose capacity constraints based on vehicle avail-

ability at each station, over the considered time window. For
AMoD and shared bikes, we assume a fleet of 1,200 vehicles,
which we uniformly split over the available locations. For
public transport, we assume 120 buses per location and that
each bus can host up to 50 travelers. Clearly, walking is
uncapacitated. For simplicity, we do not impose additional
constraints on edge and arrival rate. In particular, Cm

ij,r =
+∞ (i.e., no maximum number of vehicles of a given
transportation mode on edge (i, j)) and Cm

j,d = +∞ (i.e.,
no maximum number of vehicle of transportation mode can
arrive at j).

We find an equilibrium of the game by solving the convex
optimization problem (3), as predicated by Theorem 1. To
avoid non-reproducibility of our results, related to the non-
uniqueness of solutions for the optimization problems (3),
we use a quadratic regularization with weight 0.001. The
optimization problem is formulated in CVXPY [46] and
solved with ECOS [47]. On commodity hardware (MacBook
Pro, 2.3 GHz Quad-Core Intel Core i5, RAM 16GB) the
solving time amounts to approximately 1 s.

Given the presented model, we illustrate the following
three case studies, which highlight the capabilities of the
framework. First, we inspect its nominal behavior. Second,
we use our model to reason about the impact of a strategic
relocation of vehicles. Third, we integrate our model in a
game-theoretic framework which models the interactions be-
tween mobility stakeholders, all the way from municipalities
to citizens, through mobility providers.

A. Nominal Case

To start, we illustrate the nominal behavior of the model.
At equilibrium, 49.9% of the population travels via public
buses, 17.3% chooses AMoD services, 30.6% opts for bike
sharing, and 2.2% walks. In general, business travelers,
who have a higher value of time, prefer to reach their
destination using the (usually) fastest transportation mode,
namely AMoD; indeed, 46.8% of business travelers travel
by car. Conversely, 62.8% of leisure travelers, the population
with the lowest value of time, travel by bike, which is the
cheapest transportation options for most origin-destination
pairs. The average travel cost (including fare and monetary
value of time) for a citizen is 6.88USD. On average, how-
ever, business travelers pay 11.20USD for their trip, leisure
travelers only pay 3.48USD, and students pay 6.14USD, in
line with their value of time.

Fig. 3: Log-likelihood of the travel cost for population k travelling from i
to j; i.e., the histogram results from N(N − 1)K populations (N(N − 1)
origin-destination pairs for each of the K populations). With a strategic
allocation of vehicles, AMoD and bike operator can increase their revenues.
This way, however, a few populations face much higher transportation costs,
as the tail of the orange distribution shows.

B. The Impact of Strategic Relocation of Vehicles

Our second case study pertains to the impact of relocation
strategies for AMoD and shared bikes, which effectively
determines the availability of vehicles Ca,i at each location i.
For this case study, we assume that at each location i the
available buses can serve up to 70% of the total transportation
demand starting their trip at location i; for AMoD and bikes,
instead, we consider a constant fleet size (1,200 vehicles)
but with two different spacial distributions of vehicles: (i)
Vehicles are relocated uniformly across all locations and so
the availability of vehicles is Nfleet/N at each location, as
in our nominal case; (ii) vehicles are relocated uniformly
across the 66% most densely populated locations (whereby
we estimate the population density of a location via the
number of trips starting at that location), so Nfleet/(0.66N)
vehicles are available at 66% of the locations.

Notably, with strategic relocation of vehicles, the revenue
of the AMoD operator increases by 5% and the revenue of
the bike operator by 9%, given the more efficient placement
of the vehicles. However, while the average travel cost
across the whole population is nearly unchanged, several
populations and origin-destination pairs face significantly
larger travel costs (see Fig. 3), mainly because they are
left only with inconvenient transportation options. Con-
versely, there is a slight increase in citizens with very
low average travel costs, since in densely populated areas
there are more vehicles and citizens have access to more
transportation options. Overall, such observations show that,
while macroscopic metrics such as profits and average travel
costs over the whole population appear unaltered or even
improving, there might be undesired microscopic underlying
consequences. This kind of data provides policy makers with
actionable information to design regulations preventing such
consequences.

C. A Game between Mobility Stakeholders

In our third case study, we incorporate our model into
a game-theoretic framework to study interactions between
mobility stakeholders, presented in [8]. The interactions are
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Fig. 4: Sequential interactions of the game in the case of a municipality
with two available actions and two MSPs having two and three available
actions, respectively. First, the municipality chooses its action. Then, AMoD
and bike operators simultaneously decide on their action. The payoff of all
stakeholders follows from a low-level simulator of the mobility system. The
boxes depict the so-called information sets: AMoD knows the action of the
municipality, but does not know the action of the bike operator.

modeled as a two-stage game between mobility stakeholders
(see Fig. 4). In the first stage, the municipality announces
its strategy (e.g., public transport fares); in the second stage,
MSPs simultaneously decide on their actions (e.g., design of
their fleet and prices). All decisions are then fed to a low-
level model of the mobility system, which generates payoffs
for all stakeholders.

In this paper, we use our multi-modal model of the
mobility system as a low-level simulator. We believe that
this model provides an attractive trade-off between accuracy
and tractability: Analytical models (e.g., see [8, Section
2D]) enable an elegant theoretical analysis but are usu-
ally overly simplifying; high-fidelity simulators, instead, are
much harder to calibrate and usually require considerable
computational time.

We consider the following actions for the municipality, the
AMoD operator, and the bike operator:

Municipality Price per ride [USD] 0,0.5,1.0,. . . ,4.0
AMoD Price [USD/km] 0,0.5,1.0,. . . ,4.0

Shared Bikes Price [USD/km] 0,0.4,0.8,1.2

For the municipality, the payoff is given by a combi-
nation of average travel cost for citizens (comprising fare
and travel time), CO2 emissions (resulting from vehicles’
operation, production, etc.), and the revenue resulting from
the tickets, respectively weighted with the non-negative pa-
rameters ρcost, ρCO2 , ρrevenue ≥ 0. For instance, if ρcost > 0
and ρCO2 = ρrevenue = 0, the municipality only seeks
to minimize citizens’ cost; if ρCO2 > 0 and ρcost =
ρrevenue = 0, instead, the municipality only minimizes CO2
emissions. For emissions, we focus on the ones generated
by autonomous vehicles (0.1381 kg/km) and shared bikes
(0.0205 kg/km) [40]. We do not penalize the emissions of
the public transportation system, as it runs regardless of
the volume of citizens using it. For the AMoD and bike
operators, instead, the payoff readily consists of the revenue
resulting from fares paid by the citizens.

As presented in [8], we find the equilibrium of the sequen-
tial (Stackelberg) game of Fig. 4 via backward induction.
In turn, this amounts to finding (pure) Nash Equilibria for
all possible strategies of the municipality. In Fig. 5, we
plot the outcome of the game between AMoD and bikes

for various strategies of the municipality. Some configu-
rations are dominated, others are incomparable (i.e., none
is simultaneously best on all metrics), and the best one
depends on the parameters ρrevenue, ρcost, ρCO2 . Remarkably,
free public transport does not result in the lowest average
citizens’ costs and emissions. In particular, the average
citizens’ costs increase monotonically with increasing public
transport prices; emissions, instead, behave differently. Low
public transport prices force both the AMoD and shared bike
operators to also lower their prices, which makes their service
attractive for many citizens. With higher prices, instead, the
AMoD and bike operators will raise their prices, making their
transportation service only attractive to a smaller portion
of the population willing to pay a premium for the more
time-efficient service. This, however, correlates with fewer
vehicles on the road and, thus, lower emissions.

IV. CONCLUSION

We proposed a game-theoretic framework to study in-
teractions in multi-modal mobility systems. Our framework
builds on non-atomic routing games with capacitated edges
and models the behavior of citizens in the presence of
various transportation options. We study the described game
and prove the existence of an equilibrium, which can be
found efficiently by solving a convex optimization problem.
We instantiate our framework in the classic case study of
Sioux Falls, USA, and show its capabilities to reason about
interventions in mobility systems.

This work unlocks exciting venues for future research.
First, we intend to implement our framework across different
categories of basic models for the mobility system. This
involves precisely defining the equilibria and exploring algo-
rithms to calculate them efficiently. Second, we aim to utilize
our framework to model and analyze interactions occurring
at various time scales (e.g., daily vs. weekly, vs. yearly).
Lastly, we strive to apply our methodology to examine other
scenarios that share similar structures, such as settings in
energy and data markets.
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APPENDIX

Proof of Theorem 1. The proof builds on a reformulation
of the game as a standard non-atomic routing game with
capacitated edges. This allows us then to access the large
body of literature studying such games; e.g., see [18].

To ease the presentation, we will use the following
notation: Indices i, j span over the set {1, . . . , N}, the
index k over the set {1, . . . ,K}, and the index m over the
set {0, . . . ,M}. Consider then the non-atomic routing game
with capacitated edges defined on the following graph and
travel demand:

• For each location i we introduce one node, denoted
by i. This node will serve as the destination node for
all agents traveling to i.

• For each location i we introduce node K nodes, denoted
by ik. A node ik will serve as the starting node for all
agents of population k whose origin is i.

• For each node ik we add NM nodes, denoted by ijkm,
and edges (ik, ijkm) with no capacity and (constant)
cost ℓ(ik,ijkm)(x) = cijkm. Thus, this edge will be
traversed by all agents of population k leaving from
station i and going to station j with mode m.

• For each location i and each mode m we add the
“departure nodes” imleave. We introduce the directed
edges (ijkm, imleave) with zero cost and capacity Cm

i,a.
This edge will be traversed by all agents who are leaving
station i with mode m.

• For each location i and each mode m we add the
“arrival nodes” imarrival. We introduce the directed
edges (imarrival, i) with zero cost and capacity Cm

i,d. This
edge will be traversed by all agents who are arriving at
station i with mode m.

• For each pair of stations i, j and each mode m we intro-
duce edges (imleave, j

m
arrival) with cost ℓ(imleave,jmarrival)(x) =

cmij (x), where the cost cmij is as in Assumption 1 and
capacity Cm

ij,r. This edge will be traversed by all agents
leaving station i and going to station j via mode m.

• The travel demand is as follows: For travel demand dijk
of population category k between locations i and j, we
add the demand dijk from node ik to node j.

Since this is now a standard non-atomic game with non-
decreasing and lower semi-continuous costs and capacitated
edges, the flows fe, fP resulting from the optimization
problem

min
fe,fP

∑
e∈E

∫ fe

0

ℓe(z)dz (5a)

s.t.
∑
P∋e

fP = fe, (5b)∑
P∈Pijk

fP = dijk, (5c)

fe ≤ Ce, (5d)
fe, fP ≥ 0. (5e)

form an equilibrium of the game (in particular, it is a so-
called BMW equilibrium) [18]. Here, E is the set of edges on

the graph, ℓe and Ce are the cost and capacity of edge e ∈ E,
and Pijk is the set of paths available to population k to go
from node i to node j.

We now instantiate the optimization problem (5) for our
setting. In our case, each origin-destination pair has M avail-
able paths (i.e., one per mode of transport); e.g., population k
going from i to j can select from a pool of M + 1 paths
(i.e., walking and M MSPs):

ik → ijkm → imleave → jmarrival → j for all m.

Therefore, we can capture the flow on each of these M + 1
paths via a non-negative decision variable xm

ijk and therefore
replace fP by xm

ijk in (5). Thus, the constraint (5c) reads∑
m

xm
ijk = dijk.

We can now express the flows fe as a function of {xm
ijk}.

Specifically, the total flow on the edge (ik, ijkm) is there-
fore precisely xm

ijk, the total flow on edge (ijkm, imleave)
is
∑

jk x
m
ijk, the total flow on edge (imleave, j

m
arrival)

is
∑

k x
m
ijk, the total flow on edge (jmarrival, j) is

∑
ik x

m
ijk.

Moreover, observe that in our case the only edges with non-
zero costs are the edges (ijkm, imleave) and (ik, ijkm). We
can now combine these expressions with (5) to get

min
xm
ijk

∑
i,j,k,m

cmijkx
m
ijk +

∑
i,j,m

∫ ∑
k xm

ijk

0

cmij (z)dz (6a)

s.t.
∑
m

xm
ijk = dijk, (6b)∑

i,k

xm
ijk ≤ Cm

j,d, (6c)∑
j,k

xm
ijk ≤ Cm

i,a, (6d)∑
k

xm
ijk ≤ Cm

ij,r, (6e)

xm
ijk ≥ 0, (6f)

which is precisely (3). Since the feasible region of (6)
results from linear equalities and inequalities, it is a polyhe-
dron. Boundedness (and thus compactness) follows readily
from demand satisfaction (constraint (6b)) and non-negativity
(constraint (6f)). Moreover, the integral of a (measurable)
function is (absolutely) continuous, so the objective (6a)
is continuous. Thus, by Weierstrass theorem, (6) admits
a minimizer, which effectively establishes existence of an
equilibrium.

Proof of Corollary 2. In the uncapacitated case, we can
replicate the construction of the proof of Theorem 1 and
note that it leads to an uncapacitated non-atomic network
game, for which equilibria are well-known coincide with the
minimizers of (6) where constraints (6c), (6d), and (6e) are
dropped [17], [18]. To conclude, note that the optimization
problem can be decomposed into N2 independent optimiza-
tion problems, one for each i and j.


