
Interaction-Aware Personalized Vehicle Trajectory Prediction Using
Temporal Graph Neural Networks

Amr Abdelraouf, Rohit Gupta, Kyungtae Han

Abstract— Accurate prediction of vehicle trajectories is vital
for advanced driver assistance systems and autonomous vehi-
cles. Existing methods mainly rely on generic trajectory predic-
tions derived from large datasets, overlooking the personalized
driving patterns of individual drivers. To address this gap, we
propose an approach for interaction-aware personalized vehicle
trajectory prediction that incorporates temporal graph neural
networks. Our method utilizes Graph Convolution Networks
(GCN) and Long Short-Term Memory (LSTM) to model the
spatio-temporal interactions between target vehicles and their
surrounding traffic. To personalize the predictions, we establish
a pipeline that leverages transfer learning: the model is initially
pre-trained on a large-scale trajectory dataset and then fine-
tuned for each driver using their specific driving data. We
employ human-in-the-loop simulation to collect personalized
naturalistic driving trajectories and corresponding surrounding
vehicle trajectories. Experimental results demonstrate the supe-
rior performance of our personalized GCN-LSTM model, par-
ticularly for longer prediction horizons, compared to its generic
counterpart. Moreover, the personalized model outperforms
individual models created without pre-training, emphasizing
the significance of pre-training on a large dataset to avoid
overfitting. By incorporating personalization, our approach
enhances trajectory prediction accuracy.

I. INTRODUCTION

The advent of vehicle-generated big data has sparked con-
siderable interest in data-driven personalized advanced driver
assistance systems (ADAS) [1]. By leveraging the wealth
of personalized driving patterns and insights expressed by
drivers, personalization has the potential to enhance the
performance of ADAS systems greatly. This, in turn, leads to
improved driving experiences, increased driver acceptance,
and greater utilization of ADAS functionalities. In recent
years, many personalized ADAS applications have been
proposed, including Adaptive Cruise Control [2], Forward
Collision Warning [3], Lane Keeping Assistance [4], among
many others. Furthermore, personalization extends to battery
electric vehicle (BEV) ADAS applications. Personalized
range estimation, in particular, holds significant promise
in mitigating range anxiety, as it enables more accurate
predictions of available driving range for individual drivers’
given their unique driving styles [5].

Vehicle trajectory prediction is a foundational component
in many ADAS applications and autonomous vehicle (AV)
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systems [6]. It plays a significant role in various safety-
critical ADAS applications, such as collision warning [7],
automated braking [8], [9], and lane change prediction [10].
The accuracy of trajectory prediction is crucial for enhancing
the effectiveness of these safety-critical applications [11],
enabling them to provide timely warnings while minimizing
false positives. Moreover, in the context of autonomous ve-
hicles, trajectory prediction plays a vital role in ensuring safe
motion planning and overall system safety [12]. Anticipating
and responding to dynamic traffic situations helps to reduce
the risk of accidents and instills trust in AV systems. Ad-
ditionally, trajectory prediction can significantly contribute
to Vehicle-to-Vehicle (V2V) communication, particularly in
intent-sharing [13] and negotiation applications [14]. By
facilitating vehicular communication of their intentions to
others, trajectory prediction for intent-sharing promotes co-
operative behavior in mixed traffic, improves traffic flow, and
enhances overall safety.

Recent advancements in trajectory prediction have em-
phasized the significance of vehicle interactions [12].
Interaction-aware trajectory prediction considers the spatio-
temporal relationship between the target vehicle and its
surrounding neighbors. In the recent past, some of the
most effective approaches for short-term trajectory prediction
combined graph neural networks (GNNs) to model the spatial
domain and recurrent neural networks (RNNs) to capture the
temporal domain for vehicle interactions [15], [16].

Despite the substantial body of research dedicated to
vehicle trajectory prediction, a notable research gap persists
in personalized vehicle trajectory prediction. Specifically,
there is limited exploration of interaction-aware personalized
trajectory prediction methods [17]. A major challenge stems
from the lack of individual driver trajectory data which
captures the driver’s trajectory in addition to the driver’s
surrounding vehicle trajectories for an extended period of
time.

This paper presents a novel approach for generating
personalized interaction-aware vehicle trajectory predictions.
Our method builds upon state-of-the-art techniques and com-
bines graph convolution networks (GCN) with Long Short-
Term Memory (LSTM) models to effectively capture the
dynamics of vehicle interactions. To obtain individual driver
trajectories which can support interaction-aware modeling,
we utilized human-in-the-loop simulation using the CARLA
driving simulator [18]. The proposed personalization frame-

ar
X

iv
:2

30
8.

07
43

9v
2 

 [
cs

.L
G

] 
 1

6 
A

ug
 2

02
3



work leverages transfer learning. Initially, a base model
was pre-trained on a large-scale vehicle trajectory dataset
named CitySim [19]. Subsequently, the model was fine-
tuned for each driver using their individual driving data,
resulting in a unique model for each driver tailored to their
specific driving characteristics. Experiments indicated that
our proposed personalized approach generates more accurate
future trajectories compared to generic trajectory prediction.
The proposed method can be used to personalize various
ADAS applications, such as collision warning, enhancing
their accuracy while reducing their false positive rate. The
improvements can contribute to a better driving experience
by improving safety, reliability, and driver trust.

In summary, the contribution of this paper is three-fold:
1) We introduced a new method for predicting future

vehicle trajectories that incorporates personalized driv-
ing characteristics. Our approach employed transfer
learning to first learn generic interaction-aware driving
patterns, which were then fine-tuned using driver-
specific trajectories.

2) To obtain driver-specific trajectories which can support
interaction-aware trajectory prediction, we conducted a
human-in-the-loop simulation experiment that captured
naturalistic driving behavior and surrounding vehicle
trajectories.

3) We demonstrated the effectiveness of our approach
through experiments and analysis, which showed that
our interaction-aware personalized trajectory predic-
tion outperforms generic trajectory prediction methods.

The remainder of this paper is structured as follows:
Section II provides an overview of related work, Section III
describes the personalization scheme and model architecture,
Section IV describes the personalized driving data and large-
scale trajectory dataset used for experimentation, Section V
presents the experimental results, and Section VI concludes
the paper and discusses future work.

II. RELATED WORK

A. Vehicle Trajectory Prediction

In recent years, there have been several comprehensive
surveys focusing on vehicle trajectory prediction [12], [20],
[21]. Notably, Huang et al. [12] conducted a recent sur-
vey that examined various trajectory prediction methodolo-
gies. These approaches were categorized into physics-based
methods, classic machine learning methods, reinforcement
learning-based methods, and deep learning-based methods.
Physics-based models are often regarded as the simplest
approach to trajectory prediction. While these methods may
be suitable for short prediction horizons, their accuracy
deteriorates as the output horizon increases. Physics-based
methods encompass a range of models, from basic ones
like constant velocity and constant acceleration to more
sophisticated techniques like Kalman Filtering (KF) methods
[22]. Classic machine learning methods utilize a data-driven

approach for trajectory prediction. These algorithms incor-
porate various techniques such as Gaussian Process (GP)
[23], [24], Support Vector Machine (SVM) [25], [26], and
Hidden Markov Models (HMMs) [27], [28]. Reinforcement
learning approaches leverage expert demonstrations to learn
optimal driving policies by maximizing the expected reward.
Example algorithms include Inverse Reinforcement Learning
(IRL) [29] and Generative Adversarial Imitation Learning
(GAIL) [30].

In the recent past, deep learning-based approaches have
demonstrated state-of-the-art performance for vehicle trajec-
tory prediction, particularly given the increased availability
of large trajectory datasets. The superior performance can
be attributed to the innate effectiveness of deep learning at
capturing the intricate patterns present in large datasets [21],
[31]. Previous research has focused on utilizing sequential
deep neural networks to address the temporal nature of
the vehicle trajectory prediction problem. Methods such as
Recurrent Neural Networks (RNNs) [32], [33] and sequence-
to-sequence Transformers [34] have been employed for this
purpose.

Vehicle interactions play a significant role in vehicle
trajectory prediction. To effectively incorporate these in-
teractions within the deep learning modeling framework,
prior research has frequently integrated a sequential neural
network module with a spatial counterpart to create an end-
to-end spatio-temporal trajectory prediction network. For
instance, Convolutional Neural Networks (CNNs) have often
been utilized to model the spatial context for the trajectory
prediction problem [35]–[37]. Deo et al. [35] employed
CNNs and LSTM to create a convolutional social pooling
algorithm. The authors utilized a CNN-LSTM architecture
to capture the trajectories of neighboring vehicles, extracting
embeddings that were then utilized to generate multi-modal
trajectories based on vehicle maneuvers. In recent publica-
tions, Graph Neural Networks (GNNs) have gained popular-
ity for modeling the spatial domain of vehicle interactions
[15], [16], [38], [39]. GNNs are well-suited for this task as
they effectively capture the relationships among vehicles in
the neighborhood. Each vehicle is represented as a graph
node, and the interactions between vehicles are represented
by edges in the graph.

B. Personalized Trajectory Prediction

A few research efforts proposed methods for personalized
trajectory prediction. However, due to lack of long-term
interaction-aware personal trajectory data, many of these
researches proposed to first group driving behavior into
distinct clusters [40], [41]. For example, Xing et al. [40]
introduced an approach for trajectory prediction that starts by
clustering the driving style of the target vehicle into one of
three categories: conservative, moderate, or aggressive using
Gaussian Mixture Models (GMM). The method utilized a
pre-trained LSTM network and subsequently fine-tuned a
regression head tailored to each of the three driving styles.



Fig. 1. Proposed trajectory prediction network architecture

Other approaches aimed to learn individual driver profiles
by constructing personalized reward functions using Inverse
Reinforcement Learning (IRL) [42], [43]. However, the ap-
proach in [42] was developed without leveraging long-term
personalized trajectories and was tested on a few seconds of
individual driving periods. Moreover, the approach presented
in [43] did not consider the interactions between the target
vehicle and its neighboring vehicles.

This paper aimed to address the literature gap in personal-
ized trajectory prediction by first collecting extended person-
alized vehicle trajectory. To facilitate interaction-aware tra-
jectory prediction, the dataset captured target vehicles’ sur-
rounding traffic trajectory data as well. Next, an interaction-
aware approach which utilized temporal graph neural net-
works was introduced. Transfer learning techniques were
incorporated to create personalized models for each driver.
Finally, the effectiveness of the approach was evaluated using
the collected individual driving data.

III. METHODOLOGY

The proposed model is illustrated in Figure 1. It presents
an architecture designed to predict the future trajectory of the
target vehicle by processing a traffic graph centered around
it. The model follows an encoder-decoder structure, with a
GCN-LSTM network serving as the encoder and an LSTM
network serving as the decoder.

A. Traffic Graph

The input graph is represented as an undirected graph G =
(V,E), where the set of nodes vi ∈ V of size N consists of
the target vehicle and the vehicles in its neighborhood. The
set of edges (vi, vj) ∈ E represents the connections between
vehicles in close proximity, satisfying two conditions: they
are within 1 lane of each other and their distance is less than
or equal to a threshold τ .

Each vehicle vi is associated with a node feature vector
Xi ∈ RTin+1×F , containing its historical trajectory for the
past Tin time steps in addition to the current time step.
Each element within a time step contains the vehicle’s x-
coordinate, y-coordinate, and speed. The historical trajectory
Xi of a vehicle vi is defined as:

Xi = {Ct−Tin
i , . . . , Ct−1

i , Ct
i} (1)

where each element Ct
i is defined as:

Ct
i = {xt

i, y
t
i , s

t
i} (2)

B. Interaction Modeling

The proposed encoder model combined an LSTM network
for temporal feature embedding and a GCN network for cap-
turing the spatial interaction between neighboring vehicles.
The LSTM network was specifically designed to capture se-
quential dependencies, enabling it to extract valuable features
from each vehicle’s historical trajectory data. By sharing
weights across LSTMs, the model ensured consistent repre-
sentations. The LSTM generated 1-dimensional embeddings
Xembed, which served as node feature inputs for the GCN
layers.

Graph Convolution Networks, initially introduced in [44],
were specifically designed as an alternative to CNNs for
effective modeling of graph-based structures. GCNs require
two inputs: an adjacency matrix and a set of features. In our
implementation, the adjacency matrix A ∈ RN×N represents
the connectivity between nodes in the graph, where N
corresponds to the number of nodes. Ai,j = Aj,i = 1 if
there exists an edge (vi, vj), and 0 otherwise. The set of
features X ∈ RN×D represents the input feature vector for
each node in the graph, where D denotes the number of
features. Notably, in our implementation, X is constructed
from the output of the LSTM embeddings Xembed and D is
equal to the size of the embedding output from the encoder
LSTM.

Building upon the methodology described in [16], our ap-
proach incorporates a 2-layer GCN module, which performs
the following operation:

GCN(Xembed, A) = D̂− 1
2 ÂD̂− 1

2H(0)W (1) (3)

Here, H(0) is computed as:

H(0) = RELU(D̂− 1
2 ÂD̂− 1

2XembedW (0)) (4)

In the equations above, a node-wise self-connection was
established by adding the input adjacency matrix A to the



Fig. 2. Transfer learning-based trajectory prediction personalization

identity matrix I , denoted as Â = A + I . This self-
connection allows vehicle nodes to incorporate their own
historical trajectories during GCN propagation. Furthermore,
the weights of the adjacency matrix were normalized by the
node degree using the diagonal matrix D̂i,i =

∑N
j Ai,j .

Finally, W (0) and W (1) represented the trainable parameters
of the first and second GCN layers, respectively.

C. Future Trajectory Generation

The decoder layer of the proposed model is responsible
for generating the future trajectory of the target vehicle. It
begins by extracting the GCN embedding state of the target
node and utilizing it as input for an LSTM module. The
decoder LSTM captures the temporal dependencies between
the output time steps. Subsequently, the model generates the
output Yi ∈ RTout×2, which contains the x and y coordinates
of the future trajectory for each time step in the output
horizon Tout.

The future trajectory Yi for a target vehicle vi is defined
as follows:

Yi = {{xt+1
i , yt+1

i }, . . . , {xt+Tout
i , yt+Tout

i }} (5)

D. Model Training

The proposed model was trained using backpropagation,
with the loss function L defined as:

L(Y, Ŷ ) =
1

Tout ·M

M∑
i=1

Tout∑
t=1

∣∣xt
i − x̂t

i

∣∣+ ∣∣yti − ŷti
∣∣ (6)

In this equation, xt
i and yti represent the true x-coordinate

and y-coordinate of example i at time step t, respectively.
The predicted x-coordinate and y-coordinate at time step t
are denoted as x̂t

i and ŷti , respectively. M is the number of
examples used for training and Tout is the output prediction
horizon.

Fig. 3. CARLA Town 04 map annotated with the portions of the road
used for data collection

E. Personalization

The proposed personalization scheme, depicted in Figure
2, involves two main steps. Initially, a base model is con-
structed by training the proposed architecture on a large-scale
vehicle trajectory dataset. Subsequently, personalized models
are created for each driver using transfer learning. This is
achieved by loading the weights of the pre-trained base
model and fine-tuning it using the driver’s own trajectories.
During fine-tuning, the encoder network weights remain
frozen to preserve the learned spatio-temporal interaction
embedding representations, while the decoder weights are
updated. This approach allows for personalized trajectory
prediction by leveraging the base model’s learned features
and adapting them to individual driver characteristics.

IV. DATA DESCRIPTION

A. Personalized Trajectories

To overcome the limited availability of long-term natural-
istic driving data that can support interaction-aware trajectory
prediction, we adopted a human-in-the-loop driver simulation
approach. The CARLA driving simulator [18] served as
our platform, providing pre-implemented vehicle models,
control and physics, road geometry, and traffic management
modules. In our hardware setup, we utilized a G29 Logitech
steering wheel, floor pedals, and a driving seat.

Our experimentation focused on highway scenarios.
Therefore, we utilized Town 04 in CARLA, which offers
a continuous 3-lane highway configured in the shape of
a figure-eight. We extracted the trajectories from the non-
curved segments of the highway for use in our experiment
as illustrated in Figure 3.



TABLE I
TRAJECTORY PREDICTION RMSE (M)

Prediction
Horizon (s) CV Seq2seq

LSTM
Generic

GCN-LSTM
Individual

GCN-LSTM
Personalized
GCN-LSTM

1 1.427 1.168 0.834 1.063 0.763
2 2.360 1.546 1.344 1.533 1.191
3 3.573 2.741 1.820 1.965 1.529
4 5.439 3.275 2.547 2.670 2.022
5 6.109 5.885 5.351 4.486 3.024

We gathered data from a total of five distinct drivers for
our study. Each driver received instructions to adhere to
traffic laws and drive in a typical manner as they would on
public roads. To capture a comprehensive range of driving
behaviors, each participant completed four driving rounds,
with each round lasting 10 minutes. Thus, we obtained a
total of 40 minutes of personalized naturalistic driving data
per driver. To capture the range of driving behaviors under di-
verse traffic conditions, we systematically varied the number
of vehicles in the background across the rounds. Specifically,
we set the number of vehicles in the background traffic with
three different settings: 100, 200, and 300 vehicles. This
variation enabled us to capture how different drivers adapt
and respond to different traffic densities in our personalized
dataset.

B. Large-Scale Trajectories

The CitySim dataset [19], specifically the Freeway B
scenario, was used for base model pre-training. This dataset
includes bird’s-eye view vehicle trajectories obtained from
drone videos. Multiple drones were flown concurrently to
capture continuous trajectories along an extended highway
segment. The Freeway B scenario is a long continuous stretch
of a non-curved highway. The dataset covered a duration
of 35 minutes and included trajectory data from a total
of 7,307 vehicles in various traffic conditions. The average
trajectory length was 45 seconds, with a standard deviation of
24 seconds. The dataset provides a diverse range of traffic
conditions, allowing the base model to learn from a wide
range of scenarios encountered by numerous drivers on the
freeway.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

In this experiment, 10 minutes from each driver’s personal-
ized trajectories were used for evaluation. To generate future
trajectories, 5 seconds of historical trajectories were utilized
to predict the subsequent 5 seconds of future trajectories
for the target vehicle. The time step interval employed was
0.5 seconds. Thus, the proposed model parameters Tin =
Tout = 10. Furthermore, in the input traffic graph, the
distance threshold for edge creation τ was set to 100 feet.

B. Evaluation Metrics

Similar to previous trajectory prediction works, we
adopted Root Mean Square Error (RMSE) for evaluation.
RMSE measures the difference between the ground truth
and the predicted value at time step t using the following
equation:

RMSEt =

√√√√ 1

M

M∑
i=1

(xt
i − x̂t

i)
2 + (yti − ŷti)

2 (7)

In this equation, xt
i and yti represent the true coordinates at

time step t, and x̂t
i and ŷti represent the predicted coordinates

at time step t. M is the number of samples. We compare the
RMSE values at output horizons of 1 second to 5 seconds
using 1-second intervals. The RMSE values were reported
in meters.

C. Baseline Models

Several baseline models were used to compare the perfor-
mance of the proposed model. The results compare between
the following models:

• Constant Velocity (CV): A constant velocity Kalman
filter was employed to predict the future trajectory. It
assumes constant velocity motion.

• Sequence-to-Sequence (Seq2seq) LSTM: This approach
utilizes an LSTM encoder and LSTM decoder network.
It does not incorporate a graph module for spatial
interaction modeling.

• Generic GCN-LSTM: The base GCN-LSTM model was
employed without any fine-tuning for individual drivers.

• Individual GCN-LSTM: Separate GCN-LSTM models
were trained for each individual driver using their
respective data. No pre-training was conducted for these
models.

D. Results

Table I compares the results of the proposed model against
the baseline models. It contains output RMSEs for different
prediction horizons. The results indicate that, while the
output of the CV model is relatively comparable for shorter
prediction horizons, it rapidly deteriorates as the prediction
horizon increases. The generic GCN-LSTM outperforms
the CV model and the Seq2seq LSTM model, highlighting
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the effectiveness of the spatio-temporal interaction-aware
modeling approach.

The results in Table I indicate that the personalized GCN-
LSTM surpasses its generic counterpart, emphasizing the im-
portance of personalization in vehicle trajectory prediction.
Furthermore, the corresponding graph presented in Figure 4
illustrates the RMSE reduction percentage achieved by the
personalized GCN-LSTM model compared to the generic
model. The results indicate that the further out the prediction
horizon, the higher the error reduction margin. Notably,
longer prediction horizons are more challenging to forecast
given the higher level of uncertainty. Nevertheless, the results
indicate that the personalized model improvement is more
pronounced for longer horizons.

In order to assess the significance of the pre-training phase
for the personalized GCN-LSTM model, its performance
was compared to individual GCN-LSTM models trained
exclusively on each driver’s data. The findings presented in
Table I demonstrate that the personalized GCN-LSTM model
surpasses the individual model results. This observation
implies that the individual model may encounter overfitting
issues when solely trained on the driver’s data. By leveraging
a diverse range of driving scenarios during pre-training,
the personalized model showcases superior generalization
capabilities compared to the individual model.

E. Impact of Personalization

To further investigate the impact of personalization on
vehicle trajectory prediction, the number of driving minutes
used for fine-tuning was varied. As mentioned earlier, 40
minutes of personalized naturalistic driving data were col-
lected for each driver, with 10 minutes allocated for testing.
Subsequently, the number of driving minutes for model fine-
tuning was varied from 5 to 30 minutes, and the RMSE was
computed for each variation.

Figure 5 illustrates the relationship between the driving
duration used for fine-tuning and the trajectory prediction
RMSE for different horizons. The graph demonstrates a
clear trend where an increase in the number of fine-tuning
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Fig. 5. Impact of driving duration used for personalization on trajectory
prediction RMSE

minutes leads to a decrease in RMSE. Furthermore, in
alignment with the results depicted in Figure 4, it can be
noticed that personalization has a more pronounced effect
on longer prediction horizons. The graph trends suggest that
a longer duration of personalized driving data positively
impacts the trajectory prediction accuracy, particularly for
longer prediction horizons.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a personalized interaction-
aware trajectory prediction method that leverages GCNs and
LSTMs to model the spatio-temporal vehicle interactions
between the target vehicle and its neighboring vehicles. By
employing transfer learning, we personalized the proposed
model by pre-training it on a large-scale vehicle trajectory
dataset and subsequently fine-tuning it for each unique
driver, thus creating a personalized model that captures the
unique patterns of individual drivers. To overcome the lack
of availability of extended interaction-based personalized
trajectories, we employed human-in-the-loop simulation to
collect interaction-based personalized trajectories.

Through experiments, we demonstrated that the personal-
ized GCN-LSTM model outperforms its generic counterpart,
particularly for longer prediction horizons. This highlights
the effectiveness of our personalized approach in capturing
the driver-specific characteristics and improving trajectory
predictions. Furthermore, our results indicated that the per-
sonalized model surpasses individual models created without
pre-training, emphasizing the significance of pre-training on
a large dataset to mitigate overfitting issues and enhance
prediction accuracy.

The implications of personalized trajectory prediction are
profound for various ADAS systems such as collision warn-
ing and lane keeping assist. By tailoring the predictions to
individual patterns, the accuracy is improved, and the false
positive rate is reduced. Consequently, these enhancements
lead to greater safety and reliability within the systems,
while instilling driver trust. Furthermore, personalized tra-
jectory prediction can affect vehicle-to-vehicle (V2V) com-



munication applications, specifically intent-sharing and road
resource negotiations between vehicles. This is particularly
relevant in mixed traffic scenarios, where both connected
automated vehicles (CAVs) and manually driven connected
vehicles interact.

Future work should focus on further validating the sig-
nificance of personalization in interaction-aware trajectory
prediction by collecting a larger dataset of personalized
trajectories. In addition, although simulation data offers a
convenient way to demonstrate the effectiveness of person-
alization, it is crucial to address the domain shift between
simulation and real driving. Integrating real-world data into
the training process will enhance the model’s ability to
generalize and accurately predict trajectories in practical
driving scenarios.
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