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Abstract— Autonomous driving technology is poised to trans-
form transportation systems. However, achieving safe and accu-
rate multi-task decision-making in complex scenarios, such as
unsignalized intersections, remains a challenge for autonomous
vehicles. This paper presents a novel approach to this issue with
the development of a Multi-Task Decision-Making Generative
Pre-trained Transformer (MTD-GPT) model. Leveraging the
inherent strengths of reinforcement learning (RL) and the
sophisticated sequence modeling capabilities of the Genera-
tive Pre-trained Transformer (GPT), the MTD-GPT model
is designed to simultaneously manage multiple driving tasks,
such as left turns, straight-ahead driving, and right turns
at unsignalized intersections. We initially train a single-task
RL expert model, sample expert data in the environment,
and subsequently utilize a mixed multi-task dataset for offline
GPT training. This approach abstracts the multi-task decision-
making problem in autonomous driving as a sequence modeling
task. The MTD-GPT model is trained and evaluated across
several decision-making tasks, demonstrating performance that
is either superior or comparable to that of state-of-the-art
single-task decision-making models.

I. INTRODUCTION

Autonomous driving technology promises to bring rev-
olutionary changes to transportation systems [1], [2], yet
ensuring safe and accurate decision-making in complex
scenarios remains a significant challenge for autonomous
vehicles (AVs) [3]. Intersections represent one of the most
challenging driving scenarios, where decision-making typ-
ically encompasses tasks such as making left turns, pro-
ceeding straight, and making right turns. Extensive research
has investigated decision-making and interaction issues for
autonomous vehicles in intersection scenarios [1]. In these
studies, rule-based methods (such as PET [4]) often struggle
to handle decision-making in complex scenarios, and game
theory-based methods typically require the setting of strong
assumptions and pose challenges in terms of computational
efficiency [5], [6].

Reinforcement learning (RL), due to its exceptional learn-
ing capabilities and computational efficiency, has been
widely applied in the design of decision-making algorithms
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for AV [7]–[9]. However, these methods mostly use a single
model to handle different tasks, and utilizing a single model
to cope with multiple autonomous driving decision-making
scenarios and tasks remains a significant challenge for RL
[8].

To enhance the generalization capabilities and perfor-
mance of RL, researchers have recently revisited and refor-
mulated RL using Transformer models, achieving promis-
ing results [10]. Inspired by these works, we treat the
autonomous driving multi-task decision-making problem as
a sequence modeling and prediction problem, using the
Generative Pre-trained Transformer (GPT) model to learn
driving data and generate action decisions.

Concurrently, we introduce a pipeline for training GPT in
multi-task decision-making, with guidance from RL experts:
initially, we train an expert model for a single decision-
making task using RL algorithms, followed by sampling
expert data in the environment; ultimately, we utilize a mixed
multi-task dataset for offline GPT training. Based on the
training pipeline and GPT-2 [11], we propose a Multi-Task
Decision-Making GPT (MTD-GPT) model for the multi-
task decision-making of autonomous driving at unsignalized
intersections, which is capable of simultaneously executing
the decision-making tasks of turning left, going straight, and
turning right at unsignalized intersections.

We train multiple MTD-GPT models with different pa-
rameter scales and evaluate them in several decision-making
tasks at intersections through simulations. We find that the
performance of MTD-GPT across various tasks is superior to
or on par with state-of-the-art (SOTA) single-task decision-
making experts.

Our contributions can be summarized as follows:

• We abstract the autonomous driving multi-task decision-
making problem as a sequence modeling problem and
propose a Multi-Task Decision-Making GPT (MTD-
GPT) model based on GPT-2.

• We design a pipeline for training MTD-GPT, utilizing
RL algorithms to train single-task decision-making ex-
perts and providing guidance for MTD-GPT learning
using expert data.

• We assess MTD-GPT’s performance on various
decision-making tasks at unsignalized intersections,
finding that our model’s performance is either supe-
rior or comparable to that of outstanding single-task
decision-making RL models.
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II. RELATED WORKS

A. Decision-making of AV at Intersection

In recent years, considerable research has been devoted
to the problems of decision-making and interaction of AV
in intersection scenarios. These studies have employed vari-
ous approaches, including ruled-based methods [12], game-
theoretic methods [5], [13], and data-driven techniques [8],
[9], [14], in which RL is recognized as a flexible, efficient,
and potent method. However, its widespread implementation
is hindered by several obstacles, one of which is train-
ing a RL model that can effectively manage a range of
driving situations and decision-making tasks [8]. Kai et al.
[8] formulated multitask objectives as a four-dimensional
vector and devised a vectorized reward function to tackle
multi-task decision-making issues at intersections. Liu et
al. [15] introduced a multi-task safe reinforcement learning
framework, resulting in more secure intersection decision-
making for autonomous driving.

Nonetheless, these approaches are heavily dependent on
the intricate design of state spaces and model compo-
nents, posing difficulties when extending their application
to broader and more complex scenarios. In this study, we
utilize the GPT model for multi-task decision-making, which
circumvents the need to create specific structures and com-
ponents for individual subtasks, potentially improving the
model’s adaptability and generalization abilities.

B. Transformer in Reinforcement Learning

The remarkable accomplishments of Transformer models
in domains such as natural language processing (NLP) [16]
and computer vision (CV) [17] in recent years have generated
considerable interest. Consequently, numerous researchers
have attempted to apply Transformers to the RL domain,
achieving remarkable results [18]–[20]. A notable approach
entails converting RL problems into sequence modeling
tasks and directly employing Transformer architectures for
learning, which showcase exceptional performance and gen-
eralization properties [10], [20], [21].

In this study, we recast the autonomous driving decision-
making problem as a sequence modeling task and employ a
Transformer architecture identical to that of GPT-2 to learn
from the data, aiming to achieve multi-task decision-making
at unsignalized intersections.

III. PROBLEM FORMULATION

A. Scenario Description

The problem of multi-task decision-making for AV at
unsignalized intersections is considered. Specifically, we
define a single-lane cross-shaped unsignalized intersection.
A couple of human-driven vehicles (HVs) with different
driving styles and intentions appear randomly from different
directions and positions. After interacting with the HVs, the
AV needs to complete the tasks of turning left, going straight,
or turning right. The scenario we study is shown in Fig.1

AV

HV

Fig. 1: The intersection scenario for multi-task decision-
making in our research.

B. Vehicle Kinematics

In our problem, AV actions determined by the RL expert
and MTD-GPT model are converted to low-level steering and
acceleration signals via a closed-loop PID controller. Vehicle
position and heading are controlled by Eq. (1) and Eq. (2),
respectively:

vlat,r = −Kp,lat∆lat,

∆ψr = arcsin
(vlat,r

v

) (1)

where ∆lat is the lateral position of the vehicle with respect
to the lane center-line, vlat,r is the lateral velocity command,
∆ψr is a heading variation to apply the lateral velocity
command.

ψr = ψL +∆ψr,

ψ̇r = Kp,ψ(ψr − ψ),

δ = arcsin

(
1

2

l

v
ψ̇r

) (2)

where ψL is the lane heading, ψr is the target heading to
follow the lane heading and position,ψ̇r is the yaw rate
command, δ is the front wheels angle control,Kp,lat and Kp,ψ

are the position and heading control gains.
Vehicle motion is determined by a Kinematic Bicycle

Model [22]:
ẋ = v cos(ψ + β)

ẏ = v sin(ψ + β)

v̇ = a

ψ̇ =
v

l
sinβ

β = tan−1(1/2 tan δ)

(3)

where (x, y) is the vehicle position, v is forward speed, ψ is
heading, a is the acceleration command, β is the slip angle



at the center of gravity, δ is the front wheel angle used as a
steering command.

C. Multi-Task Partially Observable Markov Decision Pro-
cess

We describe the multi-task decision-making process of AV
in the traffic environment as a multi-task partially observable
Markov Decision Process (POMDP), which can be formu-
lated by M = (S,A,O,P, {ri}Ni=1), where S is the state
space; A is the action space; O is the observation space; P:
S × A → R is the transition function; {ri}Ni=1 is a finite
set of reward functions with different tasks, ri denotes the
reward function of task i. The goal of the offline GPT model
is to find a policy πgpt(a|s) that maximizes expected return
over all the tasks:

π∗
gpt(a|s) = argmax

π
Ei∼[N ]Eπ

[ T∑
t=1

ri(st, at)
]

(4)

The observation space and action space of AV in our works
are defined as follows:

1) Observation Space: The set of all observable HVs
within the perception range of AV i is denoted as Hi. The
observation matrix for expert i, denoted as Oi, is a matrix
of dimensions |Hi| × |F|, where |Hi| represents the total
number of observable vehicles for expert i, and |F| signifies
the number of features used to describe a vehicle’s state. The
feature vector for vehicle k is expressed as:

Fk = [xk, yk, v
x
k , v

y
k ] (5)

where xk, yk, vxk , v
y
k correspond to the longitudinal position,

lateral position, longitudinal speed, and lateral speed, respec-
tively.

2) Action Space: We focus primarily on the high-level
decision-making actions of AV. As the AV navigates through
an intersection, we predefine the driving route, requiring
the AV to determine acceleration and deceleration actions
to reach its destination. Consequently, we define the action
space A for the AV as a set of high-level control decisions,
encompassing {slow down, cruising, speed up}. Both ac-
celeration and deceleration actions have absolute values of
1m/s2.

IV. METHODOLOGY

In this section, the training pipeline used to train MTD-
GPT is first introduced, then the process of expert data
collection is described. Finally, detailed information on our
MTD-GPT model is introduced.

A. Overview of the Training Pipeline for MTD-GPT

As shown in Fig. 2, MTD-GPT’s training pipeline is
composed of three key components: Expert Data Collection,
GPT Training, and GPT Evaluation. During the Expert Data
Collection phase, multiple expert models are trained using
the proximal policy optimization (PPO) algorithm with the
attention mechanism to achieve excellent performance on
single-task decision-making. Subsequently, in a simulated

environment, the expert’s actions are recorded, generating
a multi-task expert demonstration dataset.

In the GPT Training phase, the multi-task expert dataset
serves as a guide for GPT learning. First, the problem of
multi-task decision-making for autonomous driving is ab-
stracted as a sequence modeling and prediction task. Then we
transform the ”state-action-reward” tuples from expert data
into a token format similar to Natural Language Processing
(NLP) task to match the input format of the GPT model [10].

In the GPT Evaluation phase, the trained MTD-GPT is
assessed in various task scenarios, considering the decision-
making data of GPT as quasi-expert data for future training
of GPT.

Expert Data 
Collection

GPT 
Training

Task 1 ……

Expert 1 ……Train

Sample
……

GPT-2 Transformer

Expert Dataset

Action

GPT 
Evaluation Scenario of Task 1 Scenario of Task 2 Scenario of Task N ……

Expert 2 Expert N

Action ActionState State State

Task 2 Task N

RL  Teaching

Fig. 2: The Training Pipeline for our MTD-GPT.

B. Expert Data Collection

The entire process of expert data collection is illustrated in
Fig. 3. Initially, three distinct autonomous vehicle decision-
making tasks – turning left, proceeding straight, and turning
right – are defined. Subsequently, three RL experts are
trained using the PPO-Attention algorithm. Ultimately, the
action and reward data are recorded and compiled into an
offline multi-task dataset through simulating the actions of
each expert within a designated simulation environment.

(a)Tasks for Intersection

Environment

Agent

𝑎𝑎𝑡𝑡
𝑠𝑠𝑡𝑡 𝑟𝑟𝑡𝑡−1

𝑟𝑟𝑡𝑡

𝑠𝑠𝑡𝑡+1

(b)Training for Every Single Task (c) Data Collection

Multi-Task Dataset 

Fig. 3: The process of the data sample for offline training.

1) RL Experts Training: First, we train a couple of RL-
based experts i (i ∈ 1, 2, ..., N) who is good at single
decision-making task. Every RL expert consists of a policy
network πθ parameterized by θ and a value network Vϕ pa-
rameterized by ϕ. The policy network maps the observation
O to a distribution of actions a. And taking the same inputs



as the policy network, the value network will estimate a
scalar value v.

• Policy Network. To better the performance of the RL
Expert, the attention mechanism [23] is integrated into
the policy network. The policy network with attention
module is shown in Fig.4. For each RL expert i, the
corresponding observation Oi and states Fi are initially
embedded via a Multilayer Perceptron (MLP) encoder.
Following this initial transformation, the embedded data
undergoes further processing within an attention layer,
serving to prioritize and capture salient features. Fi-
nally, the attention-focused data is decoded by an MLP
decoder, converting the processed information into an
actionable output.

AV

HV 1

HV N

…

Encoder Attention Module Decoder

Action

MLP MLP

q

k

v

k

v

k

v

…

V

Q

K

σ(
QKT

𝑑𝑑𝑘𝑘
)V

Attention Layer

Fig. 4: The policy network with attention layer.

• Policy Optimization. The Clipped PPO [24] is used to
train the policy network πθ and the value network Vϕ,
whose main idea is the clipping surrogate objective:

LPPO(θ) = Et

[
min

(
rt(θ)Ât,

clip
(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)] (6)

where r(θ) = πθ(a|s)
πθ′(a|s)

denotes the ratio of the new

policy πθ(a|s) to the old policy πθ′(a|s), Ât signifies
the advantage function and ϵ is the clipping range.

• Reward Function. To pass the intersection in a safe and
efficient way, the reward function of expert i is defined
as:

ri = wcrc + were + wara (7)

where wc,we, and wa are the weight coefficients of
collision reward rc, efficiency reward re, and arrival
reward ra, respectively.

2) Data Sample: Upon completing the RL training, we
deploy all expert models within the intersection simu-
lation environment to collect a combined expert dataset
D = ∪Ni=1Di. In each episode, the data sampling from
experts is transformed into a sequential representation: τ =
(s1, a1, r1, s2, a2, r2, ..., sT , aT , rT ), where st, at, rt are
the state, action and reward of the expert at timestep t,
respectively.

C. Offline Training GPT

Following [10], the GPT’s training process is considered
as the sequence modeling problem and will be trained in an
autoregressive way.

Multi-Task Dataset 

Task 1

…

Task N

Task 2

�𝑅𝑅𝑡𝑡−1 𝑆𝑆𝑡𝑡−1 𝑎𝑎𝑡𝑡−1 �𝑅𝑅𝑡𝑡 𝑆𝑆𝑡𝑡 𝑎𝑎𝑡𝑡

Positional Encodings

MLP  Embeddings

Stacked Input Sequence

Action Prediction Layer

GPT-2 Transformer

𝑎𝑎𝑡𝑡+1𝑎𝑎𝑡𝑡

Attention Mask

Tokenizers

Expert Trajectories
Sample 

𝜏𝜏

Fig. 5: The GPT model streamlines AV decision-making
by sampling expert trajectories, tokenizing them, mapping
tokens via MLP and positional encoding, masking irrele-
vant information with self-attention, and predicting actions
through a linear layer.

1) Input Representation: Let τ (τ ∈ D) denote a trajec-
tory of AV and let |τ | denote its length. The return-to-go
(RTG) of the trajectory τ is defined as: gt =

∑T
t′=t rt′ ,

which represents the sum of future AV ’s rewards from
timestep t. Let s = (s1, ..., s|τ |), a = (a1, ..., a|τ |) and
g = (g1, ..., g|τ |) denote the sequence of state, action and
RTG of τ , respectively. Consequently, the representation of
a trajectory sent to GPT is :

τ ′ =
(
s1, a1, g1, s2, a2, g2, ..., sT , aT , gT

)
(8)

The initial RTG g1 is equal to the return of the trajectory.
2) Architecture: As shown in Fig.5, the MTD-GPT model

utilizes an approach similar to Natural Language Processing
(NLP) techniques for modeling and predicting decision-
making tasks in autonomous driving.

Initially, expert trajectories τ ′ are randomly sampled from
the data pool D for various subtasks, and these trajectories
are then transformed into tokens suitable for the model’s
processing, where ⟨st, at, gt⟩ is defined as one token xt at
timestep t.

Next, a MLP is utilized to map tokens to a continuous
vector space and positional encodings (PE) [23] are then
added to the embeddings to maintain the order of the input
sequence:

x′
t = MLP(xt) (9)

et = x′
t + Positional Encoding(xt) (10)



Then the embedding results are passed through the Trans-
former’s layers to acquire hidden states ht:

ht = TransformerLayer(et) (11)

As shown in Fig.6, we use GPT-2 [11] as our transformer
model, which has the decoder-only architecture. To mask
irrelevant information, the self-attention mechanism [23] is
applied, which computes the attention scores using query Q,
key K, and value V matrices:

Attention(Q,K, V ) = softmax
(QKT

√
dk

+M
)
V (12)

where M is the matrix that ensures the input trajectory at the
timestep t can only correlate with the input from ⟨1, · · · , t−
1⟩.

Finally, a linear prediction layer is used to generate
predicted action at+1 based on the hidden states:

a′t+1 = Linear(ht) (13)

By following this process, at timestep t, MTD-GPT gener-
ates the action a′t+1 conditioned on the tokens from the latest
K timesteps, where K is a hyperparameter and is also re-
ferred to as the context length for the GPT. Specifically, the
policy of MTD-GPT is represented as πgpt(at|s−K,t, g−K,t),
where s−K,t is shorthand for the sequence of K past states
smax(1,t−K+1):t and similarly for g−K,t. The whole training
procedure of MTD-GPT is summarized in Algorithm 1

Transformer-Decoder

Decoder  Block

Decoder  Block…

Decoder  Block

1

2

N

Feed Forward Neural Network 

Masked Self-Attention

Fig. 6: The original structure of GPT-2.

3) Training: All tokens from dataset D are fed into MTD-
GPT, of which left-turn, straight-through, and right-turn tasks
each account for one-third. The policy πgpt is trained by the
Cross-entropy (CE) loss:

LCE =
1

K

K∑
t=1

P (at) log
(
πgpt(s−K,t, g−K,t)

)
(14)

D. GPT Evaluation

After training, MTD-GPT will be evaluated in different
driving tasks at intersections. For task i, we specify the
desired performance gi1 and an initial state si1 of AV. The
MTD-GPT generates the action ai1 = πgpt(s

i
1, g

i
1). Then the

action ai1 will be executed by AV. The next state sit+1 ∼
P (·|sit, ait) and a reward rit = R(sit, a

i
t) will be obtained,

which gives us the next RTG as git+1 = git − rit. And
GPT generates the action ai2 based on si1, s

i
2 and gi1, g

i
2. The

whole decision-making process is repeated until the episode
terminates. Then the decision success rate of the AV on each
task will be tallied and calculated.

Algorithm 1: Multi-Task Decision-Making GPT
Inputs : Offline Dataset D
Outputs: πgpt(a|s, g)

1 Initialize GPT model with random weights θ;
2 for Epoch = 1 to M do
3 repeat
4 Sample a batch of trajectories τ of task i

from D;
5 Compute RTG g for each trajectory τ ;
6 Get tokens x : Tokenize(τ);
7 Embed input tokens : e =MLP (x) + PEt;
8 Acquire hidden states h by

TransformerLayer(e);
9 Get predicted action a by LinearLayer(h);

10 Compute CE loss LCE(θ);
11 Update θ using gradient descent on LCE(θ);
12 until D is empty;
13 end

V. SIMULATION AND PERFORMANCE EVALUATION

A. Simulation Environment

Our simulation platform is built based on an OpenAI
Gym environment [25]. The longitude and lateral decisions
of HVs are controlled by the IDM [26] and MOBIL [27]
models, respectively. All HVs in our simulator are set with
the constant-speed motion prediction and collision avoidance
functions.

B. Implementation Details

For the RL expert, the Encoder and Decoder of the
attention-based policy network both are MLP, which has two
linear layers and the layer size is 64×64. The Attention Layer
contains 2 attention heads and the feature size is 128. We use
Deep Q-learning (DQN) and Proximal Policy Optimization
(PPO) as our single-task baselines. The total training steps
are all 20K. The wc, we and wa in Eq.(7) are all set as 1.
The parameters of MTD-GPT are shown in Table I.

All experiments are conducted in a computation platform
with Intel Xeon Silver 4214R CPU, NVIDIA GeForce RTX
3090 GPU×2, and 128G Memory.

C. Performance Evaluation

1) RL Expert: Fig. 7 presents a comparative analysis of
the RL Expert algorithm, PPO-Attention, which we develop,
juxtaposed with several baseline algorithms including DQN
and PPO. Assessing both the speed of convergence and the
average reward, it becomes discernible that PPO-Attention
exhibits superior overall performance across all decision-
making tasks. This indicates the robustness of our RL expert



(a) (b) (c)

Fig. 7: The performance comparison between RL Experts (PPO-Attention) and other baselines:(a) turning left task, (b) going
straight task, (c) turning right task.

(a) (b) (c)

Fig. 8: The performance of GPT with different parameter counts: (a) training loss, (b) training action error, (c) the success
rate on different testing tasks.

TABLE I: The hyperparameter of the MTD-GPT model

Symbol Definition Value

M Training Epoch 100
Ns Steps for Each Epoch 104

K Training Context Length 30
D Dropout 0.1
Nh Number of Attention Heads 4
Nl Number of Layers 3/6/12
Ed Embedding Dimension 128/ 256/ 1024
Bs Batch Size 64

when faced with singular decision-making tasks, thereby
supplying high-quality action data for GPT model.

2) MTD-GPT Performance Analysis: We train dif-
ferent models with varying parameter counts (approx.
600K, 1.2M, 2.4M, 38M, 75M ) by adjusting the number
of decoder layers and embedding dimensions. The training
losses, action errors, and success rates on test tasks during
the training process for GPT models with different parameter
scales are depicted in Fig.8 (a), Fig.8 (b), and Fig.8(c),
respectively.

As the model’s parameter count increases, convergence is
achieved faster during the training process. The two models
with 38M and 75M parameters exhibit the best convergence
and learning outcomes during training. However, we find that
larger models do not necessarily guarantee better decision-
making performance. We test these models on three decision
tasks at intersections. MTD-GPT (600K) achieves decision
success rates of 66%, 75%, and 94% for left-turn, straight-

ahead, and right-turn tasks, respectively. When the model’s
parameter count increases to 1.2M, the decision success rates
increase by 4%, 8%, and 1%, respectively. Nevertheless,
when the model’s parameter scale further increases, the
decision success rates actually decline.

We posit that models with larger parameter counts are
more prone to overfitting on fixed offline data, leading to
suboptimal performance in test tasks. Therefore, devising
training strategies to prevent overfitting and exploring other
methods to enhance model generalization capabilities will be
our next area of focus.

Fig. 9: The performance comparison between GPT and RL
Experts.

3) MTD-GPT vs. RL Expert: As illustrated in Fig.9,
we compare the single-subtask success rates of MTD-
GPT (1.2M) and RL Expert. RL Expert achieves decision
success rates of 49%, 81%, and 92% for left-turn, right-
turn, and straight-ahead tasks, respectively, while MTD-GPT



(a)

(b)

(c)

Step=1 Step=3 Step=5 Step=8Step=4

Step=1 Step=12 Step=15 Step=18 Step=20

Step=3 Step=8 Step=25 Step=37 Step=60

AV HV

Fig. 10: Three cases of turning left task from different models: (a) Case 1 from GPT with 600K parameters, (b) Case 2
from GPT with 1.2M parameters, (c) Case 3 from GPT with 75M parameters.

(1.2M) achieves 70%, 83%, and 95%. These results show
improvement compared to the single-task RL Expert, and
even GPT models with other parameter scales can achieve
performance comparable to RL Expert in these subtasks. This
demonstrates the promising impact and significant potential
of the MTD-GPT model in multi-task decision-making.

D. Case Analysis

Given the complexity involved in executing left turns at
unsignalized intersections, we evaluate the performance of
our model in such scenarios. We conduct an analysis on three
distinct cases, each corresponding to a GPT model of dif-
ferent parameter scales (600K, 1.2M,and75M ). Animations
demonstrating these cases and more demos can be accessed
at the site.1

Our analysis reveals that, even when confronted with
identical decision-making tasks, models with varying param-
eter scales demonstrate divergent decision-making styles. As
depicted in Fig. 10(a), for Case 1, the AV hardly reduces
its speed after entering the intersection (Step = 3) and
navigates its way through just before an oncoming vehicle
traveling straight arrives at the intersection (Step = 5). This
approach enables the AV to accomplish the task in less time,
but the aggressive decision-making style heightens safety
risks, indicating that it is not an optimal strategy.

Conversely, in Case 2, the AV adopts a more conservative
behavior, as illustrated in Fig. 10(b). Upon entering the

1See https://shorturl.at/eMNS4

intersection, the AV opts to halt and observe (Step = 12),
only advancing into the intersection when the risk is deemed
low or when there is an absence of interaction conflict (i.e.,
after the oncoming vehicle has passed) (Step = 18), thereby
ensuring a safe departure from the intersection.

Furthermore, in the model with 75M parameters, we
notice a further amplification of this conservative decision-
making inclination. As demonstrated in Fig. 10(c) for Case
3, the AV pauses before entering the intersection (Step =
8). However, the adoption of an overly cautious strategy
culminates in an extended waiting period (Step = 8 − 37),
subsequently leading to congestion in its lane and a decrease
in the overall traffic system efficiency.

VI. CONCLUSIONS

Developing a multi-task decision-making model for au-
tonomous driving constitutes a remarkably challenging goal
in the field of research. In this work, we propose the
MTD-GPT model for multi-task decision-making of AV at
unsignalized intersections. Moreover, we design a pipeline
that leverages RL algorithms to train single-task decision-
making experts and utilize expert data to provide guidance
for MTD-GPT learning. Our experimental results demon-
strate that the MTD-GPT model outperforms or matches the
performance of exceptional single-task decision-making RL
models in different decision-making tasks.

In future work, we aim to further expand the generalization
capabilities of the MTD-GPT model, enabling exceptional
performance in tasks such as merging onto ramps, navi-

https://shorturl.at/eMNS4


gating roundabouts, and changing lanes or overtaking on
urban roads. Additionally, we plan to employ a hybrid
dataset comprising natural driving and simulation data for
GPT training. Furthermore, we will investigate incorporat-
ing Reinforcement Learning with Human Feedback (RLHF)
methods into the GPT model’s training regimen, promoting
the generation of more human-like, secure, and interpretable
decision-making behaviors.
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