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Abstract—Parking occupancy estimation holds significant po-
tential in facilitating parking resource management and miti-
gating traffic congestion. Existing approaches employ robotic
systems to detect the occupancy status of individual parking
spaces and primarily focus on enhancing detection accuracy
through perception pipelines. However, these methods often
overlook the crucial aspect of robot path planning, which can
hinder the accurate estimation of the entire parking area. In
light of these limitations, we introduce the problem of infor-
mative path planning for parking occupancy estimation using
autonomous vehicles and formulate it as a Partially Observable
Markov Decision Process (POMDP) task. Then, we develop an
occupancy state transition model and introduce a Bayes filter
to estimate occupancy based on noisy sensor measurements.
Subsequently, we propose the Monte Carlo Bayes Filter Tree,
a computationally efficient algorithm that leverages progressive
widening to generate informative paths. We demonstrate that
the proposed approach outperforms the benchmark methods in
diverse simulation environments, effectively striking a balance
between optimality and computational efficiency.

Index Terms—Occupancy Estimation, Path Planning, Active
Sensing, POMDP, Monte Carlo Tree Search.

I. INTRODUCTION

The development of parking occupancy estimation tech-
niques has emerged as a promising endeavor to enhance
parking resource management and mitigate traffic congestion
[1–3]. A significant research focus has been directed towards
the development of parking occupancy detection systems for
pre-installed surveillance cameras, leveraging advancements in
computer vision technologies [4–6]. Nonetheless, the reliance
on pre-installed cameras severely constrains the occupancy
detection to parking spaces within the cameras’ field of view,
rendering it unable to provide accurate estimates for entire
parking areas, let alone facilities without the presence of such
cameras.

To overcome this limitation, recent studies start employing
robotic systems, such as drones, to obtain accurate occupancy
estimation on an ad hoc basis [7, 8]. This approach is particu-
larly suitable for parking areas that lack pre-installed sensors,
such as street parking spaces and temporary parking areas
for events. For instance, Wang and Ren [7] developed an
autonomous parking occupancy detection system that utilized
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a quadrotor to navigate the parking area and provide real-time
occupancy data. Zhou et al. [8] proposed a vehicle counting
method based on UAV images, which converts vehicle count-
ing into estimating density values across image pixels.

While these methods offer increased mobility and flexibility
for occupancy estimation, their primary focus lies in improving
systems’ perception pipeline to accurately identify the occu-
pancy states of individual parking spaces [?, 4, 5, 8]. However,
the lack of consideration given to the path planning of robots in
these methods can result in limited estimation accuracy of the
entire parking area, since the path taken by the robot greatly
influences the informativeness of sensor observations, which
in turn affects the state estimation accuracy. Furthermore, the
utilization of drones requires dedicated labor and additional
expenses for operational maintenance, further restricting the
applicability of existing approaches.

To deal with these problems, this work focuses on in-
formative path planning for an autonomous vehicle to ac-
curately estimate the occupancy status of a parking area.
The objective is to enable the vehicle to consistently and
accurately estimate the occupancy states of all parking spaces
by utilizing real-time measurements from the onboard sensor,
and to dynamically plan an optimal path that maximizes the
informativeness of sensor measurements, thereby enhancing
the overall estimation accuracy across the entire parking area.
Importantly, as the population of intelligent vehicles with
advanced sensing and planning capabilities continues to grow,
utilizing such vehicles for occupancy estimation can present
a commercially and technically feasible alternative to relying
solely on drones.

State estimation is a vital component for accurately estimat-
ing parking occupancy, as it involves fusing real-time sensor
measurements while considering the arrival and departure
processes of vehicles at each parking space to determine
the current occupancy status. Filtering techniques, such as
the Kalman filter, particle filter, and the more general Bayes
filter framework [9], are effective tools for state estimation in
dynamic systems. We propose modeling the state transition
processes of parking spaces and estimating the parking occu-
pancy status using the Bayes filter framework. This approach
allows us to effectively capture the dynamics of parking space
occupancy and provide reliable estimates.

Planning informative paths to enhance state estimation
accuracy presents a general challenge [10–13]. One popular
solution is formulating the path planning as a Partially Observ-
able Markov Decision Process (POMDP). However, obtaining
exact solutions to POMDPs is computationally intractable
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[14]. Therefore, many approximation algorithms have been
proposed to obtain near-optimal solutions. In recent years,
sampling-based online algorithms utilizing Monte Carlo tree
search (MCTS) [15] to solve POMDPs have achieved note-
worthy success, particularly for large-scale problems. For ex-
ample, Silver and Veness proposed POMCP that incorporates
observation simulations and updates to MCTS during tree
construction [16]. To tackle POMDPs with continuous or large
action and observation spaces, Sunberg and Kochenderfer pro-
posed POMCPOW and PFT-DPW, utilizing double progressive
widening to restrict the number of child nodes, ensuring that
simulations traverse the same node multiple times to prevent
the search tree from being shallow [17]. Based on PFT-DPW,
Fischer and Tas developed the Information Particle Filter
Tree that utilizes the information-theoretic reward function
to generate informative paths for information gathering [18] .
Despite the progresses made, these methods rely on specific
approximation of belief states, such as particles, and cannot
directly apply to informative path planning for parking occu-
pancy estimation due to the substantial computational expenses
associated with maintaining a large particle set to achieve
satisfactory performance.

To address these limitations, this study proposes a system-
atic approach to informative path planning based on MCTS
for an autonomous vehicle, aiming to accurately estimate the
occupancy states of all parking spaces in a given parking area.
The main contributions of the work are threefold:

1) We define the problem of informative path planning
for parking occupancy estimation and formulate it as a
POMDP task. Additionally, We develop an occupancy
state transition model and present a Bayes filter for oc-
cupancy estimation based on noisy sensor measurements.

2) We propose the Monte Carlo Bayes Filter Tree (MCBFT)
algorithm for informative path planning. Specifically, we
employ progressive widening in the observation space to
avoid constructing a shallow policy tree. Furthermore, we
design a heuristic policy to guide the rollout procedure of
MCTS, enabling the computationally efficient generation
of informative paths.

3) Through extensive simulations conducted on various
parking lot scenarios, we demonstrate that the solutions
obtained by the MCBFT algorithm are consistent with the
optimal solutions in over 90% of scenarios. Moreover, the
computational time of MCBFT is only around 30% of
the optimal algorithm, showcasing a favorable trade-off
between optimality and computational efficiency.

II. PROBLEM FORMULATION

Consider a two-dimensional parking lot with N parking
spaces. The autonomous vehicle is assumed to have access to
the parking lot map, and is equipped with a sensor to perceive
the occupancy status of the parking spaces within the field of
view (FOV). The autonomous vehicle is tasked with planning
the optimal paths to observe and estimate the occupancy states
of the whole parking area continually and accurately.
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Fig. 1: (a) Environment model and observation model. The
coordinate system is established with the origin O and two coordinate
axes ÝÝÑ

OX and ÝÝÑ
OY . The parking lot is arranged in a 2-by-2 zone

configuration, with each zone containing 10 parking spaces. The
numbers 1, 5, 6, 10, 11, 21 represent the indices of parking spaces,
and L7 denotes the coverage set of the 7th parking space. The
vehicle is at pose pk with the sensor FOV highlighted in orange, and
Oppkq “ t31, 32, 36, 37u. The black solid rectangle represents that
the corresponding parking space is “occupied”, and the dark gray
star symbols depict the discrete locations associated with the pose
points in V . (b) Motion model. The vehicle’s current pose is pk

with three available actions: turning left, turning right, and moving
forward. The potential future poses are depicted by vehicle icons with
higher transparency.

A. Environment Model

A two-dimensional Cartesian coordinate system is estab-
lished in the parking lot (Fig. 1(a)) that has a width of wl and a
height of hl, and is arranged in a grid of r rows and c columns,
with a corridor of length Lc located between each column.
The parking lot is divided into r ¨ c zones, each containing nz
parking spaces. Each parking space is of rectangular shape,
with the width denoted as wp and the height denoted as hp.
The coordinates of the four vertices of the ith parking space are
denoted as pui1, w

i
1q, pui2, w

i
2q, pui3, w

i
3q, pui4, w

i
4q, respectively,

where i P t1, ¨ ¨ ¨ , Nu. The 2D coverage set of the ith parking
space is defined as Li fi tpu,wq P R2 | u “

ř4
j“1 ϵju

i
j , w “

ř4
j“1 ϵjw

i
j ,

ř4
j“1 ϵj “ 1, ϵj P r0, 1s, j “ 1, ¨ ¨ ¨ , 4u Ă R2. Let

∆t ą 0 represent the discretization time interval, and the kth
time step corresponds to time tk. The autonomous vehicle’s
pose at kth time step is denoted as pk “ pxk, yk, θkq, where xk
and yk represent the position and θk denotes the orientation. A
directed graph G “ pV,Eq with m vertices can be constructed
such that V “ tv1,v2, ¨ ¨ ¨ ,vmu represents the vehicle’s
discrete pose space, where vj P R3 corresponds to the jth
pose point including the position and orientation with respect
to the parking lot frame, and E “ V ˆV denotes the directed
edge set. If xvi,vjy P E, it indicates that the autonomous
vehicle can travel from pose vi to pose vj within ∆t.

B. Observation Model

Let xk “ px1k, ¨ ¨ ¨ , xNk q P t0, 1uN denote the ground-
truth occupancy states, and zk “ pz1k, ¨ ¨ ¨ , zNk q P t0, 1,HuN

represent the sensor measurements of parking spaces. Here “1”
means “occupied”, “0” means “unoccupied”, and “H” means
the parking space is not within the sensor’s FOV. We adopt
a rectangle-shaped area to model the sensor’s FOV, noted as
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Fppkq Ă R2. Let Sp¨q denote the area covered by a 2D set,
and define Oppkq Ă t1, . . . , Nu as the index set of parking
spaces observable by the vehicle at pose pk. The measurement
zik of occupancy state xik is obtained when more than half of
the parking space is within the sensor’s FOV, i.e.,

SpLi X Fppkqq ě 0.5SpLiq ô i P Oppkq ô zik ‰ H.

The sensor follows a probabilistic observation model,

ppzik | xikq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, if zik “ H, i R Oppkq,

p1, if zik “ 1, xik “ 1, i P Oppkq,

1 ´ p1, if zik “ 0, xik “ 1, i P Oppkq,

p2, if zik “ 0, xik “ 0, i P Oppkq,

1 ´ p2, if zik “ 1, xik “ 0, i P Oppkq,

(1)

where parameters p1 P r0, 1s and p2 P r0, 1s represent the
probability of correct observation of occupied and unoccupied
parking spaces, respectively1.

C. POMDP Model for Parking Occupancy Estimation

The POMDP offers a powerful framework for sequential
decision-making under uncertainty. A finite-horizon POMDP
is defined by the 9-tuple pD,S,A,Ω, T,O,R, γ, b0q [19],
where the S, A, Ω are the state, action, and observation set,
respectively. Function T , O, R represent the transition model,
observation model, and reward function, respectively. Here D
is the planning horizon, γ is the discount factor, and b0 is the
initial belief. We aim to find a policy π˚ that can maximize
the expected cumulative reward of the POMDP.

Our work focuses on the sequential decision making for
the autonomous vehicle with the objective of maximizing
the acquisition of occupancy information within a predefined
planning horizon, which can be modeled as a finite-horizon
POMDP. The state and observation can be defined as sk “

ppk,xkq P S, ok “ zk P Ω, respectively. Each pose pk

has a corresponding discrete action space Appkq, in which
each action ak P Appkq drives the vehicle from pose pk to
another pose pk`1 P tp | xpk,py P Eu following the vehicle
motion model pk`1 “ fppk,akq, as illustrated in Fig. 1(b).
The transition model T is defined as

sk`1 “ T psk,akq, (2)

where pk`1 is propagated using the vehicle motion model f ,
and the transition from xk to xk`1 is based on the parking
space state transition model σ, which will be specified in
Section III-A. The observation ok “ Opskq is obtained based
on Eq. (1).

Let Bk “ tb1k, ¨ ¨ ¨ , bNk u denote the vehicle’s estimation of
the occupancy state, with the belief state bik representing the
probability of the ith parking space being occupied at time step
k. An optimal policy sequence π˚ “ pπ˚

k , ¨ ¨ ¨ , π˚
k`D´1q is

1Note that the actual observation model is sensor dependent and can be
different from the one used in this work. However, the proposed method can
be easily extended to sensors with different observation models.

calculated so that the autonomous vehicle can plan an optimal
path to efficiently estimate the parking occupancy,

π˚ “ argmax
π

E

«

k`D´1
ÿ

t“k

γt´kR

ˇ

ˇ

ˇ

ˇ

Bk,pk,π

ff

, (3)

where E is the expectation operator, and the reward function
R is related with the estimation of the occupancy state, which
will be specified in Section IV-A. The vehicle then executes
the optimal action a˚

k “ π˚
k pBk,pkq P Appkq and repeats

this process to replan at the next time step in the receding
horizon manner, so that the vehicle can proactively generate
informative paths based on the newly received observations.

D. MCTS-Based Solutions to POMDPs

MCTS provides a computationally efficient way to solve
POMDPs [15]. MCTS incrementally constructs an asymmetric
policy tree that comprises alternating layers of state nodes and
action nodes through the repetition of four key phases: se-
lection, expansion, simulation, and back-propagation. During
the selection phase, a strategy that balances exploration and
exploitation is employed to navigate through the current policy
tree. Once a leaf node is reached, new nodes are added to the
tree during the expansion phase. Then a simulation rollout is
conducted from the leaf node to estimate the corresponding
reward. Finally, in the back-propagation phase, the parameters
of the visited nodes in this iteration are updated. Once the
policy tree has been constructed, we can choose the optimal
solution from the first layer of action nodes.

III. BAYES FILTERING FOR OCCUPANCY ESTIMATION

A. Parking Space State Transition Model

We propose a discrete-time model for the transition of
individual parking space states based on existing parking lot
traffic models. We assume the states of all parking spaces are
independent of each other.

1) Arrival: The arrival of vehicles in a parking lot is usually
modeled as a Poisson process [20]. In a similar vein, we
propose to adopt a Poisson distribution to model the arrival
process for each parking space. Let l denote the number of
vehicles that pass the parking space during a time interval and
are willing to park in the parking space if it is unoccupied. The
Poisson distribution with mean parameter λ can be expressed
as:

Papl, λq “

"

λl

l! e
´λ if l “ 0, 1, 2, ...
0 else

. (4)

If a parking space is unoccupied at time tk, then during
time interval rtk, tk`1q, the probability of no vehicle parking
in the space is Papl “ 0, λq, and the transition probabilities
can be defined as

ppxik`1 “ 0 | xik “ 0q “ Papl “ 0, λq “ e´λ, (5a)

ppxik`1 “ 1 | xik “ 0q “ 1 ´ e´λ. (5b)

For narrative simplicity, we use p3 to represent the transition
probability Eq. (5b), i.e., p3 fi ppxik`1 “ 1 | xik “ 0q.
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2) Departure: For each parked vehicle, the parking time
is usually modeled as an exponential distribution [20]. Let
µ denote the departure rate for a parked vehicle, and the
probability density function of the exponential distribution is

Pdptq “

"

µe´µt if t ą 0
0 else . (6)

In the case that a vehicle is parked in the parking space at
time tk, we can calculate the probability of the vehicle leaving
the space during rtk, tk`1q through Eq. (6). The memoryless
property of the exponential distribution leads to the following
transition probabilities,

ppxik`1 “ 0 | xik “ 1q “ 1 ´ e´µ∆t, (7a)

ppxik`1 “ 1 | xik “ 1q “ e´µ∆t. (7b)

For narrative simplicity, we use p4 to represent the transition
probability Eq. (7b), i.e., p4 fi ppxik`1 “ 1 | xik “ 1q.

Eqs. (5) and (7) comprise the parking space state transition
model, which we compactly denote as

xk`1 “ σpxkq. (8)

B. State Estimation with Bayes Filter

We use the Bayes filter to recursively fuse sensor measure-
ments to estimate the occupancy state of parking spaces. The
Bayes filter consists of two steps: prediction and update.

Prediction. At time step k, each parking space’s belief
is forward predicted using the parking space state transition
model Eq. (8) in the prediction step,

b
i

k`1 “ p3p1 ´ bikq ` p4b
i
k, i “ 1, ¨ ¨ ¨ , N. (9)

Update. The posterior distribution of the occupancy state is
calculated by fusing sensor measurements via the Bayes rule,

bik`1 “ ηppzik`1|xik`1qb
i

k`1, i “ 1, ¨ ¨ ¨ , N, (10)

where ppzik`1|xik`1q is the observation model defined in
Eq. (1) and η is the normalization factor.

IV. MONTE CARLO BAYES FILTER TREE FOR
PATH PLANNING

A. Reward Function Design

A belief-based reward function R is essential for quantifying
the information gain associated with executing a specific
action. In order to measure information uncertainty of parking
occupancy status, we consider the entropy of the ith parking
space, which can be written as

Hpbikq “ ´biklog2b
i
k ´ p1 ´ bikqlog2p1 ´ bikq. (11)

Then we select the negation of entropy ´H as the information
measure I and subsequently define the information gain as
∆Ipb, b1q “ Ipb1q ´ Ipbq, which has been widely used in the
field of active sensing [21]. Following this idea, the reward
function is formulated as

R “ ∆IpBk, Bk`1q “

N
ÿ

i“1

pHpbikq ´ Hpbik`1qq, (12)

Algorithm 1: Traversal Algorithm
Input: Bk : the set of beliefs, Ψ : the set of all possible paths
Output: ψ˚ : the path selected

1: for j “ 1 : NT do
2: ∆Hj “ 0
3: for i “ 1 : N do
4: N i,1

0 Ð p1, bikq

5: Hi,0
j “ Hpbikq

6: for d “ 1 : D do
7: for e “ 1 : md´1 do
8: pϕi,e

d´1, b
i,e
k`d´1q Ð N i,e

d´1

9: b
i,e
k`d “ p3p1 ´ bi,ek`d´1q ` p4b

i,e
k`d´1

10: if i P Oppj
k`dq then

11: bi,ek`d “ ηp1b
i,e
k`d

12: ξ “ p1b
i,e
k`d ` p1 ´ p2qp1 ´ b

i,e
k`dq

13: N i
d Ð

N i
d Y tpϕi,e

d´1ξ, b
i,e
k`dq, pϕi,e

d´1p1 ´ ξq, 1 ´ bi,ek`dqu

14: else
15: N i

d Ð N i
d Y pϕi,e

d´1, b
i,e
k`dq

16: end if
17: end for
18: end for
19: ∆Hi

j “ 0
20: for d “ 1 : D do
21: Hi,d

j “ 0
22: for e “ 1 : md do
23: Hi,d

j “ Hi,d
j ` ϕi,e

d Hpbi,ek`dq

24: end for
25: ∆Hi

j “ ∆Hi
j ` γd´1

pHi,d´1
j ´Hi,d

j q

26: end for
27: ∆Hj “ ∆Hj ` ∆Hi

j

28: end for
29: end for
30: j˚

“ argmax
j

∆Hj

31: ψ˚
“ ψj˚

where Bk`1 is calculated through the Bayes filter Eqs. (9)
and (10) from the occupancy estimation at the previous step
Bk, action ak “ πkpBk,pkq and observation zk`1.

B. Traversal Path Planning

A straightforward strategy for path planning is to enumerate
all feasible paths and compare their associated cumulative
rewards. The path with the highest cumulative reward, as
defined in Eq. (3), is selected. This Traversal path planning
algorithm is presented in Alg. 1.

First we generate all NT feasible paths for the upcoming D
planning steps according to the current pose pk and the envi-
ronment model. Denote Ψ “ tψ1, ¨ ¨ ¨ , ψNT

u as the set of all
the feasible paths, and each path ψj “ tpj

k,p
j
k`1, ¨ ¨ ¨ ,pj

k`Du

consists of the pose sequence of the vehicle within the
planning horizon D. For the ith parking space, a search tree
for simulating possible future observations is produced. The
nodes in the dth-layer of the tree are described as N i

d “

tN i,1
d , ¨ ¨ ¨ , N i,md

d u, where the eth node N i,e
d “ pϕi,ed , bi,ek`dq

consists of the probability ϕi,ed of the realized observation
sequence from planning step 1 to d and the corresponding
belief bi,ek`d, and md is the total number of distinct observation
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sequences between step 1 and d. Note that the growth of new
nodes in N i

d from N i
d´1 is determined by the observation of

the ith parking space at planning step d.
For each path, the search tree for the ith parking space

is built recursively based on Bayes filter considering all
possible future observations. We first set the initial node
N i,1

0 “ p1, bikq (Line 4). At planning step d, we extract the
information pϕi,ed´1, b

i,e
d`k´1q from the eth node N i,e

d´1 that has
been calculated in the pd ´ 1qth layer (Line 8) , and use
them to compute the belief b

i,e

d`k based on the prediction
step Eq. (9) (Line 9). If the vehicle can observe the parking
space, the sensor observation model is utilized in the update
step to calculate the belief bi,ed`k according to Eq. (10) (Line
11). Furthermore, we add two new nodes to consider the two
possible observation results at planning step d (Line 12-13),
where ξ denotes the probability of the “occupied” observation.
If the vehicle cannot observe the parking space, only one node
is created at planning step d, and the update step of the Bayes
filter is skipped (Line 15). Once all the nodes are expanded to
the Dth layer, we compute the cumulative entropy reduction
∆Hi

j of the ith parking space for the whole prediction horizon
(Line 19-26). Then the entropy reduction of all parking spaces
are subsequently summed to compute the overall entropy
reduction of the current path ∆Hj (Line 27). Finally, we select
the optimal path ψ˚ “ tp˚

k ,p
˚
k`1, ¨ ¨ ¨ ,p˚

k`Du with the highest
cumulative entropy reduction of the parking lot ∆Hj˚ (Line
30-31) and choose the associated pose p˚ “ p˚

k`1 as the next
pose point for the vehicle to head for.

C. Monte Carlo Bayes Filter Tree for Path Planning

While the Traversal algorithm can obtain optimal solutions
through enumeration, the time complexity exponentially in-
creases with growing planning horizon D. Inspired by [17, 18],
we propose MCBFT, an MCTS-based algorithm for infor-
mative path planning, which enables us to evaluate parking
occupancy under low computational burden with minor accu-
racy loss compared to the Traversal algorithm, as shown in
Alg. 2. The SEARCH procedure serves as the entry point for
the decision-making process. It takes the initial belief Bk and
the vehicle’s initial pose pk as inputs, constructs a policy tree,
and selects the optimal action a˚ when the simulation times
reach the preset number I .

The policy tree comprises two distinct types of nodes:
belief nodes and action nodes. The former contains a tuple
of the occupancy estimation and the vehicle’s pose, denoted
as pB,pq, while the latter consists of the vehicle’s action a.
Compared to PFT-DPW [17] and IPFT [18] that utilize the
particle filter to approximate the belief, MCBFT stores precise
belief in each belief node pB,pq, which allows for the exact
calculation of the total belief-based reward J . We maintain
a record xq, C,o, ωy for each belief node pB,pq in the tree,
which consists of its number of visits q, set of child nodes C,
corresponding observation o, and probability ω of generating
o from the observation space. Likewise, for each action node
a, we track xq, C,Qy, which includes its number of visits q,
set of child nodes C, and its estimated reward Q based on

Algorithm 2: Monte Carlo Bayes Filter Tree
Procedure SEARCHpBk,pkq

1: for i P 1 : I do
2: SIMULATE(Bk,pk, 0)
3: end for
4: return a˚

“ argmax
a1

QpBk,pk,a
1
q

Procedure SIMULATEpB,p, hq

5: if h “ D then
6: return 0
7: else
8: if |CpB,pq| ă |Appq| then
9: a Ð sample from Appq ´ CpB,pq

10: CpB,pq Ð CpB,pq Y tau

11: end if
12: a˚

“ argmax
a1

QpB,p,a1
q ` c

b

log qpB,pq

qpa1q

13: if |Cpa˚
q| ă κqpa˚

q
δ then

14: x Ð sample from B
15: pp1,x1

q Ð T ppp,xq,a˚
q

16: o Ð Opp1,x1
q

17: B1
Ð BAYES FILTERpB,oq

18: ωpB1,p1
q Ð ppo | B,p1

q

19: if pB1,p1
q R Cpa˚

q then
20: Cpa˚

q Ð Cpa˚
q Y tpB1,p1

qu

21: J Ð ∆IpB,B1
q ` γROLLOUT(B1,p1, h` 1)

22: else
23: J Ð ∆IpB,B1

q ` γSIMULATE(B1,p1, h` 1)
24: end if
25: else
26: pB1,p1

q Ð sample pB1,p1
q w.p. ωpB1,p1q

ř

B1 ωpB1,p1q

27: J Ð ∆IpB,B1
q ` γSIMULATE(B1,p1, h` 1)

28: end if
29: qpB,pq Ð qpB,pq ` 1
30: qpa˚

q Ð qpa˚
q ` 1

31: QpB,p,a˚
q Ð QpB,p,a˚

q `
J´QpB,p,a˚q

qpa˚q

32: end if
33: return J
Procedure ROLLOUTpB,p, hq

34: if h “ D then
35: return 0
36: else
37: a˚

Ð ROLLOUTPOLICY(B,p)
38: x Ð sample from B
39: pp1,x1

q Ð T ppp,xq,a˚
q

40: o Ð Opp1,x1
q

41: B1
Ð BAYES FILTERpB,oq

42: J Ð ∆IpB,B1
q ` γROLLOUT(B1,p1, h` 1)

43: end if
44: return J

belief B and pose p, where B and p are obtained from the
parent node of action node a.

The SIMULATE function progressively constructs the search
tree of depth h P t0, 1, ¨ ¨ ¨ , Du. An action node a˚ is selected
according to the upper confidence bound (UCB) (Line 12)
[15]. As the number of parking spaces that the autonomous
vehicle can observe increases, the observation space increases
exponentially, and the probability of sampling the same obser-
vation decreases exponentially, leading to constructing a shal-
low tree. To prevent this issue, we use progressive widening to
limit the number of belief nodes linked to the same parent node
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a˚ to κqpa˚qδ , where κ and δ are preset hyper-parameters
(Line 13), so that the simulations can pass through the same
child node multiple times. If the action node a˚ does not have
enough child nodes, a new observation o is generated using the
observation model O, and the posterior belief B1 is computed
with the Bayes filter (Line 16-17). The ω is calculated based on
the observation model Eq. (1) (Line 18). On the other hand, if
the action node a˚ already has enough child nodes, an existing
belief child node is sampled proportional to ω (Line 26). If
the node pB1,p1q has already been created, the SIMULATE
function is called recursively to visit and create deeper nodes
(Line 23, 27). Otherwise, the ROLLOUT function is performed
to estimate J (Line 21, 34-44). We introduce a heuristic
method in ROLLOUT to efficiently generate informative paths.
Specifically in ROLLOUTPOLICY function (Line 37), instead
of random action selection, the optimal action is chosen
probabilistically based on the Traversal algorithm with a preset
planning horizon D1. Finally, the parameters of visited nodes
are updated (Line 29-31).

V. SIMULATION RESULTS AND ANALYSES

The proposed path planning approach is evaluated on var-
ious parking lot scenarios. First, three manually designed,
representative scenarios are created to serve as a sanity check,
qualitatively validating the proposed approach in generating
paths that align with intuitive expectations. Then, 200 random
scenarios are generated to quantitatively evaluate the generality
of the proposed algorithm.

A. Simulation Setup

We utilize the Matlab Automated Parking Valet toolbox
to construct parking lots. We construct three distinct parking
lot models, the parameters of which are listed in Tab. I.
The locations of pose points are distributed in the corridors,
inside the zones, and around the periphery of the zones, and
then the pose points are interconnected based on the motion
model of the vehicle. Each parking space measures wp “ 3m
and hp “ 6m, and the parking space state transition model
Eq. (8) takes parameters µ “ 0.000378 and λ “ 0.000624,
which is derived from the actual parking lot data [20]. The
dimensions of FOV are wf “ 20m and hf “ 10m, and the
observation model takes parameters p1 “ p2 “ 0.95. The
parameters in MCBFT are set as I “ 100 and D1 “ 5.
The simulations are conducted on a laptop with Intel Core
i7-1065G7 CPU@1.30GHz and 16GB RAM.

B. Qualitative Evaluation Using Three Representative Scenar-
ios

We design three representative scenarios based on Parking
Lot Model I to evaluate the ability of the proposed algorithm in
planning informative paths. For each scenario, we conduct 10
simulations, where the parking space state transitions and the
sensor measurements are simulated stochastically. We denote
the 30 parking spaces in the bottom left, bottom right, mid left,
mid right, top left and top right area of the parking lot as the
zone I to zone VI, respectively. If the ith parking space is not

TABLE I: Parking Lot Model Parameters

Model wlpmq hlpmq Lcpmq r c nz
Model I 144 56 18 3 2 30
Model II 108 130 18 7 2 18
Model III 153 74.5 18 4 3 18

(a)

(c)

(b)

MCBFT-20 Traversal-20 Greedy Random

Fig. 2: Path comparison in three representative scenarios. The red,
blue, cyan, and purple lines represent paths planned by MCBFT-20,
Traversal-20, the Greedy algorithm and the Random Walk algorithm,
respectively. The colored rectangle outlining each parking space
represents the initial entropy, which ranges from 0 to 1 as illustrated
in the colorbar in (a). (a) Scenario I. (b) Scenario II. (c) Scenario III.

observed a priori, then bi0 is set to be 0.5. Otherwise, if the ith
parking space is initially observed as occupied or unoccupied,
then bi0 is initialized as 0.95 or 0.05, respectively. We evaluate
the performance of the MCBFT and the Traversal algorithm,
both with a planning horizon of 20 steps, namely MCBFT-20
and Traversal-20, respectively. The baseline algorithms include
the Greedy algorithm, which essentially corresponds to the
Traversal algorithm with planning horizon D “ 1, and the
Random Walk algorithm, where the vehicle randomly selects
an action at each pose. Fig. 2 visualizes the three scenarios and
the generated paths under different path planning approaches.

1) Scenario I: The initial pose of the autonomous vehicle
is set as p19.5, 9.0, 0.0q, and the right half of the parking lot is
observed a priori (Fig. 2(a)). The paths generated by MCBFT-
20, Traversal-20, and the Greedy algorithm can all accomplish
sequential observations of the unobserved zones, thus rapidly
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decreasing the information uncertainty. In contrast, in 90% of
the simulations, the Random Walk algorithm produces unfa-
vorable paths that repeatedly detect zones that have already
been observed, leading to small reduction in entropy.

2) Scenario II: The autonomous vehicle’s pose is now
initialized at p124.5, 28.0, 0.0q, and only the four parking
spaces in zone I are previously observed (Fig. 2(b)). To
maximize the decrease of uncertainty, it is more reasonable
for the autonomous vehicle to make a left turn and observe
zone VI and zone V sequentially, which corresponds to the
blue Traversal planning path shown in Fig. 2(b). In 8 out of
the 10 simulation outcomes, MCBFT-20 generates the same
path as Traversal-20. In contrast, when utilizing the Greedy
algorithm or the Random Walk algorithm, only in 4 out of 10
simulations does the vehicle first observe zone VI and V.

3) Scenario III: The autonomous vehicle starts at pose
p61.5, 28.0, 0.0q, and is most uncertain about the parking oc-
cupancy status of zone III (Fig. 2(c)). Under this circumstance,
both Traversal-20 and MCBFT-20 choose to turn around and
observe zone III first. In contrast, in the Greedy and the
Random Walk algorithm, the number of simulations where
the vehicle performs such behavior is only 0 and 1 out of
10, respectively, and in the remaining simulations, the vehicle
tends to stay in the already observed zones, resulting in little
information gain.

C. Quantitative Evaluation via Randomly Generated Scenar-
ios

To further evaluate the generality of the proposed approach,
we consider two different parking lot models, Parking Lot
Model II and III, and randomly generate 100 scenarios for
each model. For each scenario, we randomly select a set of
zones to be pre-observed. Observed zones are initially assigned
random belief values between 0.3 and 0.95 for “occupied”
spaces, and between 0.05 and 0.7 for “unoccupied” spaces.
Beliefs of unobserved zones are set to be 0.5. The pose of the
autonomous vehicle is also randomly initialized.

We evaluate the performance of five algorithms: the MCBFT
with a horizon of 10 steps, namely MCBFT-10, the Greedy
algorithm, the Random Walk algorithm, and the Traversal
algorithm with planning horizons of 10 and 5 steps, namely
Traversal-10 and Traversal-5, respectively. All tested algo-
rithms share the same ground-truth occupancy status time
series px0, ¨ ¨ ¨ ,xKq, where K denotes the simulation length
and is set to be three-fourths of the total number of discrete
locations reachable by the vehicle. We record the entropy Hk

of the belief and the correctness rate αk of the estimation,
defined as the ratio of the parking spaces where the estimation
is consistent with the actual state. Specifically, the vehicle
estimates spaces with a belief exceeding 0.6 as “occupied”,
and spaces with a belief below 0.4 as “unoccupied”. When the
belief lies between 0.4 and 0.6, the vehicle cannot confidently
estimate the state of parking space, resulting in an “unsure”
estimation that is inconsistent with any actual state.

After simulation, we evaluate the performance of the afore-
mentioned five algorithms based on the three metrics: the

(a)

(b)

(c)

(b)

(c)

Fig. 3: (a) Illustration of Parking Lot Model II. (b) and (c) com-
pare the simulation results of five algorithms in terms of entropy
reduction percentage ∆H

H0
and improvement of correctness rate ∆α,

respectively.

TABLE II: Simulation Results in Parking Lot Model II

Alg MCBFT-10 Traversal-10 Traversal-5 Greedy Random Walk
τ 0.35 0.97 4.8 ˆ 10´2 2.7 ˆ 10´3 1.6 ˆ 10´5

Nα { 45 73 84 100
N∆H { 45 79 81 100

improvement of the correctness rate ∆α fi αK ´ α0, the
average computational time τ (s{step), and the entropy re-
duction percentage ∆H

H0
, where ∆H is defined as H0 ´ HK

that represents the decrease in entropy. Specifically, we denote
Nα, N∆H as the number of scenarios in which MCBFT-
10 outperforms another algorithm in terms of ∆α and ∆H

H0
,

respectively. To further compare the path decisions of MCBFT
and the Traversal algorithm, we define the pose points where
multiple actions are available as the decision points, and
introduce the concept of consistency rate β, which is defined
as the ratio of decision points where the MCBFT-10 and
Traversal-10 take the same action.

1) Parking Lot Model II: We consider a parking lot model
(Fig. 3(a)) that has four more rows than Parking Lot Model
I. The number of locations accessible to the vehicle is 125,
and the simulation runs for 94 time steps. As Fig. 3 shows,
MCBFT-10 and Traversal-10 outperform the other algorithms
on both metrics: ∆α and ∆H

H0
. As shown in Tab. II, MCBFT-

10 demonstrates superior performance compared to Traversal-
5 and the Greedy algorithm in most of the scenarios. In nearly
half of the scenarios, the performance of MCBFT-10 surpasses
that of Traversal-10. Moreover, MCBFT-10 demonstrates an
average running time that is approximately 36% of that
required by Traversal-10. Out of the 2634 decision points,
MCBFT-10 and Traversal-10 make the same decisions in 2465
instances, resulting in β “ 93.58%. These results demonstrate
that MCBFT can obtain optimal actions in the majority of
cases while achieving high computational efficiency.
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(a)

(b) (c)(c)(b)

Fig. 4: (a) Illustration of Parking Lot Model III. (b) and (c) com-
pare the simulation results of five algorithms in terms of entropy
reduction percentage ∆H

H0
and improvement of correctness rate ∆α,

respectively.

TABLE III: Simulation Results in Parking Lot Model III

Alg MCBFT-10 Traversal-10 Traversal-5 Greedy Random Walk
τ 0.20 0.67 4.0 ˆ 10´2 2.3 ˆ 10´3 1.2 ˆ 10´5

Nα { 55 75 84 100
N∆H { 53 77 82 100

2) Parking Lot Model III: We design a parking lot model
(Fig. 4(a)) that has one more column and row than the Parking
Lot Model I. The number of locations the vehicle can travel
to is 104, and the simulation runs for 78 time steps. The
results, as depicted in Fig. 4 and Tab. III, show similar trends
as Section V-C1. The β reaches 92.84%, as MCBFT-10 and
Traversal-10 select the same option in 2413 out of 2599
decision points.

VI. CONCLUSION

We present the problem of informative path planning for
autonomous vehicles to estimate parking occupancy and for-
mulate it under the POMDP framework. We develop MCBFT
that utilizes progressive widening to mitigate the high com-
putational cost and enable online path planning. Simulation
results show that MCBFT achieves a favorable trade-off be-
tween optimality and computational efficiency. Future work
includes evaluating the proposed approach in realistic park-
ing lot environments and extension to multi-vehicle parking
occupancy estimation.
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