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Abstract— Real-time traffic light recognition is essential for
autonomous driving. Yet, a cohesive overview of the underlying
model architectures for this task is currently missing. In this
work, we conduct a comprehensive survey and analysis of
traffic light recognition methods that use convolutional neural
networks (CNNs). We focus on two essential aspects: datasets
and CNN architectures. Based on an underlying architecture,
we cluster methods into three major groups: (1) modifications
of generic object detectors which compensate for specific task
characteristics, (2) multi-stage approaches involving both rule-
based and CNN components, and (3) task-specific single-stage
methods. We describe the most important works in each cluster,
discuss the usage of the datasets, and identify research gaps.

I. INTRODUCTION
Detection and classification of traffic lights (TL) from

camera images, also called traffic light recognition (TLR),
plays a pivotal role in enabling automated driving. It helps to
maintain efficient and safe traffic flow management, reduce
traffic congestion and minimize the risk of accidents. TLR as
a task comprises traffic light detection, which aims at local-
izing the traffic lights in the image, as well as classification
of TL states (colors) and pictograms (arrows), as shown in
Figure 1. The development of convolutional neural networks
(CNNs) has dramatically improved the accuracy of traffic
light detection due to their ability to learn complex features
from images. The effectiveness of CNN-based approaches
depends on the choice of architecture and training data.

In this work, we review and group existing CNN-based ap-
proaches for traffic light detection and classification. Unlike
existing surveys on TLR, we focus on the choice of CNN
architectures. Older surveys [1], [2] focused more on classic
image processing approaches since neural networks were
only sporadically used then. To the best of our knowledge,
the only concurrent modern work is that by Gautam et al. [3],
which presents an in-depth overview but focuses on the
whole pipeline. For the three main steps in the proposed
pipeline (segmentation, feature extraction, and classification),
Gautam et al. consider both classical computer vision ap-
proaches, like histograms of oriented gradients, and those
using neural networks. In contrast, we focus on CNN model
architectures and particularly on the modifications made to
generic object detectors.

II. DATASETS FOR TRAFFIC LIGHT RECOGNITION

Since the appearance of traffic light signalling devices
varies over different countries, a number of TLR benchmarks
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(a) TL detection [2].

(b) TL detection + TL state classification [4].

(c) TL detection + TL state and pictogram classification [5].

Fig. 1: Examples of subtasks within the TLR task.

has been released. We provide an overview of publicly
available datasets in Table I. We also refer to the journal
paper by Jensen et al. [2], which gives a comprehensive
overview of datasets published before 2016.

La Route Automatisée (LaRa) dataset [6] was one of the
first publicly available datasets published in 2015 by a French
joint research unit La Route Automatisée . It contains over
11,000 images and 9,000 annotations recorded as a 25 Hz
video during about a 9-minute long ride in Paris. The images
have a relatively low resolution of 640×480 pixels. All labels
were annotated manually as bounding boxes (BBoxes) with
object IDs for tracking evaluation. The TL state was labeled
as green, orange, red, or ambiguous. Furthermore, each
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TABLE I: Comparison of TLR datasets (∗ – the number of classes in the test subset)

Dataset Year Ref. Number of
images Resolution Depth [bit] Frame

Rate [Hz]
Number of
annotations

Disparity
Data Pictograms Classes Country License

LaRa 2015 [6] 11,179 640×480 8 25 9,168 4 France N/A
LISA 2016 [2] 43,007 1280×960 8 16 119,231 ✓ ✓ 7 USA CC BY-NC-SA 4.0
WPI 2016 [7] 3,456 1920×1080 N/A N/A 6766 ✓ 21, 2 USA N/A

BSTLD 2017 [8] 13,427 1280×720 8, 12 15 24,242 ✓ ✓ 15, 4∗ USA MIT
DriveU v1.0 2018 [9] 40,979 2048×1024 8, 16 15 232,039 ✓ ✓ 423 Germany Academic
DriveU v2.0 2021 [9] 40,979 2048×1024 8, 16 15 292,245 ✓ ✓ 620 Germany Academic

Cityscapes TL++ 2022 [10] 5,000 2048×1024 16 17 N/A ✓ 6 Germany LGPL-2.1
S2TLD 2022 [11] 5,786 1080×1920, 720×1280 N/A N/A 14,130 5 China MIT

image was annotated with a sequence ID and timestamp.
LISA Traffic Light Dataset [2] is a comprehensive

dataset that contains over 40,000 images, originating from
the Vision for Intelligent Vehicles and Application (VIVA)
challenge, which included the traffic light detection bench-
mark. Therefore, the dataset itself is sometimes also referred
to as the VIVA dataset. The data was captured as a 10
Hz video using a stereo camera with an image resolution
of 1280 × 960 pixels and a horizontal field of view of
approximately 43°. Additionally, depth disparity maps for
each image are provided. The dataset consists of a training
subset and a test subset, the latter is kept private to serve
as the basis for benchmarking. All labels were annotated
manually and are provided as pixel-level binary masks and
BBoxes. TL states are encoded using seven classes: go,
go forward, go left, warning, warning left, stop, stop left.
The LISA dataset covers several USA cities (San Francisco,
Berkeley, and Chicago) under different lighting and weather
conditions.

Bosch Small Traffic Lights Dataset (BSTLD) [8] was
recorded along the El Camino Real in California’s San
Francisco Bay Area using a stereo camera. The dataset
includes the corresponding disparity maps. All labels were
annotated manually utilizing 15 classes to describe the color
and pictogram of the TLs. The labels are provided as pixel-
wise binary masks and BBoxes and are split into a training
set and a test set of nearly equal size. Although the training
data is labeled with a full set of 15 classes, the test data
includes only four classes (red, yellow, green, off ).

DriveU Traffic Light Dataset (DTLD) v1.0 [9] was
published in 2016 by the Intelligent User Interfaces (IUI)
group at the University of Ulm in Germany. It has a number
of images comparable to LISA but exceeds all other datasets
in terms of the number of annotations (more than 230,000).
Images with a resolution of 2048×1024 pixels were recorded
by a stereo camera with a frame rate of 15 Hz. The dataset
includes the corresponding disparity maps.

The DTLD v2.0 dataset was released in 2021 as an
extension of the DTLD v1.0. It contains images of the same
resolution and frame rate but covers a broader range of
traffic scenarios, such as roundabouts and T-junctions. Both
datasets were annotated with BBoxes using manual and semi-
automatic methods. The manual annotation was performed
by human annotators, who labeled the TLs with pixel-level
accuracy. The semi-automatic annotation was performed
using a deep neural network trained to detect and classify
TLs in the images.

Both datasets provide a comprehensive set of labels,

arranged into the following groups: the orientation (front,
back, left, right), relevance/occlusion, orientation (horizontal,
vertical), the number of lamps, state (red, yellow, green, red-
yellow, off ), and pictogram (circle, arrow left, pedestrian,
etc.). Because of the large number of possible combinations
of these tags, the resulting number of unique labels exceeds
that of any other dataset. DTLD v1.0 and v2.0 were collected
from eleven German cities, including urban and suburban
environments, to provide diverse TL scenarios.

Furthermore, a number of other public datasets either
include labeled TL states or have been extended to in-
clude them. However, they lack additional attributes such
as orientation, pictogram, and relevance information, which
are necessary to utilize the detected TLs for autonomous
driving. Examples of the datasets extended with TL states
include COCO Traffic [12], where TL states were annotated
in the images from the COCO [13] dataset, as well as
Cityscapes TL++ dataset [10] containing images with fine
annotations from the Cityscapes [14] dataset with additional
TL labels for four attributes: type (car, pedestrian, bicycle,
train, unknown), relevant (yes, no), visible (yes, no), and state
(red, red-yellow, yellow, green, off, unknown). Other datasets
containing only TL state labels are the Roboflow Self-
Driving Car dataset [15], a modified version of the Udacity
Self-Driving Car Dataset [16], Waymo Open Dataset [17],
WPI [7], BDD100K [18], and ApolloScape [19] datasets.

III. OVERVIEW OF ARCHITECTURES FOR TRAFFIC LIGHT
RECOGNITION

Compared to the generic object detection task, specific
challenges in TLR include small object size, sparse structure,
and high variability of the background. Various works have
proposed different methods to approach these issues. We
cluster them into three groups: (1) modifications of generic
object detectors, (2) multi-stage approaches, which perform
TL localization and TL state/pictogram classification in sep-
arate steps, and (3) task-specific single-stage approaches,
which perform TLR within a single network.

Table II summarizes existing work on CNN-based TLR
approaches. In the following, we give an overview of the
most important works in each group. Please note that we
have deliberately omitted approaches involving only TL
classification, without previous detection step (e.g., Gautam
and Kumar [20]), as they are unrealistic for the deployment.

A. Modifications of Generic Object Detectors

The first group comprises approaches that use an existing
CNN-based model for generic object detection with minor



TABLE II: Overview of TLR approaches: modifications of generic detectors, multi-stage approaches,
task-specific single-stage approaches. Backbone architecture is stated in parentheses. Inference speed and accuracy
are mentioned if provided in the corresponding publication. FPS were converted to ms for better compatibility.

Author Year Ref. Approach Dataset Inference
speed Accuracy

TL
states

classified

TL
pictograms
classified

Source
code

John et al. 2014 [21], [22] CNN similar to LeNet Private (USA,
Japan, France) 10 ms Accuracy: 96.25-99.4% ✓

Weber et al. 2016 [23] DeepTLR (single CNN) Private (Germany) 30-77 ms F1: 93.5% ✓

Behrendt et al. 2017 [8] Detection: YOLOv1,
Classification: 6-layer CNN BSTLD 67-100 ms F1: ∼80% ✓

Jensen et al. 2017 [24] Modified YOLOv2 LISA, LaRa N/A AUC: 90.49% (LISA)

Weber et al. 2018 [5] HDTLR (single CNN) BSTLD,
Private (Germany) 83 ms F1: 85.8% (BSTLD),

F1: 88.8% (private) ✓ ✓

Müller and Dietmayer 2018 [4] Modified SSD
(Inception-v3) DTLD 100 ms Recall: 95% ✓ ✓

Pon et al. 2018 [25] Faster R-CNN (ResNet-50) BSTLD 15 ms mAP: 53% ✓
Bach et al. 2018 [26] Modified Faster R-CNN (ResNet-50) DTLD N/A mAP: 83% ✓ ✓

Kim et al. 2018 [27]

Color space transformation +
an ensemble of 3 networks:
Faster R-CNN (Inception-ResNet-v2
or ResNet-101) or R-FCN (ResNet-101)

BSTLD N/A mAP: 38.48% ✓

Lu et al. 2018 [28] Visual attention proposal + detection,
both based on Faster R-CNN

LISA,
Private (China) N/A mAP: 91.1% (LISA) ✓ ✓

Wang et al. 2018 [29]
ROI detection: HDR-based
saliency map filtering,
Classification: AlexNet

Private (Singapore) 35 ms mAP: 98.9% ✓ ✓

Kim et al. 2018 [30]
SSD for coarse-grained
detection + spatiotemporal
refinement

Private (USA) N/A F1: 10.05% - 69.68% ✓ ✓

Wang et al. 2018 [31] Detection: YOLOv3,
Classification: 4-layer CNN BDD110K 35 ms Accuracy: 98% ✓

Yudin et al. 2018 [32] Detection: fully-connected network
+ binarization + clustering

Nexar TLR
Challenge 63 ms Recall: 94.37%,

Precision: 43.23% ✓

Han et al. 2019 [33] Modified Faster R-CNN (VGG16) Private (China) N/A mAP: 49.26%

Possatti et al. 2019 [34] YOLOv3 + prior maps DTLD, LISA,
Private (Brazil) 48 ms mAP: 85.62% (DTLD)

mAP: 50.59% (LISA) ✓ ✓

Ennahhal et al. 2019 [35]
Faster R-CNN (ResNet-101,
Inception V2), R-FCN (ResNet-101),
SSD (MobileNet)

BSTLD, LISA 200-333 ms mAP: 79.01% ✓

Gupta and Choudhary 2019 [36]
Detection: Faster R-CNN (VGG16),
Classification: Grassmann manifold
learning

BSTLD, LaRa,
LISA, WPI 31 ms Accuracy: 98.80% ✓ ✓

Du et al. 2019 [37] YOLO3 Private (China) 106 ms mAP: 96.18%

Yeh et al. 2019 [38], [39]
Detection: YOLOv3,
TL state classification: YOLOv3-tiny
Pictogram classification: LeNet

LISA,
Private (Taiwan) 31-52 ms mAP: 66% (LISA) ✓ ✓

Kim et al. 2019 [40] Detection: ENet-based network,
Classification: LeNet-based CNN BSTLD 34 ms F1: 95.10% ✓

Aneesh et al. 2019 [41] RetinaNet (ResNet-50) BSTLD 108 ms mAP: 38.07% ✓

Vishal et al. 2019 [42]
Detection: YOLO,
Classification: color-based area
extraction and SVM

BSTLD 143 ms F1: 94% ✓

Cai et al. 2019 [43] Detection: SSDLite (MobileNetV2),
Classification: 3-layer CNN BDD100K 100 ms + 0.7ms

Recall:95.3%
Precision:95.2%
mAP:33.84%

✓

Janahiraman et al. 2019 [44] SSD (MobileNetV2),
Faster R-CNN (Inception-v2) Private (Malaysia) N/A mAP: 97.02%

Ouyang et al. 2020 [45] Detection: heuristic ROI detector,
Classification: 18-layer CNN

WPI, LISA,
Private (China)

53 ms (WPI)
43 ms (LISA) Accuracy 99.7% ✓

Tran et al. 2020 [46] YOLOv4 + color-based post-processing Private (South Korea) 33 ms Accuracy: 95% ✓
Nguyen et al. 2020 [47] YOLOv3 + rule-based validation CCD [48] N/A Detection rate: 80% ✓

Gao et al. 2020 [49]
Detection: ROI detector using
HSV color space,
Classification: AlexNet

LISA, LaRa 13-21 ms Accuracy: 85.30% ✓

Vitas et al. 2020 [50] Detection: adaptive thresholding,
Classification: 3-layer CNN LISA N/A Detection rate: 89.60% ✓

Gokul et al. 2020 [51] Faster R-CNN, YOLOv2, YOLOv3 BSTLD 159 ms mAP: 48.64% ✓
Abraham et al. 2021 [52] Modified YOLOv4-CSP Private (Indonesia) 34 ms mAP: 79.77% ✓
Yan et al. 2021 [53] YOLOv5 BDD100K 7 ms AP: 63.3% ✓

Xiang et al. 2021 [54] Modified YOLOv3 LaRa,
CQTLD (China) 18 ms mAP: 98.76% ✓

Naimi et al. 2021 [55] Modified SSD (MobileNetC2) Private (Japan) 443 ms mAP: 73.8% ✓

Wang et al. 2022 [56] Modified YOLOv4 (CSPDarknet-53) LaRa, LISA 34 ms (LISA)
40 ms (LaRa)

mAP: 82.15% (LISA)
mAP: 79.97& (LaRa) ✓

Zhao et al. 2022 [57] YOLOv4 (ShuffleNetv2) S2TLD,
Private (China) 31 ms mAP: 71.24% (S2TLD)

mAP: 62.12% (private) ✓

Bali et al. 2022 [58] Feature extraction: SqueezeNet,
Classification: YOLOv2 LaRa N/A mAP: 84% ✓

Wang et al. 2022 [59] A CNN and integrated
channel feature tracking

BDD100K,
private (China) 48 ms F1: 84.7% ✓

Jayasinghe et al. 2022 [60]
Detection: Faster R-CNN (ResNet-50)
or SSD (MobileNet-v2),
Classification: ResNet-18

Private (Sri Lanka) 16 ms F1: 92.14% ✓

Mostafa et al. 2022 [61] YOLOv4 LISA,
Private (Egypt) N/A mAP: 92.16% (LISA) ✓

Lin et al. 2022 [62] Detection: Faster R-CNN (ResNet-50),
Classification: VGG16 Private (Taiwan) 680 ms mAP: 81.9% - 86.4% ✓

DeRong and ZhongMei 2023 [63] YOLOv5, YOLOv5+DeepSort Private (China) N/A N/A ✓
Liu and Li 2023 [64] YOLOv5 (custom backbone) BSTLD 21 ms mAP: 81.5% ✓

Greer et al. 2023 [65] Deformable DETR with
custom salient-light loss LAVA [66] N/A N/A ✓ ✓



modifications to compensate for smaller object sizes. The
corresponding approaches are marked green in Table II.
Generic object detectors are especially favorable due to their
inference speed.

The earliest approach to modify YOLO [67] for the TLR
task was presented by Jensen et al. [24]. Here, YOLOv2 [68]
was modified by removing the last convolutional layer and
adding three 3 × 3 convolutional layers with 1024 filters,
followed by a 1 × 1 convolutional layer with the number
of outputs needed for the specific detection. This model,
however, only performed detection, not the classification of
the TL states. Bali et al. [58] tried to replace the YOLOv2
backbone with different lightweight CNNs, whereas the best
results were achieved with SqueezeNet [69].

Müller and Dietmayer [4] presented a modified version of
the SSD [70] architecture for TLR with Inception-v3 [71]
instead of VGG [72] backbone for a better accuracy-speed
trade-off. The authors analyzed the layer and feature map
sizes of Inception-v3 and showed that they cannot guarantee
the detection of objects with a width of 5 pixels. Therefore,
to increase the recall on small objects, they introduced
modified priors placed not in the center of each feature cell
but arbitrarily using the offset vectors. Furthermore, early
and late feature layers were concatenated for the BBox and
confidence prediction to use context information from the
early layers better. As in SSD, the confidence loss was
formulated as a two-class problem (TL vs. background). Also
a further layer was added to detect the TL state (red, yellow,
green, off ).

Faster R-CNN [73] was first applied by Pon et al. [25] for
TLR within the joint traffic light and traffic sign detection
network. Bach et al. [26] suggested further modifications
to Faster R-CNN for TLR. In particular, some layers of
the feature extractor networks (ResNet-50) were modified.
Furthermore, anchors were determined not arbitrarily but via
k-means clustering of the training set BBoxes. Finally, the
loss function was expanded to allow for TL classification.
Han et al. [33] used the modified Faster R-CNN with
VGG16 backbone for traffic sign and traffic light detection.
To account for small object size, a small region proposal
generator was used. For this, the pool4 layer of VGG16
was removed. Additionally, the online hard examples mining
(OHEM) [74] approach was applied to locate small objects
more robustly and helped to increase mAP by 2-3 pp. The
best results, however, were achieved with ResNet-50 [75]
with dilation.

Abraham et al. [52] used a modified YOLOv4 [76] with
cross-stage partial connections (CSP). The feature extractor
contained a Darknet53 [77] backbone, a path aggregation
network, spatial pyramid pooling, and a spatial attention
module, while the detector used the YOLOv4 head. A similar
approach was followed by Wang et al. [56]. Here, YOLOv4
with CSPDarknet-53 feature extraction network was mod-
ified by fusing certain layers and enhancing the shallow
features. Furthermore, the BBox uncertainty prediction was
also added. Lastly, Zhao et al. [57] showed that ShuffleNet
[78] leads to better results when used as a backbone in

YOLOv4.
The work by Ennahhal et al. [35] is one of the few that

compared several approaches. Their results show that Faster
R-CNN outperformed R-FCN [79] and SSD in terms of mAP.
Later, Gokul et al. [51] have also demonstrated that Faster-
R-CNN has the best trade-off between accuracy and speed
compared to YOLOv2 and YOLOv3.

Liu and Li [64] proposed to modify the backbone of the
YOLOv51. The custom backbone architecture is inspired
by the U2Net [80] and contains a series of residual U-
blocks. Additionally, the authors replace the C3 modules
in the neck part of YOLOv5 with ConvNextBlocks [81] to
improve feature extraction. The resulting model has demon-
strated better accuracy compared to the baseline YOLOv5.
Models based on YOLOv5s have demonstrated a remarkable
inference speed of 48 FPS.

Finally, a single approach that goes beyond CNN-based
object detectors is that by Greer et al. [65]. The authors
used the Deformable DETR [82], a generic object detector
with a transformer encoder-decoder architecture and features
extracted using a CNN backbone (ResNet-50). The authors
evaluated the impact of the salience-sensitive focal loss and
showed better performance on salient traffic lights.

B. Multi-Stage Approaches

The second group contains approaches where the TLR task
is split into two subtasks: detection and classification, s.t. a
separate model is used for each of them. The corresponding
approaches are marked blue in Table II.

Generic object detector + CNN for classification: In the
work by Behrendt et al. [8] introducing the BSTLD dataset,
YOLO was modified to detect TL objects as small as 3 ×
10 pixels. For this, the authors took random crops of size
448 × 448 from an image. Also, the number of grid cells
was increased from 7× 7 to 11× 11. The classification part
of the original YOLO loss was removed. Instead, a small
classification network consisting of three convolutional and
three fully-connected layers was used to detect TL states.

Lu et al. [28] proposed an approach consisting of two
parts: the first one proposes attention regions that can contain
traffic lights, and the second part performs localization and
classifications on the cropped and resized attention regions
found by the first model. Both blocks follow the Faster R-
CNN architecture.

A similar approach was followed by Wang et al. [31], who
used YOLOv3 [77] for the detection of regions of interest
(ROI). The classification of a TL status was performed with
a lightweight CNN consisting of two convolutional and two
max-pooling layers. Similarly, as in the previous work, the
lightweight CNN gets ROIs from the YOLOv3 as input and
predicts one of the four states (red, green, yellow, unknown).

Cai et al. [43] proposed a two-stage approach, where
the detection part consisted of the SSDLite with Mo-
bileNetv2 [83], whereas classification was performed by a
small three-layer network.

1https://github.com/ultralytics/yolov5



In the work by Kim et al. [40], the detection stage is
performed by a semantic segmentation network, which is
then used to calculate BBoxes. This is motivated by its better
performance on very small objects. In particular, a binary
version of the ENet [84] is used. For the classification part,
a LeNet-5-based [85] model is used. This model was shown
to beat Faster R-CNN from the previous work by authors
[27] both in terms of accuracy and speed.

Jayasinghe et al. [60] used a two-stage approach, where
detection was performed either with Faster R-CNN with a
ResNet-50 backbone or SSD with MobileNetv2 backbone,
and the classification was done with ResNet-18.

Generic object detector + non-deep learning approach
for classification: Kim et al. [30] used an unmodified
SSD with a standard VGG16 backbone as a coarse-grained
detector. The fine-grained detection is performed via spa-
tiotemporal filtering and has the goal to compensate for the
poor performance of SSD on small objects. The latter uses
a point-based reward system; the points are rewarded for
detections consistent in the spatial and temporal domains.

Yudin et al. [32] used a U-Net [86]-inspired fully-
convolutional network to predict a grayscale map of TL
locations, which is further binarized using thresholding. After
that, the detected regions are clustered using DBSCAN
and filtered, yielding the predicted location. The proposed
approach is shown to lead to higher precision and recall
compared to the SSD300.

Gupta and Choudhary [36] used Grassman manifold learn-
ing for TL and pictogram classification, while the detection
step was performed with a Faster R-CNN. For the TL
classification, features extracted from VGG16 were used to
create subspaces on a Grassman manifold for each TL state.
After that, discriminant analysis on the manifold was used
to distinguish between TLs.

In the work of Tran et al. [46], the detections and
classifications made by YOLOv4 are additionally processed
by a color-based clustering method to remove irrelevant
predictions. Moreover, a rule-based heuristic to identify the
most important TL in an input image is applied as the last
step. Similarly, Nguyen et al. [47] validate the predictions
done by YOLOv3 via hand-crafted features and classification
using HSV color space.

Non-deep learning detector + CNN for classification:
Wang et al. [29] used a high dynamic range camera to get
input images for different channels; this allowed them to
detect TL ROIs from input images using a saliency map.
Then, a customized AlexNet was used for the TL classifi-
cation. Kim et al. [27] also used a color-based approach.
They proposed transforming an input image to another color
space before passing it to a generic object detector. Different
models represented the latter, whereas Faster R-CNN with
Inception-ResNet-v2 was shown to be the most suitable for
the task. The HSV color space was used in work by Gao et
al. [49] to generate the ROIs, whereas the classification was
performed with AlexNet. Vitas et al. [50] applied adaptive
thresholding to generate ROIs at the detection step, whereas
the classification was done with a simple three-layer CNN.

Further approaches: Possatti et al. [34] incorporated the
usage of prior maps containing coordinates of TLs, whereas
YOLOv3 was used for TLR. YOLOv3 was not additionally
modified and trained to distinguish between two classes:
red-yellow and green TLs. The TL position is projected to
the image plane using the data from the prior maps and
the vehicle localization data. Finally, only those BBoxes
predicted by the YOLOv3 corresponding to the projected
map objects are used for final predictions.

Yeh et al. [38], [39] presented a three-stage approach,
where YOLOv3 first localizes traffic lights. Next, YOLOv3-
tiny detects the TL states. Finally, LeNet is applied to classify
the arrows in different directions. HD maps and collected
LiDAR data are used to find the TL position.

C. Task-specific Single-stage Approaches
Finally, the third group comprises those approaches where

TLR is performed within a single network deliberately de-
signed for this task. The corresponding methods are marked
yellow in Table II. Unlike most methods, which follow the
two-step approach involving TL detection and subsequent
classification, the DeepTLR by Weber et al. [23] is a pure
CNN that directly classifies each fine-grained pixel region
over the image, thus creating a probability map for each
of three classes: red, yellow, and green. For the pixels
in probability maps, which surpass a certain threshold,
BBox prediction is performed. The feature extraction part of
DeepTLR uses the AlexNet architecture [87], whereas the
BBox regression follows that of the OverFeat [88].

The HDTLR approach [5] by Weber et al. builds upon
DeepTLR, extending and improving the detection part. Un-
like DeepTLR, HDTLR can use any CNN for the feature
extraction part. Experiments were performed with AlexNet,
GoogLeNet, and VGG, while the latter performed the best.

Wang et al. [59] proposed a joint detection and tracking
approach, whereas a CNN and integrated channel feature
tracking are used to predict both TL coordinates and states.

IV. CONCLUSION

In this paper, we gave an overview of the existing works
on traffic light recognition. Our analysis has revealed that the
predominant approach in the literature is the modification of
a generic object detector like YOLO, SSD, or Faster R-CNN.
In particular, YOLO versions 1-5 were used especially often.
A large group of multi-stage approaches uses an existing
detector as an attention or region proposal module, which
determines the positions of the traffic lights, whereas an
additional CNN classifier distinguishes between traffic light
states and pictograms. This classification network usually
has a very simple architecture. Less popular is the usage
of a rule-based ROI detector or of a non-CNN classification
method. Finally, a separate cluster of approaches is formed
by methods that perform traffic light recognition within a
single model so that the task is learned end-to-end without
intrinsic separation into detection and classification steps.

Furthermore, our overview has shown that a lot of works
reach real-time performance, but perform evaluation on pri-
vate datasets, which makes a fair comparison of different



methods difficult. We also have determined that, unlike most
object detection tasks, open-sourcing the code of the TLR
models is still rare. We hope our findings facilitate further
research on traffic light recognition.
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