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Abstract— The development of algorithms that learn multi-
agent behavioral models using human demonstrations has led
to increasingly realistic simulations in the field of autonomous
driving. In general, such models learn to jointly predict tra-
jectories for all controlled agents by exploiting road context
information such as drivable lanes obtained from manually
annotated high-definition (HD) maps. Recent studies show that
these models can greatly benefit from increasing the amount
of human data available for training. However, the manual
annotation of HD maps which is necessary for every new
location puts a bottleneck on efficiently scaling up human
traffic datasets. We propose an aerial image-based map (AIM)
representation that requires minimal annotation and provides
rich road context information for traffic agents like pedestrians
and vehicles. We evaluate multi-agent trajectory prediction
using the AIM by incorporating it into a differentiable driving
simulator as an image-texture-based differentiable rendering
module. Our results demonstrate competitive multi-agent tra-
jectory prediction performance especially for pedestrians in
the scene when using our AIM representation as compared
to models trained with rasterized HD maps.

I. INTRODUCTION

Creating realistic simulation environments is crucial for
evaluating self-driving vehicles before they can be deployed
in the real world. Recent studies have emphasized the use of
learned models to generate more realistic behavior for con-
trolled agents like pedestrians and surrounding vehicles [1]–
[3]. These models learn to imitate human-like behaviors in a
traffic scene by utilizing a probabilistic conditional model of
multi-agent trajectories in an environment. When using such
approaches to construct realistic simulations, the quality of
learned behavior is strongly dependent on the amount of data
used for training [4], [5].

Typically, learning behavior models requires data consist-
ing of the high-definition (HD) map for the given location
and extracted agent tracks. While the latter can be extracted
automatically from sensory data using modern computer
vision algorithms with good accuracy [4]–[6], doing that for
the former is still an open problem [7]–[9] and in practice,
manual annotations are often used. Moreover, since it is
important to ensure not only a large number of hours in
the dataset but also a large variety of locations, manually
annotating HD maps can become the most laborious part
of creating a dataset. To make things worse, HD maps
inevitably fail to capture important context, and increasing
their detail like annotating sidewalks and crosswalks (see
Fig. 2b) increases the cost of annotation. For example, the
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Fig. 1: (a) An example of a simulated scene with the
rasterized HD map representation compared to (b) the aerial
image-based map (AIM) representation rendered using our
image-texture-based differentiable rendering module. The
AIM representation requires minimum annotation effort as
it is obtained directly from (c) the raw drone video record-
ing frame with agents removed (d). Orange circles in (b)
highlight examples of rich road context information.

simplistic HD map scheme used in Fig. 1a does not reflect
pedestrian crosswalks, sidewalks and bus lane designations.

In this study, we investigate the performance of behavioral
models learned using aerial imagery instead of HD maps.
Specifically, we record a dataset of human behavior in traffic
scenes with a drone from a bird’s-eye view, in a manner
similar to [11], and extract the background aerial image by
averaging the collected video frames of the location. While
other background extraction techniques can be applied [12]–
[14], we find this simple averaging approach is sufficient for
our use case. We refer to this image as the “aerial image-
based map” (AIM), emphasizing that it is both easy to obtain
automatically and that it contains rich contextual information.

Learning trajectory prediction models by behavioral
cloning is known to suffer from the covariate shift, where
prediction quality drops drastically with simulation time, and
it has been demonstrated that this issue can be ameliorated
by imitating in a differentiable simulator instead [2], [3],
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Fig. 2: Examples of HD maps from public motion planning
datasets for (a) Argoverse [10] and (b) Nuplan. The Nuplan
map includes annotations like crosswalks and parking areas
(shown in orange), which are not labeled in the Argoverse
map.

[15]. We use a similar approach incorporating the AIM
into a differentiable simulator by implementing a custom
differentiable renderer. The renderer, illustrated in Fig. 3,
uses the AIM as background and places simple rasterizations
of agents and traffic lights on top of it, as shown in Fig. 1b.
To evaluate the impact of using AIM, we employ a multi-
agent trajectory prediction model, ITRA [3] which consumes
rasterized views of HD maps shown in Fig. 1a. We compare
ITRA trained with AIM representation (ITRA-AIM) shown
in Fig. 1b with the same model using HD map representation
(ITRA-HDM) for two dominant traffic agent categories,
pedestrians and vehicles. ITRA-AIM demonstrates compet-
itive performance compared to ITRA-HDM on widely used
metrics such as minimum Average Displacement Error (mi-
nADE) and minimum Final Displacement Error (minFDE)
for both agent types. Notably, ITRA-AIM exhibits an even
higher performance gain on pedestrian trajectory prediction.

II. BACKGROUND

In this section, we will formally define our multi-agent
trajectory prediction problem and give an overview of ITRA,
the multi-agent trajectory prediction model which we use to
evaluate our AIM representation. We will also introduce the
concept of differentiable driving simulators which are applied
in many trajectory prediction models, including ITRA.

A. Multi-agent trajectory prediction

In this paper, we define the state for N agents across
T time steps as sNT (following the notation used in [3]).
For a specific agent i, its state sit = (xit, y

i
t, ϕ

i
t, v

i
t) for

t ∈ 1, . . . , T consists of the agent’s coordinates, as well
as its direction and velocity relative to a stationary global
reference frame. In the multi-agent trajectory prediction
setting, we are interested in predicting the future joint state
s1:Ntobs+1:T

, given tobs state observations while conditioning on
the road context information. This information is traditionally
represented by a so-called HD map. These maps consist of
road polygons, lane boundaries, lane directions, and may also
include additional features such as crosswalks.

B. ITRA

We use ITRA [3] to investigate the validity of our primary
claim. ITRA uses a conditional variational recurrent neural
network (CVRNN) [16] model followed by a bicycle kine-
matic model [17] to jointly predict the next state of each
agent in the scene. All interactions between the agents and
the environment are encoded using differentiably rendered
birdview images. These birdview representations are cen-
tered at the agent of interest and rotated to match its ori-
entation. Each agent i at timestep t is modeled as a CVRNN
with recurrent state hit and latent variables zit ∼ N (zit; 0, I).
After ITRA obtains the corresponding ego-centered birdview
bit = render(i, s1:Nt

t ), it produces the next action ait =
fθ(b

i
t, z

i
t, h

i
t−1), where hit = fψ(h

i
t−1, b

i
t, a

i
t) is generated

using a recurrent neural network. The next state sit+1 ∼
N (sit+1; fkin(s

i
t, a

i
t), σI) is produced using a kinematic bicy-

cle model fkin and the generated action ait. The joint model
p(s1:N1:T ) factorizes as∫ ∫ T∏

t=1

N∏
i=1

p(sit+1|sit, ait)pθ(ait|bit,zit, hit−1)

p(zit)dz
1:N
1:T da1:N1:T . (1)

The model is trained jointly with a separate inference net-
work qϕ(z

i
t|bit, ait, hit−1) by maximizing the evidence lower

bound (ELBO),
T∑
t=1

N∑
i=1

Eqϕ(zit|bit,ait,hi
t−1)

[
log pθ(s

i
t+1|bit, zit, hit−1)

]
−KL

[
qϕ(z

i
t|bit, ait, hit−1)||p(zit)

]
, (2)

where
pθ(s

i
t+1|bit, zit, hit−1)=

∫
p(sit+1|sit, ait)pθ(ait|bit, zit, hit−1)dait .

C. Differentiable driving simulators

Previous research has demonstrated that performing im-
itation learning within a differentiable simulator can help
mitigate the distributional shift due to compounded error in
open-loop behavior cloning methods [2], [15], [18]. These
simulators typically consist of a differentiable kinematic
model, which produces the next state sit+1 given the current
state-action pair. Additionally, they have a differentiable
renderer that generates the ego-centered bird’s-eye view
image that includes the road context information and other
agents in the scene. One of the main advantages of using
such differentiable simulators is that the loss in Eq. (2)
can be directly optimized using backpropagation as the state
transition p(sit+1|sit, ait) is fully differentiable.

III. RELATED WORK

Current methods to multi-agent modeling approach the
problem by jointly predicting future trajectories using
deep probabilistic models such as conditional variational
auto-encoders (CVAEs) [2], [3], [19], [20], normalizing
flows [21], [22] and more recently diffusion models [23].
This family of multi-agent trajectory prediction models relies
heavily on obtaining road context from HD maps, which
requires manual annotations of lane center and boundary



lines. To represent such HD maps, one approach is to render
the semantic information of the map into a birdview image by
employing different color schemes [2], [3], [15]. This image
is then encoded using a convolutional neural network (CNN).
Alternatively, recent work [24], [25] suggests representing
road elements as a sequence of vectors that can be employed
by a graph neural network (GNN) which achieves better
performance than the rendering approach. However, regard-
less of the embedding method, an annotated map has to be
obtained, which our method bypasses completely. Moreover,
aerial images contain rich road context information such
as left and right turn road markings and bus lanes without
any annotation effort. In prior research [26], satellite image-
based maps were used as a substitute for HD semantic
maps, and the resulting findings indicated that trajectory
prediction exhibited worse performance in such images. We
point out that in those cases, satellite map representation
that contains traffic light states were not evaluated and the
visual quality of the road context is limited. In contrast,
our AIM representation does contain traffic light states,
and the representation of agent states obtained from our
differentiable rendering module has a higher visual quality.
We demonstrate in Sec. V-D that these two factors can have
significant impact on the prediction performance.

Previous studies have shown that integrating scene context
into pedestrian trajectory prediction models improves their
performance [27]. These studies [28], [29] often encode a
single static bird’s-eye view image of the scene using a CNN
to represent scene information. The sequence of video frames
can also serve as input for scene context information using
graph convolutional neural networks [30]. To incorporate
agent information, these methods utilize a separate network,
and scene information is merged with agent information
using attention [28], GNNs [30] or CNNs [29]. However, the
aforementioned methods suffer from covariate shift over a
long time, limiting their application for simulation purposes.

IV. PROPOSED METHOD

Our method incorporates unlabelled aerial images into a
simulation environment [3] using a differentiable renderer
implemented with Pytorch3D [31]. We leverage image-
texture-based rendering to represent the background of the
simulated scene, as depicted in Fig. 1b. By embedding this
rendering module into an existing end-to-end differentiable
2D driving simulator that targets multi-agent trajectory pre-
diction, we can produce ego-rotated and egocentric bird-
view images bit that utilize the proposed aerial image-based
map (AIM) for multi-agent trajectory prediction models like
ITRA. Furthermore, it provides a representation of the road
context with minimal information loss, as opposed to a
rasterized birdview image from the labeled HD map shown in
Fig. 1a. We introduce our image-texture-based differentiable
rendering module in the following section.

A. Image-texture-based differentiable rendering.

Our image-texture-based rendering module is designed to
be differentiable and efficient as it supports rendering in

Fig. 3: Image-texture-based rendering procedure.

TABLE I: Validation set prediction errors on our pedestrian
dataset.

Method minADE6↓ minFDE6↓ MFD6↑
ITRA-P-HDM 0.90 2.01 0.29
ITRA-P-AIM 0.74 1.56 0.51

batch mode. The rendering process is illustrated in Fig. 3.
Our module takes in the processed drone image of the record-
ing location, along with its coordinates of the four image cor-
ners {xc, yc}4c=0, the states of the agents s1:Nt at time t, and
the traffic light states. We average motion stabilized drone
video frames to perform a simple yet effective background
extraction of the video. This background extraction process
serves to eliminate cars and other agents that may be present
in the drone video. To differentiate agent types, each agent
type is associated with a unique color in the texture map
(see Fig. 3). The image corner coordinates are in the same
global reference frame as the agent coordinates to align the
map with the agents during the rendering process. Using
the aforementioned inputs, three distinct types of meshes
are constructed, namely the background mesh, agent mesh
and the traffic light mesh along with their corresponding
texture maps. These meshes are subsequently combined to
form a concatenated mesh M with a merged texture map,
which is then fed into a differentiable renderer, to render the
simulated scene. Agents are rendered as bounding boxes with
an additional triangle on top of each bounding box to indicate
their direction. Traffic lights are rendered as rectangular bars
at the stop line. The rendered birdview can be consumed by
the trajectory prediction models as a representation of the
environment for the ego agent which provides information
about the road context and other agents in the scene.
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Fig. 4: Column (a-c) Ego-only trajectory prediction of 40 timesteps based on the observation of only one initial timestep
for vehicle agents. We show 10 sampled trajectories in orange alongside the ground truth trajectory colored in grey for both
ITRA-V-HDM and ITRA-V-AIM. Note that ITRA trained with the AIM representation generates more realistic samples by
leveraging the road context, particularly in scenarios such as entering parking lots. Column (d-e) Examples of Multi-agent
trajectory predictions on two different map representations.

(a) (b) (c) (d) (e)

Fig. 5: Column (a-c) Ego-only trajectory prediction of twelve seconds based on the observation of only one initial observation
for pedestrians. We show 5 sampled trajectories in orange alongside the ground truth trajectory colored in grey for both
ITRA-P-HDM and ITRA-P-AIM. Pedestrians are highlighted with orange bounding boxes in ITRA-P-AIM for visualization
purposes. Column (d-e) Examples of Multi-agent trajectory predictions on two different map representations. Note that
the pedestrian model trained with AIM tends to navigate within designated areas such as sidewalks and crosswalks. This
behavior is facilitated by the incorporation of comprehensive road context information provided by the AIM, enabling the
model to leverage the contextual cues to figure out pedestrians movement patterns.

V. EXPERIMENTS

We evaluate the effectiveness of our AIM representa-
tion with ITRA (ITRA-AIM) on a dataset comprising 5.5
hours of traffic data collected using a commercial drone in
20 locations primarily in Canada. These locations include
roundabouts, signalized and unsignalized intersections, and
highways, providing a diverse set of road geometries for
training and evaluation. We carefully selected 11 locations

out of the 20 locations for training the ITRA-AIM model on
vehicles. These particular locations were chosen based on
the presence of rich driving behavior. Similarly, we selected
17 locations specifically for training our model on pedestrian
data, considering that pedestrians are typically absent from
locations such as highways.

Our dataset comprises 300k four-second long segments
sampled at 10 Hz of vehicle data. On the other hand, the



TABLE II: Validation set prediction errors on our vehicle
dataset.

Metrics ITRA-V-HDM ITRA-V-AIM ITRA-V-AIM-ResNet18
minADE6↓ 0.50 0.45 0.50
minFDE6↓ 1.04 0.93 1.10
Off-road rate↓ 0.006 0.008 0.006
collision rate↓ 0.012 0.012 0.012

pedestrian dataset consists of approximately 200k segments,
each spanning twelve seconds and sampled at a rate of
2.5 Hz. This lower sampling rate is employed due to the
comparatively slower movement of pedestrians compared
to vehicles, which is consistent with other well-known
pedestrian datasets [32], [33]. We reserved the final 5%
of our drone recordings obtained at each location as our
validation dataset, ensuring that the training data has no
causal relationship to the validation data.

In our ablation studies, we demonstrate the importance of
rendering traffic lights in the AIM, as well as the impact
of aerial image quality on displacement errors and infrac-
tion rates of the generated samples. These findings provide
insights to why prior work [26] obtained inferior results on
satellite images as mentioned in Sec. III. We also test on an
aerial image from Bing [34] at one of our recording locations.

A. Implementation details

To demonstrate the impact of AIM on motion prediction
for pedestrian and vehicle agents, we train separate models
for the two agent types (ITRA-V and ITRA-P). In addition,
to compare ITRA-AIM with the original ITRA that utilizes
the rasterized HD map (ITRA-HDM), we apply the same
training procedure on ITRA-AIM as our baseline, training
each component of the network from scratch and using the
same training hyper-parameters for ITRA-AIM and ITRA-
HDM. We use an identical CNN encoder for encoding AIM
which consists of a 4-layer CNN model for our ITRA-AIM
model but also experiment with a ResNet-18 backbone on the
vehicle dataset to encode the AIM representation, because
it contains more information than the rasterized HD map.
While the training setup is the same for ITRA-V and ITRA-
P, we apply a unicycle dynamics model [35] as fkin for
pedestrians instead of the bicycle model we use for vehicles.

ITRA adopts classmates forcing [20] in the training phase,
which provides ground truth states to the model for all agents
beside the ego agent. At test time, ITRA trained on the
vehicle dataset (ITRA-V) jointly predicts the future trajecto-
ries for all vehicles while other agent types like pedestrians
are replayed in the scene with ground truth trajectories.
Similarly, ITRA-P predicts the motion of all pedestrians in
the scene given the ground truth vehicle trajectories. We train
all of our models with a random observation length between
1 to 10 timesteps to prevent overfitting on past observations
and they are trained until the validation loss converges. The
training time of ITRA-AIM is comparable to that of ITRA-
HDM on 4 NVIDIA GeForce RTX 2080 Ti GPUs.

B. Evaluation Metrics

Common metrics for evaluating trajectory prediction mod-
els are ADE and FDE, which measure how close the sampled
trajectory is to the ground truth trajectory. In the multi-
agent setting, ADE and FDE are averaged across all N
agents. Given K trajectory prediction samples, the generated
trajectory with the minimum error is selected for calculating
minADEK and minFDEK . As AIM does not explicitly label
the drivable area, we evaluate the prediction performance of
the ITRA-V-AIM model on how often it commits off-road
infractions. To accomplish this, we calculate the off-road rate
using the method described in [36], assuming access to a
drivable surface mesh for evaluation purposes. The computed
off-road rate is zero when all four corners of the vehicle
are within the drivable area. Furthermore, we also measure
the collision rate in a multi-agent prediction setting using
the intersection over union (IOU)-based collision metric
from [36]. Both the off-road rate and collision rate reported
in Tabs. II to IV are averaged across the number of agents,
samples, and time. Since AIM provides additional road
context information like sidewalks and crosswalks, we also
measure the diversity of trajectories generated for pedestrians
by measuring the Maximum Final Distance (MFD) averaged
over number of agents introduced in [3].

C. Experimental results

We present our results on the validation dataset for ITRA-P
in Tab. I and for ITRA-V in Tab. II. In the case of ITRA-P,
we jointly predict the eight-second future given the initial
four-second observation. As for ITRA-V, we predict the
trajectory for a time horizon of 40 timesteps (four seconds)
while observing the first 10 timesteps. On the pedestrian
dataset, ITRA-P-AIM outperforms ITRA-P-HDM across all
evaluation metrics and achieves higher diversity. This result
indicates the importance of providing scene context informa-
tion for pedestrians when modeling them in traffic simula-
tions. We showcase our predicted examples on the validation
dataset in Fig. 5. ITRA-V-AIM demonstrates competitive
performance in reconstructing ground truth trajectories on
the validation dataset. Regarding the off-road rate, ITRA-V-
AIM with a ResNet-18 backbone matches the performance
of ITRA-V-HDM while maintaining similar displacement
errors. Figure 4 presents validation examples comparing
ITRA-V-HDM and ITRA-V-AIM on the vehicle dataset.

D. Ablation Studies

To investigate the impact of incorporating traffic light
states into the AIM representation, we analyze their influ-
ence on prediction results, since previous work [26] did
not evaluate representations that include traffic light states.
Specifically, we select locations from our dataset where
traffic light states are available and conduct a comparative
evaluation of the ITRA-V-AIM model on AIMs with and
without traffic light states.

Our results, presented in Table III, demonstrate a notable
reduction in collision rates of over 15% and a 12% decrease
in the minADE metric when traffic light states are rendered



(a) Original aerial image (b) Degraded aerial image

Fig. 6: Comparison of aerial image quality.

TABLE III: Comparison between with and without traffic
light rendered on locations have traffic light labels.

ITRA-V-AIM
Metrics With traffic lights Without traffic lights
minADE6↓ 0.37 0.42
minFDE6↓ 0.77 0.88
Off-road rate↓ 0.006 0.008
Collision rate↓ 0.011 0.013

on AIMs. Additionally, we observe a similar performance
improvement for our pedestrian model, ITRA-P-AIM, when
traffic light states are incorporated. We attribute part of
the AIM’s competitive performance to our proposed image-
texture-based differentiable rendering module, which enables
the integration of traffic light states within the AIM.

We also study the effect of aerial image quality on pre-
diction results. Depending on the height at which the image
is captured and camera’s specifications, the image quality,
in terms of resolution and noise level, can vary drastically.
To simulate a deterioration in these quality factors, we first
apply Gaussian blur to our original aerial images and then
add Gaussian noise with a standard deviation of 0.2 to
these blurred images (an example is shown in Fig. 6b).
We evaluate ITRA-V-AIM on the degraded AIMs using the
validation agent tracks and report the results in Tab. IV.
The degraded AIMs result in increased prediction errors
and nearly double the off-road infraction rate. Although
the simulated degradation may not precisely emulate the
various aspects of the reduction in image quality, our findings
highlight the crucial role of capturing high fidelity imagery
in ensuring the accuracy of multi-agent trajectory prediction
through our AIM representation.

To demonstrate the flexibility of our AIM representation,
we acquired an aerial image from Bing aerial imagery of
the same location as Fig. 4d to construct a larger AIM.
Despite having different image conditions (such as shading
and lighting) compared to our original AIM, our trained
ITRA-V-AIM achieves good prediction performance on this
larger map with validation data segments as shown in Fig. 7.

VI. CONCLUSION

In this work, we have addressed a critical bottleneck in
scaling the dataset size for behavioral models used for sim-
ulating realistic driving. Specifically, the manual annotation
of high-definition maps on new locations impedes progress
towards the fully automated labeling of datasets. Rather
than pursuing the development of automated map labeling
tools, which may introduce additional labeling noise, our

TABLE IV: The impact of aerial image quality on prediction
results.

ITRA-V-AIM
Metrics Original AIM Blurred and noise-added AIM
minADE6 0.45 0.49
minFDE6 0.93 1.04
Off-road rate↓ 0.008 0.015
Collision rate↓ 0.012 0.015

Fig. 7: Evaluation of the ITRA-V-AIM on a Bing aerial
image. The white trajectories represent the ground truth
trajectories obtained from validation segments at the same
location, and the orange trajectories display 5 sampled
trajectories of the ITRA-V-AIM model. Our ITRA-V-AIM
model predicts road context-aware trajectories on this aerial
image which has different lighting and shading conditions
compared to the training AIM.

proposed aerial image-based map (AIM) requires minimal
annotations. By employing the AIM in a driving simulator
through our image-texture-based differentiable rendering, we
illustrate that the AIM provides rich road context informa-
tion for multi-agent trajectory prediction which resulted in
more realistic samples for both vehicles and pedestrians.
Our results on pedestrian trajectory prediction indicates a
substantial improvement when utilizing our AIM represen-
tation compared to the baseline representation. In addition,
our image-texture-based differentiable rendering module can
be easily integrated into any existing behavioral prediction
models that consume bird’s-eye view images as part of the
agents’ state representation. While our work has yielded
promising results, there are still opportunities remaining for
further improvement. These opportunities include an in-depth
investigation of semantic or structure-based encoders for
the AIM representation to improve on the off-road metrics.
Finally, while we constructed AIMs from drone recordings,
they could also be employed when collecting data from
the vehicle by utilizing existing aerial imagery, although
additional effort would be required to align such images to
the extracted agent tracks.
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J. Kümmerle, H. Königshof, C. Stiller, A. de La Fortelle, and
M. Tomizuka, “INTERACTION Dataset: An INTERnational, Ad-
versarial and Cooperative moTION Dataset in Interactive Driving
Scenarios with Semantic Maps,” arXiv:1910.03088 [cs, eess], 2019.

[12] X. Li, G. Li, Q. Huang, Z. Wang, and Z. Yu, “An adaptive background
extraction method in traffic scenes,” Optik, vol. 156, pp. 659–671,
2018.

[13] R. Zhang, W. Gong, A. Yaworski, and M. Greenspan, “Nonparametric
on-line background generation for surveillance video,” in Proceed-
ings of the 21st International Conference on Pattern Recognition
(ICPR2012). IEEE, 2012, pp. 1177–1180.

[14] O. Barnich and M. Van Droogenbroeck, “Vibe: A universal back-
ground subtraction algorithm for video sequences,” IEEE Transactions
on Image processing, vol. 20, no. 6, pp. 1709–1724, 2010.

[15] O. Scheel, L. Bergamini, M. Wolczyk, B. Osiński, and P. Ondruska,
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