2305.18859v1 [cs.Al] 30 May 2023

arxXiv

Large-scale Ridesharing DARP Instances Based on Real Travel Demand

David Fiedler! and Jan Mrkos?

Abstract— Accurately predicting the real-life performance
of algorithms solving the Dial-a-Ride Problem (DARP) in the
context of Mobility on Demand (MoD) systems with ridesharing
requires evaluating them on representative instances. However,
the benchmarking of state-of-the-art DARP solution methods
has been limited to small, artificial instances or outdated non-
public instances, hindering direct comparisons. With the rise of
large MoD systems and the availability of open travel demand
datasets for many US cities, there is now an opportunity to
evaluate these algorithms on standardized, realistic, and repre-
sentative instances. Despite the significant challenges involved in
processing obfuscated and diverse datasets, we have developed
a methodology using which we have created a comprehensive
set of large-scale demand instances based on real-world dat
These instances cover diverse use cases, one of which is demon-
strated in an evaluation of two established DARP methods:
the insertion heuristic and optimal vehicle-group assignment
method. We publish the full results of both methods in a
standardized format. The results show significant differences
between areas in all measured quantities, emphasizing the
importance of evaluating methods across different cities.

[. INTRODUCTION

Dial-a-ride-problem (DARP) is a traditional problem from
operational research [L]. For more than five decades, re-
searchers come up with new methods for solving DARP,
which they evaluate on various problem instances. Most of
the articles from the last two decades use randomly generated
DARP instances and Euclidean disctances [2], [3l], [4], [5],
[61, [71, 18], [9], [10]. These instances usually contain just
tens of requests and vehicles, in line with the original
application for transportation of people with disabilities.

Recently, a new vehicle scheduling problem arose with
the emergence of large-scale mobility-on-demand (MoD),
mostly operated by transportation network companies. Some
of the MoD systems use ridesharing, i.e., serving multiple
travel requests at once by one vehicle. With ridesharing,
the dispatching problem of the MoD system is essentially a
DARP. However, the problem characteristics are very differ-
ent compared to classical DARP. First, for an MoD system,
the instances usually cover shorter time periods, especially

*This work has been supported by the EU OP RDE
funded project Research Center for Informatics; reg. No.:
Cz.02.1.01/0.0/0.0/16.019/0000765 and by the Grant
Agency of the Czech Technical University in Prague, grant No.
SGS22/168/0HK3/3T/13.

1David Fiedler is with the Faculty of Electrical Engineering, Czech
Technical University in Prague, Karlovo namésti 13, Prague 2, 121 35,
Czechia david.fiedler@fel.cvut.cz

2Jan Mrkos is with the Faculty of Electrical Engineering, Czech Technical
University in Prague, Karlovo namésti 13, Prague 2, 121 35, Czechia
jan.mrkos@fel.cvut.cz

3 All instances, results, and source code are available through the instance
repository: https://github.com/aicenter/Ridesharing_|
DARP_instances

the ones covering online ridesharing. Thus, the limits on
the maximum route duration present in the classical DARP
formulation are not necessary. Second, the MoD instances
are much larger than the traditional DARP instances. In New
York City, for example, there can be as many as 100000
active taxis during peak traffic hours, at least three orders
of magnitude more than in the largest traditional DARP
instances [11]]. Finally, the time windows and maximum
delays are much shorter as there are higher requirements
regarding the quality of service.

At the same time, the new trend of public open data has
allowed researchers to create problem instances from real
travel demand data. Because of this, the DARP solution
methods for MoD systems are usually evaluated on large-
scale instances based on real travel demand datasets. Creating
large-scale MoD problem instances using real demand data
offers several advantages. Firstly, it provides a realistic
representation of both the scale and distribution of the
demand. This ensures that the instances closely resemble
real-world scenarios. Secondly, incorporating the temporal
changes in demand into the problem instances allows for a
more accurate reflection of dynamic patterns and variations
in service requirements over time. Lastly, by utilizing road
network travel times instead of relying solely on Euclidean
distance, the computed travel cost aligns more closely with
actual transportation conditions, enhancing the realism of the
instances.

However, large realistic problem instances present new
challenges. Instead of simple random instance generation,
we must process and transform the travel demand datasets
into the instance data. Moreover, in recent years, data
providers started to obfuscate the published travel demand
datasets to protect the privacy of users and drivers. This
means that the request origin and destination locations and,
sometimes, even request times are not specified precisely.
Instead, locations are binned into zones and times into time
intervals. Thus, we must first generate trip locations and
times to create instances from obfuscated data. The absence
of a standardized format for open data across various cities
further complicates the situation; a procedure for creating
instances from one dataset cannot be applied to other datasets
without significant changes. Apart from demand data, we
require other datasets for every location where we wish to
create a problem instance. At the very least, researchers must
process the road network data and, possibly, some dataset of
travel speeds to obtain realistic travel times.

To avoid these pitfalls, many works use the Manhattan
travel demand datasets published before the introduction of
privacy protection rules in 2014. However, the Manhattan

https://github.com/aicenter/Ridesharing_DARP_instances
https://github.com/aicenter/Ridesharing_DARP_instances

dataset has a highly distinctive geography and unusually
high demand density. Moreover, due to the 2014 cutoff,
new phenomena, such as the displacement of traditional
taxi services by transportation network companies or the
COVID pandemic, are not captured in datasets based on the
pre-2014 Manhattan demand data. This is important since
many new methods are evaluated only using the Manhattan
demand dataset [[12], [[L3], [[14]], [15], [16], [17]. As a result,
the field of DARP research runs the risk of overfitting
to specific problem instances that lack generalizability to
different locations or current travel patterns. This can result
in misleading conclusions and unrealistic expectations when
evaluating DARP solution methods.

At first glance, it may appear that using old Manhattan
instances at least provides the standardization we know from
the classical DARP instances [2], [3], [18]. The ability to
compare methods to previously established ones without the
need for re-implementation is a crucial factor for produc-
tivity. However, there are no publicly available Manhattan
instances. Instead, every work presents its own instances
based on the Manhattan dataset without publishing them;
thus, their results are hardly comparable or replicable.

In this work, we present new large-scale DARP instances
based on real travel demand data from three cities: New York,
Chicago, and Washington, DC. The instances are based on
recently collected data, capturing the latest developments in
the MoD field. Moreover, we present a detailed description
of the process of creating these instances, supported by the
source code needed to create them. Finally, we evaluated
the instances using two known methods for solving DARP
to demonstrate the advantages of using multiple areas and
instance configurations. The methods used are 1) a sim-
ple construction heuristic: the insertion heuristic, and 2)
an optimal solution method: the vehicle-group assignment
method [13]. Together with the proposed instances, we
distribute full solutions computed by these methods in the
instance repository (see footnote 3 on page 1).

II. METHODOLOGY

The instances we present are large ridesharing DARP
instances with several differences compared to classical
DARP instances. Each instance contains a) demand: a list
of requests for transportation between 2 points, b) a set
of vehicles represented by their starting locations, and c)
a model of travel time between any two locations.

We denote a set of all locations (vertices) in the road
network as L. Each travel request is a 3-tuple r = (o, d, t)
consisting of the origin location o € L, destination location
d € L, and desired pickup time, respectively. Each vehicle
is a 2-tuple v = (s, c¢), where s € L is the vehicle starting
location and c its transport capacity (available seats for
passengers). Formally, each proposed DARP instance is then
a 4-tuple (R, V, fi, A) with:

o R=1[ri,rs,...,1y], alist of n travel requests ordered

by their desired pickup time,

e V ={vy,v9,...,7,} a set of available vehicles,

o fi(1,I') is a function that models the travel time times
(in seconds) between any [,l’ € L.

e A is the maximum delay parameter of the instance. It
determines the maximum extra time to the requested
trip compared to direct and immediate travel between
the origin and destination location.

The rest of this section describes the instance creation
methodology from a high-level perspective. For a detailed
description of the methods used and their implementation,
you can visit the instance repository. We present the travel
time computation for the travel time model f; in Section [T
[Al We use open travel data specific to each city to generate
the demand R and vehicles V. This is described in Section[[I]
Finally, in Section we explain the differences be-
tween classical DARP instances and the proposed instances
for ridesharing DARP. The flow chart covering the whole
process of creating an instance is in Figure [T}

A. Computing Travel Time

In classical DARP instances, the request origin and desti-
nation locations, as well as the start locations for vehicles,
are coordinates in Euclidean space. The travel time between
any two points is then the distance between these points.
However, real travel times are much more complex; real
travel times are not symmetric and cannot be calculated
purely from origin-destination coordinates. To approximate
the travel time, we use a road network with assigned speeds
for each road segment and compute the shortest path between
locations in the road network.

We base the travel time model on two datasets: the Open-
StreetMapﬂ for the road network, and the UberMovement
datasetE] for speeds. The shortest-path computations are ex-
pensive, which is exacerbated by the fact that most methods
for solving DARP need to compute travel times frequently.
Therefore, the travel times are usually precomputed in a
distance matrix to reduce the overhead. However, to keep
the size of the matrix manageable, we need to discretize the
road network to limit the number of origin-destination pairs.
In this work, we use crossroads as locations.

The travel time model for each area was created through
the steps shown in light blue in Figure |1} The crucial parts
of the process are:

1) Speed data preparation for the area, date, and time
of interest.

2) Area specification: the instance area is specified as a
convex shape such that all the demand in the instances
we plan to generate lies inside this shape,

3) Import of the selected map from the OpenStreetMap
dataset according to the map state at the time when
the speed dataset was created,

4) Filtration of the map so that it contains only road
network,

5) Speed assignment to roads according to the speed
dataset,

4https://www.openstreetmap.org/
Shttps://movement .uber.com/

https://www.openstreetmap.org/
https://movement.uber.com/

) 's N\ (
Strongly)
Uber speed .Spegd GEL) Speed Road graph connected Lgne
filtration and : - model
dataset . assignment contraction component .
processing : generation
computation
) [Road | '_L
Road network Instance
Map import network filtration
. . export
extraction according to
L) . the area | L
A
— —
Zone datasets Zone. A.r.ea .
processing specification
Travel time model
A generation
Demand

dataset

Demand and vehicle
processing

Fig. 1: Flow chart of the instance creation process.

6) Road graph contraction by elimination of all nodes
that are not intersections.

7) Largest strongly-connected component selection to
remove unreachable “islands” either real or artifacts of
map filtration.

After the largest strongly-connected component computation,
the road network processing is finished, and we can produce
the travel time model f;.

B. Demand and Vehicles Processing

This section provides a brief description of the process
for transforming a travel demand dataset into demand R and
vehicle data V' for the DARP instance.

The initial step in the creation of the demand component
R involves selecting the date, start time, and end time. These
parameters are then used to extract the relevant records from
the travel demand dataset for a specific city.

As previously mentioned, the travel demand data are
obfuscated by all data providers after 2014 due to privacy
concerns. Consequently, to generate the instance, we must
devise a method for generating the demand locations and, in
some cases, the demand origin time. In both cases, we sample
a uniform distribution across nodes in the processed road
network (Section [[I-A) within the designated zone specified
in the dataset and across the dataset’s pickup time interval,
respectively.

Finally, we also need to generate vehicles and determine
their starting positions. To accomplish this, we sample from
the demand dataset at a specified time before the instance
start time. This approach ensures that we obtain realistic
vehicle positions, as these vehicles previously serviced the
trips in the travel demand datasets. The vehicle fleet size in
each instance is chosen as the lowest number of randomly
selected vehicles that can service all requests when solving
by insertion heuristic. This number is then increased by 5%
to introduce a buffer for cases where the insertion heuristic
would find the unique optimal solution.

C. Difference between Ridesharing and Classical Instances

Although ridesharing DARP instances are formally almost
the same as the classical ones, there are some differences.
The following distinctions are based on the existing rideshar-
ing literature[[13]], [17]]. First, the vehicles do not start from
a single depot. Vehicles must be distributed throughout the
area to serve the demand with the shortest possible delay
while supporting large areas. Therefore, we use a general
formulation where each vehicle has its own initial position.
Second, the ridesharing instance configuration has no maxi-
mum route time and no maximum passenger ride time. The
max route time in the classical DARP instances represents
the maximum time a driver can work without pause imposed
by contractor law. These constraints are unnecessary for the
ridesharing instances since they cover much shorter time
horizons than the classical DARP instances. Instead of the
maximum passenger’s ride time, we use a maximum delay:
a constant time limit to an extra service time compared to
the direct origin-destination travel time.

Besides the formal differences, there are even more im-
pactful changes in the instance configurations (The specific
configurations we used are described in the following section,
see Table I for examples of classical and proposed instances).
First, the time windows are much shorter. The maximum al-
lowed delays in ridesharing instances are in minutes, while in
classical instances, it is usually in hours. This change, caused
by the limited time flexibility of MoD users, significantly
reduces the combinatorial complexity of the problem, as was
demonstrated in the literature [17]. On the other hand, the
instance size of the proposed realistic ridesharing instances
is many orders of magnitude larger since they are created
from historical travel demand. This translates into much
higher computational complexity. Thus, the computational
complexity of the proposed instances has a different source
than in the classical DARP instances.

TABLE I: Comparison of selected proposed instances and
classical DARP instances

Instances Duration Requests Vehicles Mean Trip Dur. Time
+ SD [min] Window

[min]
DC 30s 4 18 25.0+7.5 3,5, 10¢
DC 15 min 163 121 15.8+8.7 3,5, 10¢
DC 16h 3297 218 16.1+8.3 3,5, 10¢
Chicago 30s 5 7 7.3+4.0 3,5, 10¢
Chicago 15min 274 198 13.4415.1 3,5, 10¢
Chicago 16h 3794 388 17.8£17.9 3,5, 10¢
Man. 30s 140 124 7.943.7 3,5, 10¢
Man. 15 min 5113 1672 7.7£3.8 3,5, 10¢
Man. 16h 90533 2011 8.0+4.0 3,5, 10¢
NYC 3s 329 336 10.3+6.2 3,5, 10¢
NYC 15 min 10567 5085 9.9+£6.6 3,5, 10¢
NYC 16h 198727 6461 10.5+6.7 3,5, 10¢
classic[3]* 24h 16-96 2-8 10.6+4.9 15 min or

24h¢
classic[7]° 24h 24-144 3-13 6.84+3.6 15-90 min or

24 h¢

248 instances, 220 instances, “one instance for each, “combined in same

instances

TABLE II: Demand and zone data sources®

Area name Demand data Zone data Request Reg/h/km?
source source times
New York NYC taxi and NYC taxi exact 217,
City, and limousine zZones 267
Manbhattan commission
Chicago City of Census tracts gener- 1
Chicago and ated
community
areas
Washington City of Master gener- 4
DC Washington, Address ated
DC Repository
“The download links for all data sources can be found in the instance
repository

ITII. DARP INSTANCES

We generated instances for four areas: New York City,
Manbhattan, Chicago, and Washington, DC. The data sources
for those areas are listed in Table [Tl Each of the generated
areas has different characteristics of the travel demand. In
Figure 2] we can see a comparison of the areas using
two quantities: demand density and trip length. Note that
the characteristics differ significantly between the areas. A
typical travel request in Manhattan originates in a zone with
about 10000 requests per km per day. In Chicago, a typical
request originates in a zone with a demand density of two
orders of magnitude lower. A similar difference can be seen
in the average trip length, which is low in Manhattan and
Washington, DC, and high in Chicago.

For each area, we determined the boundary differently. For
Manhattan and Washington, DC, we used the administrative
boundary. However, the administrative boundaries of the
remaining areas do not match the demand zones, so we
generated the boundary as convex hulls around the demand
zones. For Chicago, we only considered zones with at least

NYC Manhattan Chicago DC

[

00

% of demand
19
o

0 mnlla_ .= .IIII.- ull I_ H n_m e 0 -
5k 21k 5k 21k 0.3k 1.4k 27k 116k
request count per km?

(a) Demand density histogram. The x-axis represents the density of
the daily demand in the request’s origin zone (Note that it has a
different scale for each area).

“Ill- .l “II._
0 10-

Il- ‘IIIIII.I-I
20+ 10 20+ 10 20+ 10 20+

trip distance [km]

N
o

S

N
o

% of trip

(b) Trip Length Histogram

Fig. 2: Statistics of the daily demand in each instance area.

TABLE III: Road network statistics.

Area Node Edge Road length Area

Count Count [km] [km?]
NYC 113411 281278 27721 1508
Manbhattan 6382 13455 1329 87
Chicago 152653 413830 31982 1004
DC 33230 84788 5877 181

30requests to reduce the area and increase the density of
the demand. The area boundaries and zones for all areas are
presented in Figure [3] Note that the DC zones have irregular
shapes. This is because the demand zones in DC are specified
as Master Address Repository zoneﬂ As we do not have
access to boundaries for these zones, only their centroids,
we generated the zone boundaries as Voronoi cells based on
these centroids.

The road networks were processed according to the steps
described in the methodology section. Only the roads within
the area boundary (see Figure [3) were used to generate the
road network for each area. Two example road networks are
visualized in Figure 4] The statistics for these road networks
are summarized in Table [

Each edge in the road network of all instances has speed
associated with it. The speed data were sourced from the
Uber Movement dataset for the New York City and Man-
hattan areas. This data is visualized in Figure [5] We lacked
a data source with a similar level of detail for Chicago and
Washington, DC, so we associated an average speed from
the Uber Movement dataset with all edges.

Finally, by combining the road graph with the speed data
and shortest path planner, we generated a distance matrix
for each area that determines the travel time between any
two locations (intersections in the road graph) and comprises

6Method of address standardization used in DC, https://octo.dc.
gov/node/715602

https://octo.dc.gov/node/715602
https://octo.dc.gov/node/715602

%

(b) Washington, DC

(c) Chicago

Fig. 3: Area boundaries (blue) and zones (gold)

TABLE IV: Parameters for instance generation

2022-04-05 18:00:00

Duration [min] 0.5, 1, 2, 5, 15, 30, 120, 960
Maximum delay (A) [min] 3,5,10

Vehicle capacity (c) [persons] 4

Location NYC, Chicago, Manhattan, DC

Start time

the travel time model f;. This matrix is enough to very
quickly provide any necessary travel time information for
DARP solvers and similar algorithms; the map itself is an
intermediate product provided as supplemental material for
visualization purposes and the user’s convenience.

The dataset we present currently contains 96 instances,
24 for each area. The parameters according to which these
instances were generated are listed in Table [V] Note that
instances with different parameters can be generated by
following our methodology; this is just an example set with
parameters set to values relevant (to our best knowledge) to
MoD.

In addition to the travel time model in form of distance
matrix f;, each instance contains a list of travel requests R,
a list of vehicles V, and its configuration. An example of
the proposed instance is in Figure [§] The instances are com-
plemented by additional meta-data, such as the timestamp
of the start time of the demand, location name, road graph,
travel speed data, and other supporting information useful

(a) New York City (b) DC

Fig. 4: Example road networks

Fig. 5: Speed map of New York City. The lighter color
translates into higher speeds.

for visualization and analysis.

IV. EXPERIMENTS

We run a series of experiments to showcase the potential
usage of our instances. These experiments use two DARP
solution methods to solve DARP problems defined by our
instances.

A. Solution Methods

We evaluated two existing methods for solving the DARP
problem:

o the well know Insertion Heuristic (IH),
e and an optimal solution method, the Vehicle-group
Assignment method (VGA) [13].

IH is a standard heuristic for vehicle routing problems,
including DARP. Because of its good tradeoff between solu-
tion quality and computational requirements, it is frequently
used as a default or baseline method [19], [20], [21], [22].
Moreover, many metaheuristic methods use it to compute the
initial solution [23]]. The VGA method is an optimal solution
method. Based on the existing research, one cannot expect it

Fig. 6: Example of a Manhattan instance. The purple areas
mark demand: darker color translates to higher travel demand
from the area. The Black circles mark vehicles at their initial
positions. This particular instance contains 10362 requests
spanning 30 minutes

to solve all instances, especially those with large maximum
time delays [17].

B. Implementation and Configuration

We implemented both solution methods in C++ using
Gurobi solveﬂ to compute optimal vehicle-group assign-
ments in the VGA method. We set the time limit for each
experiment to 24 h and ran each on AMD EPYC 7543 CPU
with between 1 GB and 300 GB of memory and between
1 and 32 threads, depending on the location and solution
method (VGA multi-threaded, IH single thread).

C. Results

We ran both methods on all instances. You can inspect the
full results as a part of the instance repository (footnote 3 at
page 1). The main results showing the average cost (vehicle
travel time) per travel request are in Figure [7] As expected,
the VGA method could not solve all instances within the
time limit. Another trend in line with previous work is that
the cost decreases with the increasing max allowed delay.
The same is true for the instance duration. All these trends
correspond to findings from previous works [13]], [17].

A more interesting comparison is that between different
areas. We can see that area is a more significant predictor of
cost than instance duration or max delay. One can argue that
this is just an effect of different demand densities but a quick
look at Table [l does not support this simple conclusion.

7State-of-the-art commercial MILP solver, https://www.gurobi .
com/

The Washington DC instances have greater average costs
than the Chicago instances, while the demand density is
four times greater. When we compare the costs from New
York and Manhattan instances, the less dense New York
area indeed shows higher costs. However, the cost difference
is not that high if we consider that the demand density is
more than ten times lower in NYC. Both these comparisons
suggest that there is no simple relation between the demand
density and solution cost. Most likely, other more complex
area properties, like those examined in Figure 2] affect the
solution quality as well.

Another important question is how the area affects the
cost of the heuristic solution compared to the optimal one.
We can see that the difference is not consistent between
areas. Figure[8|brings more insight into this problem showing
the relative difference between the optimal and the heuristic
solution for each instance. Again, we can see that the differ-
ence between optimal and heuristic solutions increases with
instance flexibility (greater duration and maximum delay).
Nevertheless, the differences among areas are even greater,
suggesting that area-specific properties are an important
factor in determining the performance of heuristic methods.

For the final comparison, we show the histogram of
occupancies on selected scenarios in Figure 0] Again, the
occupancy is more impacted by the area than by the other
parameters. Manhattan has the highest average occupancy,
and the lowest is in Washington DC instances. But the
instance length also has a considerable impact on occupancy.
We can observe that the occupancy is low in the short
instances, most likely due to the inability to match multiple
requests in such a short time.

V. CONCLUSIONS

In vehicle routing problems with time windows, and
specifically dial-a-ride problems (DARP), significant efforts
are dedicated to developing new methods that strike a better
trade-off between solution cost and computational require-
ments. With the emergence of new technologies and the
digitalization of transportation, these problems have gained
relevance in the context of large-scale mobility-on-demand
(MoD) systems. These systems are operated by transporta-
tion network companies, some of which already offer ride-
sharing options. This is reflected in research where many
works analyze the sharability and fleet-sizing and provide
DARP solution methods for these systems.

To evaluate these solution methods, we need problem
instances containing the travel demand, expected travel
times, and vehicles. However, the traditional DARP instances
fall short when evaluating methods intended for large-scale
MoD systems, even though the problem formulation remains
largely identical. Substantial differences in instance char-
acteristics, such as demand density or time window sizes,
are the reason. Because of that, works that present solution
methods for large-scale DARP usually use different problem
instances. Those instances are, however, neither standardized
nor publically available. Additionally, most of them are
located in the Manhattan area, which can hardly be seen as a

https://www.gurobi.com/
https://www.gurobi.com/

instance length [min]

1.0

2.0

5.0
2000

1500
1000
500

|
2000
1500

1000

500
‘Uil

2000
1500

‘Hull ‘l
1000

il

Zzﬁo
O:‘n

travel time per request [s]

| |
20—

oY)
oda
o|yD) -
.
Ellle] —

D —

DAN
uep BN
DAN W
uely .
DAN
uely .

(o]

method
120.0

W ih M vga

960.0

15.0

08T

00¢€
[s] Aejop wnwixew

009

DAN
uep W
olyD .
cq -
DAN =
ue =
oy
DQq
DAN =
ue W
oYy
Hq
DAN
uep W
oYy
el |

Fig. 7: Average vehicle travel time per request.

instance length [min]

0.5 1.0 2.0

30
20
10

o Il mm -._

o - . II-
30

”’II
— X —

NYC Man Chic DC NYC Man Chic DC

cost diff between VGA and IH [%]

.I-_ x x Il —

NYC Man Chic DC

5.0 30.0

08T

0og
[s] Aejop wnwixew

X 1 =

NYC Man Chic DC

009

X X X
NYC Man Chic DC

X X X X
NYC Man Chic DC

Fig. 8: The increase of cost when solving by a suboptimal method (IH) relative to the optimal solution (VGA). Instances
with duration 2h and 16 h are omitted. The crosses signalize missing values (missing results of the VGA method)

representative area due to its abnormally high demand den-
sity. To make the matter even worse, the obfuscation of the
publicly available datasets (including NYC) leads researchers
to reuse the datasets released prior to the establishment of
the privacy protection measures, which are now at least ten
years old.

This research introduces a comprehensive collection of
large-scale instances designed explicitly for evaluating so-
lIution methods tailored to large-scale MoD systems with
ridesharing capabilities. We have carefully crafted instances
with varying characteristics in four areas: New York City,
Manhattan, Chicago, and Washington, DC. All instances use

actual demand data from these regions, including real travel
times for New York City and Manbhattan. In total, the dataset
contains 96 distinct problem instances. With these instances,
new DARP solution methods can be compared with the
existing ones without reimplementing them. Moreover, the
methodology and implementation described in this work
can be used to generate additional instances tailored for
representing current or future problems.

To showcase the intended usage, we evaluated all instances
using two methods, the Insertion Heuristic (IH) and the
optimal Vehicle-Group Assignment method. Overall, the
results align with findings from previous works: the solution

instance Ie(r)wgth [min]

1.0 5 30.0
60
s L Ll
20
olh L I I|_||.,II| I ||.,.II|-II_|| ;
£60 X
Za0 28
= hid Rk
s 0 | I_ [I- II-, II | Il_ ol 1N I] ul Il. o II | Il_ I I_ Z
60
q b i) §
20
0 || Il, l|||. III_ III ul Il. .IIIl [In I I_

NYC Man Chic DC NYC Man Chic DC NYC Man Chic DC

Fig. 9: Occupancy histogram on selected instances when the
problem is solved by the suboptimal method (IH). The red
bars mark zero occupancy (empty vehicles), and the blue
then starts from 1 on the left to 4 (vehicle capacity) on the
right.

cost per request is decreasing with both the instance duration
and the maximum delay for request, and the IH suboptimality
is mostly below 20 %. However, an interesting finding is
the heavy dependence of all results on the characteristics
of the specific areas. Thus, we conclude that evaluating new
methods in multiple cities is crucial for methods intended
for use within large-scale MoD systems. This contrasts with
the current research practice.

Apart from its direct applicability to static DARP, our
instances hold great potential for evaluating solution methods
addressing online DARP and other MoD-related problems,
such as fleet sizing, vehicle depot positioning, pricing, and
future demand estimation. Unlike classical DARP instances,
which often rely on fictional data, the proposed instances are
derived from real-life demand data and road networks and
could be used to estimate the real-life performance of DARP
solvers.

In the future, we would like to generate more scenarios
based on the feedback from the research community and
evaluate multiple solution methods using our instances.

REFERENCES

[1] P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and
Applications, Second Edition. SIAM, Dec. 2014.

[2] J.-F. Cordeau and G. Laporte, “A tabu search heuristic for the static
multi-vehicle dial-a-ride problem,” Transportation Research Part B:
Methodological, vol. 37, no. 6, pp. 579-594, July 2003.

[3] J.-F. Cordeau, “A Branch-and-Cut Algorithm for the Dial-a-Ride
Problem,” Operations Research, vol. 54, no. 3, pp. 573-586, June
2006.

[4] S. Ropke and D. Pisinger, “An Adaptive Large Neighborhood Search
Heuristic for the Pickup and Delivery Problem with Time Windows,”
Transportation Science, vol. 40, no. 4, pp. 455472, Nov. 2006.

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S. Ropke and J.-F. Cordeau, “Branch and Cut and Price for the Pickup
and Delivery Problem with Time Windows,” Transportation Science,
June 2009.

S. N. Parragh, “Introducing heterogeneous users and vehicles into
models and algorithms for the dial-a-ride problem,” Transportation
Research Part C: Emerging Technologies, vol. 19, no. 5, pp. 912-930,
Aug. 2011.

D. Kirchler and R. Wolfler Calvo, “A Granular Tabu Search algo-
rithm for the Dial-a-Ride Problem,” Transportation Research Part B:
Methodological, vol. 56, pp. 120-135, Oct. 2013.

T. Gschwind and M. Drexl, “Adaptive Large Neighborhood Search
with a Constant-Time Feasibility Test for the Dial-a-Ride Problem,”
Transportation Science, 2019.

M. A. Masmoudi, M. Hosny, E. Demir, and E. Pesch, “Hybrid adaptive
large neighborhood search algorithm for the mixed fleet heterogeneous
dial-a-ride problem,” Journal of Heuristics, vol. 26, no. 1, pp. 83-118,
Feb. 2020.

A. Ham, “Dial-a-ride problem: Mixed integer programming revisited
and constraint programming proposed,” Engineering Optimization,
vol. 0, no. 0, pp. 1-14, Nov. 2021.

NYC Taxi & Limousine Commission, “2018 Factbook,” NYC Taxi &
Limousine Commission, Tech. Rep., 2018.

P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz, and
C. Ratti, “Quantifying the benefits of vehicle pooling with shareability
networks,” Proceedings of the National Academy of Sciences, vol. 111,
no. 37, pp. 13290-13 294, Sept. 2014.

J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus,
“On-demand high-capacity ride-sharing via dynamic trip-vehicle as-
signment,” Proceedings of the National Academy of Sciences, vol. 114,
no. 3, pp. 462-467, Jan. 2017.

M. M. Vazifeh, P. Santi, G. Resta, S. H. Strogatz, and C. Ratti, “Ad-
dressing the minimum fleet problem in on-demand urban mobility,”
Nature, vol. 557, no. 7706, pp. 534-538, May 2018.

A. Wallar, J. Alonso-Mora, and D. Rus, “Optimizing Vehicle Dis-
tributions and Fleet Sizes for Shared Mobility-on-Demand,” in 2019
International Conference on Robotics and Automation (ICRA), May
2019, pp. 3853-3859.

B. A. Beirigo, R. R. Negenborn, J. Alonso-Mora, and F. Schulte, “A
business class for autonomous mobility-on-demand: Modeling service
quality contracts in dynamic ridesharing systems,” Transportation
Research Part C: Emerging Technologies, vol. 136, p. 103520, Mar.
2022.

D. Fiedler, M. Certick)’/, J. Alonso-Mora, M. Péchoucek, and M. Cép,
“Large-scale online ridesharing: The effect of assignment optimality
on system performance,” Journal of Intelligent Transportation Sys-
tems, vol. 0, no. 0, pp. 1-22, Dec. 2022.

S. Ropke, J.-F. Cordeau, and G. Laporte, “Models and branch-and-
cut algorithms for pickup and delivery problems with time windows,”
Networks, vol. 49, no. 4, pp. 258-272, 2007.

A. Campbell and M. Savelsbergh, “Efficient Insertion Heuristics for
Vehicle Routing and Scheduling Problems,” Transportation Science,
vol. 38, pp. 369-378, Aug. 2004.

P. Kalina, J. Vokfinek, and V. Mafik, “Agents Toward Vehicle Routing
Problem With Time Windows,” Journal of Intelligent Transportation
Systems, vol. 19, no. 1, pp. 3-17, Jan. 2015.

J. Bischoff, M. Maciejewski, and K. Nagel, “City-wide shared taxis:
A simulation study in Berlin,” in 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), Oct. 2017,
pp. 275-280.

D. Fiedler, M. éertick)’/, J. Alonso-Mora, and M. Cép, “The Impact
of Ridesharing in Mobility-on-Demand Systems: Simulation Case
Study in Prague,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), Nov. 2018, pp. 1173-1178.

S. Muelas, A. LaTorre, and J.-M. Pefia, “A variable neighborhood
search algorithm for the optimization of a dial-a-ride problem in a large
city,” Expert Systems with Applications, vol. 40, no. 14, pp. 5516—
5531, Oct. 2013.

	INTRODUCTION
	METHODOLOGY
	Computing Travel Time
	Demand and Vehicles Processing
	Difference between Ridesharing and Classical Instances

	DARP INSTANCES
	EXPERIMENTS
	Solution Methods
	Implementation and Configuration
	Results

	CONCLUSIONS
	References

