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Abstract— This work proposes a novel formulation
for the joint route guidance and demand manage-
ment problem, taking into account the uncertainty
in traffic demand. Previous attempts to address this
problem aimed to minimize the total time spent by
all vehicles in the network by determining the op-
timal routes and departure times, assuming perfect
knowledge of traffic demand. In contrast to prior
approaches, this work introduces a more realistic
model that incorporates uncertain demand. Doing so
results to a stochastic model predictive control model
with nonconvex nonlinear constraints. To address the
stochastic nature of the problem, a scenario-based
formulation is introduced, which uses a Gaussian
Processes framework to generate multiple scenarios.
In addition, an efficient solution methodology over the
scenario-based formulation is proposed that relaxes
the original nonlinear problem into a linear problem,
significantly enhancing its computational tractability.
Moreover, in the proposed solution methodology a
quadratic reformulation is derived that ensures fea-
sibility over the original problem space. Simulation
results demonstrate the superiority of the proposed
scenario-based methodology over the worst-case and
simplistic averaging approaches.

I. INTRODUCTION

Recent advances in Information and Communication
Technologies (ICT) have enabled the development of a
plethora of traffic management schemes that can address
the problem of traffic congestion [1]. Among these, the
primary strategies are route guidance and perimeter con-
trol approaches [2]. Route guidance provides drivers with
optimized route instructions, helping them avoid con-
gested parts of the network and reducing travel times [1].
Perimeter control regulates the transfer flows between
neighboring regions to prevent congestion from spilling
over into adjacent areas [3]. Although these strategies
are highly popular in the literature, their effectiveness is
limited, as they can only reduce but not entirely avoid
congestion [4].
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An alternative approach to manage traffic is through
demand management strategies, which aim to regulate
the inflow rate of vehicles into the network [5]. These
strategies are mainly economic policies that influence
drivers’ decisions on choosing alternative departure times
or modes of transport [5]. Their effectiveness is based on
the fact that these solutions aim to enhance the social
optimum by redistributing traffic across time and space.
By doing so, the emergence of congestion is avoided, and
travel times are sustained around those achieved under
free-flow speed conditions [6].

A novel formulation that jointly integrated route
guidance with demand management has been proposed
earlier by the authors in [7]. This approach computes
and manages vehicle routes (i.e., route guidance) and
departure times (i.e., demand management) based on
macroscopic traffic dynamics. The strong benefit of using
macroscopic traffic dynamics is that they rely solely on
the three fundamental traffic parameters of speed, flow,
and density, as defined by the concept of the Macroscopic
Fundamental Diagram (MFD) [8]. Evidently, many pre-
vious works have been proposed in this context, such
as multi-regional route guidance, which guides vehicular
flows to follow multi-regional routes with the aim of
reducing the experienced travel times [2]. Similarly, the
work in [9] leverages macroscopic traffic dynamics to
develop a multi-regional demand management method
that regulates vehicles’ departure times to minimize their
total travel time in the network. However, despite their
effectiveness, a major drawback of the aforementioned
approaches is that they do not consider the effects of
stochastic uncertainty and fluctuations in traffic dynam-
ics and demand. These stochastic effects have shown
to significantly impact their performance, making them
impractical for their real-life application [10].

Several recent works have focused on addressing mod-
eling uncertainties in traffic dynamics. For instance, the
work in [11] provides a detailed case study that presents
a methodological framework for incorporating stochastic
effects into traffic modeling. Likewise, the work in [12]
extends the MFD model to include uncertainty and
proposes a Stochastic Model Predictive Control (SMPC)
method [13] for traffic management. The latter approach
achieves higher trip completion rates compared to the
deterministic case, highlighting the significance of con-
sidering uncertainty in traffic management strategies.

In this work, we propose a SMPC formulation [14]
to address the challenges of joint route guidance and



demand management, considering the uncertainty as-
sociated with vehicle departure times, which represent
demand. We build upon our earlier work in [7], but we no
longer assume that the exact demand is known. Instead,
we consider demands that are uncertain characterized
by known mean and variance. To mitigate the inherent
stochastic nature of the SMPC formulation, we introduce
a Scenario-Based Model Predictive Control (SBMPC)
formulation. This formulation utilizes the Gaussian Pro-
cesses (GP) [15] to generate a diverse set of scenarios,
incorporating the mean and variance of the demands. To
generate these scenarios, we rely on historical data of
traffic demands for each region in the considered urban
network. Under this setting, demands are treated as
unknown random functions of time, modeled as multi-
variable Normal distributions [15]. To learn the under-
lying demand function, we employ Gaussian Processes
Regression (GPR), which allows us to predict a set of
future scenarios for a specific time period on a given
day [15]. By generating multiple scenarios using GPR,
this work is able to capture a wide range of possible
outcomes, providing an accurate representation of the
uncertain demand.

Moreover, to efficiently solve the resulting nonlinear
SBMPC formulation, we propose an efficient algorith-
mic methodology. This methodology relaxes the original
nonlinear problem into a linearized model, significantly
enhancing its computational tractability. Additionally,
we develop a quadratic optimization procedure to ensure
the feasibility of the solution derived for the linear model,
thereby overcoming the potential issue of infeasibility in
the original nonlinear program. The main contributions
of this work can be summarized as follows:

o We propose a mathematical formulation for the
joint route guidance and demand management prob-
lem, considering demand uncertainties. The result-
ing formulation is a stochastic, nonconvex, nonlinear
program that effectively manages the admission of
vehicles entering the network and the transfer of
flows between regions. The objective is to minimize
the expected total time spent by all vehicles in the
network. To deal with the challenges arising from the
stochastic formulation, we also propose a scenario-
based strategy that approximates the SMPC prob-
lem with a deterministic formulation.

e We develop a linear approximation approach that
provides fast and high-quality solutions for the
SBMPC formulation. Recognizing that these solu-
tions might not always be feasible, we further de-
velop a quadratic optimization procedure to obtain
feasible solutions.

Section II presents the demand and traffic flow model
in subsections II-A and II-B, respectively. Thereafter,
Section III provides the mathematical formulation of the
SMPC and SBMPC problems in subsections III-C and
III-D, respectively. Next, Section IV develops a practical

and efficient upper-bound algorithmic methodology. It
begins by approximating the scenario-based formulation
with a linear program and then uses the obtained results
to create high-quality feasible control decisions. Sub-
sequently, Section V evaluates the proposed solutions,
and finally, Section VI wraps up this work and explores
potential avenues for future research.

II. TRAFFIC FLOW MODEL DYNAMICS
A. Demand Model

Consider an urban area that is divided into a set of ho-
mogeneous regions, with each region r € R where, R =
{1,...,R}. Let O,D C R represent the set of regions
considered as origins and destinations, respectively. Let
the time be discretized into time steps of duration Tk,
where at each discrete time step, 7 € T, where 7 =
{1,2,...,T}, a certain number of vehicles intend to enter
the network, from an origin region o € O towards a
destination region d € D. This quantity is termed as
the instantaneous external demand and is denoted by
variable, doq(7), (veh). An assumption of this work is
that the instantaneous external demand is considered
as an unknown time-dependent function, with its value
being revealed at the current time step. Moreover, let
the variables dog(7) (veh) and D,q(7) (veh) denote the
admitted external demand and the cumulative external
demand, respectively. Specifically, the admitted external
demand refers to the actual number of vehicles that
are permitted to start their trips at 7 € 7. Moreover,
the cumulative external demand represents the demand
that remains outside the network at each time step 7.
Essentially, the admitted external demand represents
the portion of the cumulative external demand which is
admitted to the network, expressed as follows:

Jod(T) = ﬂod(T)Dod(T)a
where, the variable @,4(7) € [0,1] represents the control
variable which denotes the portion of demand allowed to
enter the network. The dynamics of the demand at each
time step 7 are defined as:

Dod(7+1) = Dod(T)—Jod(T)+dod(T+1),

r=12,..., (1)

T=12...,

(2)
where, Dyg(1) = doa(1).

B. Traffic Flow Model

This work assumes that the dynamics of each region
are captured by macroscopic traffic dynamics, using a
generalized MFD shape [8]. The key macroscopic pa-
rameters of each region r € R include the jam density,
pl the critical density, p¢, the free-flow speed, uf, and
the capacity, qrC . Each time step 7 is assumed to have
a duration of Ty (s), while parameters L,, A, and [,
represent the total length of region r, the average trip
length within region r, and the ratio between L, and
Ar (i.e, I, = L,/\.), respectively. Furthermore, the
variable g.(p-(7)) (veh/h) denotes the intended outflow



of region r at 7 that is the prospective traffic discharge
from region r at timestep 7. This is a function of density,
pr(7) (veh/km), and is calculated as the product of
density and speed, v,-(p,-(7)) (km/h), such that:

4r(pr (7)) = Lepr(T)vr (pr (7)) 3)

In other words, the intended outflow characterizes the
total flow that region r could potentially transit either, as
completed trips in region r, or to its neighboring regions,
assuming that there are no constraints on inter-region
boundary capacity. In this work the intended outflow
is modeled via a uni-modal nonlinear MFD function
(e.g., third order polynomial), f.(p,(7)), which can be
mathematically expressed as:

QT'(pT' (7)) = lrfr(pr(T))' (4)

Further, we represent all neighboring regions of a region
r € R, that are directly accessible from it by the set
J- C R. Additionally, we define the set J; = 7~ Ur

as follows: It ifreD
jr — r o b
J,~, otherwise. (5)

Furthermore, to account for the portion of traffic des-
tined to different regions, we introduce variables p;.q(7)
which denote the density in region r € R destined for
region d € D associated as follows:

pr(T) = Z prd(T)' (6)

deD

Likewise, the variables ¢,q4(7) and ¢, ;4(7) express the
intended transfer flow from r € R to d € D and from
r € R tod € D, through neighbouring region j € 7, at
time step T, respectively, defined as:

qrjd<T) = urjd(T)qu(T)7 (7)

(Ird(T) = lrUT(T)prd(T)a (8)

Gra(r) = > arjal7), 9)
j€Tr

0 (t) = gra(7), (10)
deD

gr(7) = Z Z QTjd(T>7 (11)

deD je€T,

where u,;4(7), € [0, 1], denotes the control variable that
defines the ratio of vehicles that transit from r to d
through a neighbouring region j, in such a way that:

Z Urja(t)=1,7r€R,deD
JET

(12)

The equality condition in Eq. (12) ensures that the
intended flow destined outside region r will be transferred
potentially to its neighboring regions j. Note that, the
flow of vehicles that arrive at their destination d € D
and exit the network at time-step 7 is determined by
qddd(T), i.e. variable g,jq(7) when {r = j = d} while it
always holds that ugqq(7) = 1.

Moreover, the maximum flow that can be exchanged
between neighbouring regions r € R and j € J, is
restricted by the flow/storage capacity of its neighbour-
ing region with variable C,;(p;(7)), denoting the inter-
boundary capacity from region r to region j, mathemat-
ically expressed as follows:

C}«\;I'AX7 if p](T) S ﬁr]pja
Cri(p;i(1)) = MAX v
i (5(7)) 701’ (11— 28 ) otherwise,
1=Br; Pj
(13)
where CMAX is the maximum inter-boundary capacity

and f,;p; is the point where the inter-boundary capacity
starts to decrease with 0 < 3,; < 1. Subsequently, the
actual transfer flow from r € R to j € J,, denoted by
variable §,;q(7T), is defined as:

Grja(T) = min (‘ITjd(T)ver(Pj(T))Z%) :

(14)
Considering all above, the traffic dynamics of density
of region r € R towards region d € D can be defined as:

pralr + 1) = pra) + £-dea(r) 4 (X )

JETr
- Y 4.

JjETr

(15)

III. PROBLEM FORMULATION
A. Demand Uncertainty

In our previous work [7], the joint Route Guidance
and Demand Management Problem is addressed using a
Model Predictive Control (MPC) framework. The afore-
mentioned work however, assumed perfect prior knowl-
edge of the instantaneous demand, d,q(7). In practice
however, acquiring exact knowledge of future instanta-
neous demand can be challenging, if not impossible, due
to the daily and hourly fluctuations in traffic demand.
Hence in this work we relax the assumption that in-
stantaneous traffic demand is known in advance and
consider that it only becomes known at the current
time step. Without loss of generality, in this work the
instantaneous traffic demand for each origin-destination
pair is an unknown time-dependent function, with know
mean and variance, that follows a normal distribution as
expressed below:

doa(T) ~ N (poa(T), Uid(T)), 7=12,3,...,

with mean p1,4(7) and variance 02,(7) for each time step
T, respectively.

(16)

B. Objective Function

Given the uncertain nature of instantaneous demand,
our primary objective is to minimize the Total Time
Spent (TTS) for all vehicles. The TTS is the cumulative
sum of the Total Travel Time (TTT) and the Total
Waiting Time (TWT) for all vehicles. It’s crucial to note



that our demand management strategy might require
some flows to delay their departure. Consequently, the
TWT is computed as the difference between the time
when vehicles are to depart and the actual time when
they are permitted to do so.

To define the objective function, we introduce variables
So(7) that represent the cumulative number of vehicles
that wait to enter the road network and S,(7) to denote
the cumulative number of vehicles that arrive at their
destination at time step 7, mathematically expressed as

Sa(T+1) =Sa(r)+ D > doalr), 7=1,2,...,
oe0OdeD
(17)
Sp(T+1) = Sy(r) + 1o Y | aaa(7), 7=1,2,..., (18)

deD

with S,(1) = 0 and Sp(1) = 0. Then, the TTS is equal
with the summation of the difference S,(7) and Sp(7)
over all time-steps such that the objective function ,
Jrrs (veh-h), mathematically described as,

Jrrs =Ts Z (SalT) = Sp(7)).

C. Stochastic Model Predictive Control Approach

(19)

Extending the classical MPC receding horizon ap-
proach of [7], a finite horizon SMPC problem is proposed.
Similar to MPC, the SMPC assumes discrete time steps,
each of duration T, wherein a different control action can
be employed at each time step. Within this framework,
each SMPC problem includes a control horizon and
a prediction horizon, each covering N¢ and NT time
steps, respectively. Hence, every new SMPC problem is
solved at intervals of N¢ < NP time-steps. At time
step t = NYp — 1), the initial state which includes
the measured current states p.(t), prq(t), the cumula-
tive external demands Dyy(t), the current realization of
instantaneous demand doq(t) and the distributions of
future demands N (pioa(7),024(7)), 7= {t,t+1,...,T}
is used as input to the traffic controller on each itera-
tion to solve the next instance of SMPC, for the next
prediction horizon 7, = {N%(p — 1)+ 1,...,N(p —
1) + NP}, with p denoting the p-th instance. Note that
at t the instantaneous demand reveals its true value.
The control decisions derived from the SMPC problem
are the ratio of vehicles that transfer from r toward
d through the immediate neighboring region j, u,jq(7)
(route guidance), and the portion of cumulative external
demand that is admitted to enter r and destined d, @,q(7)
(demand management). With each new computation of
the MPC problem, the derived decisions are used as the
control input for traffic management, with the procedure
repeated every N¢ time-steps. Considering all the above,
the p-th SMPC problem can be formulated using the
following mathematical program:

(Py) T.E| > (S

TET,

min
Upjd (T),8pa(T)

Sb(7)>| Initial State] (20a)

s.t. Dynamics: (1) — (2), (4) — (15), (17) — (18),
doa(7) < DMAX Y1 € T,,Yo € O,Vd € D, (20b)
dod(T) < Doa(T), V7 € T, Yo € O,¥d € D, (20c)
0 < po(r) < pl V1 €T, r € R, (20d)

Uoq(T) € 10,1], V7 € Tp,Yo € O,Vd € D, (20e)
urja(7) € 10,1}, V71 € Ty, Vr e R,Vj € J,Vd € D,
(20f

)
Ugad(T) = 1,¥17 € Tp, Vd € D, )
Initialization: p,(t) = p.(t), pra(t) =
pra(t), Dra(t) = Dya(t), doa(t) = doa(t),
Vr € R,VdeD, t=Np—-1), (20h)
Variables: S,(7), S(7), pra(7), doa(7), Dya(7),
pr(7), @ (1), 0 (7), @ra(7)s @rja(T), Grja(T), Uoa(T),
Urja(7),Vr € R,Vj € J,Vd € D,V1 € T,,.

(20g

Problem P; aims to minimize the expected value of the
Total Time Spent of all vehicles within the considered
prediction horizon, conditioned on the initial state as
defined in constraint (20h). Constraints (1)-(2), (4)-(15)
and (17)-(18) model the demand and traffic flow model
dynamics. Furthermore, (20b) and (20c) impose the
physical limits on the external demand inflows ensuring
that it is always smaller than the DAX and the D,q(7),
(20d) makes sure that the density of each region is within
the physical limits. Constraints (20e) - (20g) restrict
both control variables within their limits and finally,
constraint (20h) defines the initial state of the network.

D. Scenario-Based Approach

Problem P, is a challenging optimization problem due
to its stochastic nature. The inherent complexity arises
from the requirement to consider all potential realiza-
tions of the unknown demand. However, such solutions
are hard, if not impossible, as the SMPC is an infinite-
dimensional optimization problem. A practical solution
to this problem is to approximate the uncertain demand
function by multiple possible scenarios [16].

1) Scenario Generation: This work employs GP to
generate multiple scenarios based on historical data of
the demand function [15]. GP is a multivariate Gaussian
function, i.e., g(7), characterized by its mean, m(7), and
covariance!, k(7,7'), defined as follows:

9(7) ~ GP(m(7), k(r, 7).

To efficiently sample multiple scenarios using GP, this
work considers the instantaneous demand as an unknown
function of time, given by

(21)

Yod(T) = God(T) + €0a, T =1,2,.., (22)

1In this work, the covariance function is assumed to be the
squared exponential radial basis function [15].



where y”,(7) represents the n-th measured output of
demand at time step 7, goq(7) is the unknown function
of demand and €,q ~ N (0,02 ) denotes white measure-
ment noise. To estimate g,q(7), we employ the Gaussian
Processes Regression (GPR) procedure as detailed in
[15]. GPR procedure considers a given set of n demand
measurements and learns the mean g, and covariance
cov(g.) of the Gaussian Process [15]. Therefore, we can
generate M unique demand scenarios for each origin-
destination pair by simply sampling the derived GP as
follows:

I7(7) ~ GP(gs, cov(gs)) (23)

where JZZ(T) denotes the m-th sampled scenario for a
specific origin-destination pair, with m € M and M =
{1,...,M}.

2) Scenario-Based Formulation: The proposed
Scenario-Based Model Predictive Control (SBMPC) for-
mulation aims to approximate the SMPC formulation of
P, into a deterministic counterpart. This process em-
ploys the proposed GPR method to generate M unique
demand scenarios for each origin-destination pair, i.e.,
(7). Within this framework, the SBMPC formulation
considers distinct demand and traffic dynamics for each
scenario assuming that the control variables are shared
among them. Hence, control variables t,q(7) and u,;q(7),
correspond to all scenarios as they are shared among
them. On the other hand, each scenario m € M is
governed by its own demand and traffic dynamics, as
specified by Eqgs. (1)-(18), but for the sake of brevity,
we will not reintroduce the dynamics for each scenario
in this discussion. Hereafter, the superscript m will be
used to denote variables specific to the m-th scenario.
For instance, p*(7) refers to the density of region r € R
at time step 7 € T, reflecting the demand of scenario

m € M.

The proposed SBMPC formulation operates similarly
to the SMPC, with a new SBMPC problem solved every
N¢ < NP time steps. At time step t = N%(p — 1),
the current measured states p,(t), prq(t), along with the
cumulative external demand D,q(t), the current instan-
taneous demand do4(t) and the instantaneous demand
for each scenario JZ&(T), V7 € Tpand Ym € M, are
fed into the traffic controller. These inputs are used to
solve the p-th SBMPC optimization problem, for the
time horizon 7, = {N9(p —1) +1,...,N%(p — 1) +
NP}, Just as in the SMPC formulation, at time step
t the instantaneous demand reveal its true value with
the control decisions involving the variables u,;q(7) and
Uod(T). Once an MPC problem has been solved, the
resulting decisions are utilized as the control input for the
traffic network. This process is then repeated every N¢
time-steps. Considering all the above, the pth SBMPC

problem can be mathematically formulated as follows:

(P.) 5 X (s -spo)

meM TeT,
(24a)

s.t. Dynamics: (1) — (2), (4) — (15), (17) — (18),
Im(r) < DMAX 7 € T,,Yo € O,¥d € D,

min
Upja(T),dra(T)

Ym e M, (24b)

™ (1) < D7(1), V1 € Tp,Yo € O,Vd € D,
Ym e M, (24c)

0 < pm(r) < plVre Tp,Vr € R, Vm € M,
(24d)
Tod(T) € [0,1], V7 € T, Yo € O,Vd € D, (24e)

urja(m) € [0,1], VT € Ty, Vr e R, Vj € J,Vd € D,
(24f)

uddd(’l') = 1,V7’ S 7;), Vd € D, (24g)

Initialization: p;"(t) = p,(t), piy(t) =

pra(t), DI(t) = Dya(t), diy(t) = doalt),
VreR,VdeD,Vme M, t=Np—1), (24h)
Variables: ur;a(7), toa(T), 454(7), 7a(7), 4754(T),
P (7), " (1), 07 (7), pra(T), S5 (7), Sy (7), dog(T),
Dyy(1),¥r € R,Vj € J,Vd € D,Ym € M,¥1 € T,,.

Problem Ps is designed to minimize the average Total
Time Spent cost for all vehicles across all scenarios
within the given prediction horizon, related to the initial
state given in Constraint (24h). Within this formulation,
constraints (1)-(2), (4)-(15) and (17)-(18) characterize
the demand and traffic flow dynamics for all considered
scenarios. Drawing parallels to SMPC, constraints (24b)
and (24c) set physical limits on the external demand,
while constraint (24d) makes sure that the density of each
region is between the physical limits across all scenarios.
Constraints (24e) - (24g) set the physical boundaries
for the shared control variables. Moreover, constraint
(24e) denotes the initial state of the variables, with all
scenarios beginning from the same values. Despite its
deterministic nature, Problem (P,) remain challenging as
it is a nonconvex and nonlinear mathematical program
(NLP). This complexity arises due to the presence of the
bilinear term in Eq. (1), the nonlinear unimodal MFD
function in Eq. (4), the bilinear terms in Egs. (7) and
(8), and the nonlinear functions in Egs. (13) and (14).

IV. SOLUTION APPROACH

As aforementioned, despite the deterministic nature
of the SBMPC formulation, it remains a nonlinear and
nonconvex problem. As such, it can not be efficiently
addressed by standard nonlinear solvers. Hence, in this
section we introduce an effective solution capable of gen-
erating high-quality and accurate results. The proposed
methodology approximates all nonlinearities within the
SBMPC using linear constraints, aligning with the ap-
proach presented in [7]. Similar to the method presented



in [7], our proposed solution approximates all nonlineari-
ties involved in the SBMPC using linear constraints. The
approach involves two key steps. First, acknowledging
that the shared control variables introduce significant
nonlinearities, instead of solving a single MPC instance
which simultaneously considers all scenarios, we address
the approximate linear problem for each scenario individ-
ually. Subsequently, the second step employs a quadratic
optimization process to pinpoint optimal shared control
variables across all scenarios.

A. Linear Approximate SBMPC Formulation

As noted earlier, instead of determining shared control
variables across all scenarios simultaneously, we opt to
solve each scenario independently. This approach allows
us to omit Egs. (1) and (7) from our proposed for-
mulation. Specifically, by excluding these equations, the
variables dyy(7) and ¢;7,(7) are free to adopt the value
that best optimizes the objective function within each
individual scenario.

The nonlinear unimodal MFD function in Eq. (4),
is approximated by a triangular MFD h,.(p7 (7)) which
consists of two linear segments which are intersect at
the critical density p¢. These segments correspond to
intervals p™ (1) € [0,p¢] and p(7) € (p¢,00) and are
identified using an optimal least-squares fitting proce-
dure [17]. The fitted triangular function takes the form:

ho(p (7)) = ar, p7(7), 0<p(r) < pf
" Qry pr(T) + Qg pg <p(T) < —ar, o,
(25)
where o, a, and o, are fitted parameters with o, and
o, denoting the approximated free-flow and backward
congestion propagation speed, respectively. Despite being
composed of two linear segments, the triangular MFD
remains nonlinear. To relax the nonlinearity, Eq. (25)

is linearized by replacing the equality "=" with the
inequality sign "<". This results in,
4" (7) < ary (7)), (26)
4 (7) < arypy(T) + Qg (27)
Furthermore, constraints (8) is relaxed into:
ra(T) < oy pg(T)l, (28)

since for the triangular MFD it is always true that
v.(1) < a,,, where a,,, = vf. Finally, constraints (13)
and (14) are handled together. Constraint (14) is the
minimum of two functions, it can be linearized by re-
placing the equality “=" with the inequality sign “<” as
follows,

@5a(T) < 4755a(7), (29)

qmd( )S C;';(pj(T)) QTjd(T)

Zy €D q?}y(T) - (30)

Next, the constraint (30) is further relaxed by taking the
sum over all ;%,(7) for d € D as follows:
> @%a(r) < O (ps(m)), (31)
deD
which is a relaxed version of (30). Considering that
constraint (31) is still nonlinear, we combine constraints
(29) and (30), to reduce constraint (31) into:

Z q'r‘]d < CMAX (32)
deD
_Gt )
Z qu = 1 _ B 1- J . (33)
deD i Pj
Hence, the nonlinear constraints of (13) and (14) are

relaxed into the linear constraints (29), (32) and (33).
Given all the approximations outlined above, each in-
dividual scenario is linearized by the following MPC
formulation:

(P3)  min T, > (Si(r) = S§(7)) (34a)
Grja(r)dra(r) ST
s.t. Dynamics: (2),(5) — (6),(9) — (11), (15),
(17) — (18),(26) — (28), (29), (32) — (33),
™ (1) < DXAX | V1 € T,,Yo € O,Vd € D, (34b)
™ (1) < DI(1), Y7 € Tp,Yo € O,¥d € D, (34c)
0<pm(r) < pl VT €T, VreR, (34d)
Variables: D/'4(7),q,54(7), ¢/a(7), 45a(7), pi" (T),

g (), 0 (7), Ya(7), S (7), S§ (7), dji(7),
Vr e R,Vj € J,Vd € D,V1 €T,

Formulation (34) is a Linear Program (LP) that delivers
an approximate solution for each individual scenario
of the original nonlinear Problem Ps. This formulation
is applied to each Model Predictive Control (MPC)
instance, taking into account the time horizon 7, =
N p—1)+1,...,N%p—1) + NP. The proposed for-
mulation takes as input each individual control scenario
dr(r),¥T € T, and in return provides the values of
Grja(1) and doa(7) V7 € T,. However, the main objective
is not to solve each scenario independently, but to find
the optimal control decisions for the variables u,;q(7)
and @,q(7), across all scenarios. This is achieved through
the following quadratic optimization procedure:

3 ( S (@) — ira(r) Dou(r))

meM TET,

+ (qrjd - urjd(T)QTd(T))Q)

8.t Uoa(T) €[0,1], V7 € Tp,Yo € O,Vd € D, (35b)
urja(7T) € [0,1], V7 € Ty, Vr e R, Vj € J, V¥d € D,
(35¢)

(P4)

Upja(T),tra(T)

(35a)

Z Urja(T) = 1,V7 €

VISV

Tp, Vr € R, Vd € D,

(35d)



Algorithm 1 Linear Approximation of SBMPC

1: Input: External demand Scenarios: dJ4(7),
0e0,deD, €T ,me M.
Traffic network parameters: h,(p), v, p<,p7,
CMAX, By, j€ Ty 1 €R.
2: Initialization: Get the initial traffic state of the
network and set p = 1.
for N®(p —1) < T do
3: Initiated the MPC state according to previous
traffic state.
for m € M do
4: Solve P3 for t = N¢(p — 1) and initial state.
end for
5: Considering the solutions of all m € M of Pg,
solve Py and derive u,jq(7) and Goq(7), V7 € [t,t+N€].
6: p = p+ 1 and updated the traffic state.
end for
7: Output:
deD, TeT.

Urja(7) and Goq(7), Vr € R, j € T,

uddd(T) = 1,V7‘ S 7;,, Vd € D,

Variables: w,;q(7T), Uoq(T)

(35¢)

Problem P, is a Quadratic Program (QP) that uses the
solution from Problem Py (i.e.,Gr;jqa(7) and Jod(T)VT €
Tp) as input. Its aim is to find the optimal control
decisions for the variables w,;q(7) and @.q(7) that are
shared across all scenarios. Therefore, the objective of
Problem P4 is to find the best control variables that
ensure that the nonlinear Egs. (7) and (1) hold across the
majority of constraints, assuming that control variables
are shared across all scenarios. In simpler terms, the
goal of Problem P4 is to minimize the summed square
differences between d”(7) and @i,q(7)Doa(T), as well as
between §Grjq and u,;q(7)grqa(7). These sums are calcu-
lated for all time steps within the considered time horizon
and across all scenarios.

The SBMPC approach is efficiently solved through the
algorithmic procedure detailed in Algorithm 1. Initially,
Algorithm 1 takes the generated external demand scenar-
ios and the traffic-related parameters for each region as
input, with traffic dynamics within each region defined
according to a triangular-shaped MFD. Following this,
the algorithm initializes the traffic state based on the
current traffic conditions and launches an iterative pro-
cedure. This process aims to determine the control vari-
ables of u,;q(7) and Geq(7) within the considered time
horizon 7. This procedure is repeated every N¢ steps.
During each iteration, we solve Problem P3 separately for
each demand scenario. Following this, the results of all
scenarios are used to infer the control decisions for the
forthcoming control horizon, N, applying the mathe-
matical formulation of P4. This procedure continues until
the end of the time horizon.

Demand Level (veh/h)

2000 3500 4500 5500

2 SBA 293 398 538  6.60
E  Average 3.72 458 580 6.89
E Worst  4.21 502 628 7.1
Known 2.93 3.94 5.38 6.54

TABLE I: Performance evaluation of different solution
approaches for varying demand levels.

V. SIMULATION RESULTS

The effectiveness of our proposed scenario-based so-
lution methodology is assessed using a 16-region net-
work topology. This topology includes four regions des-
ignated as origins and another four regions as desti-
nations, mirroring the network structure used in [7].
Traffic dynamics in each region are modeled using
a third-order polynomial function, given by ¢.(7) =
ar1p2(7) + ar2p?(7) + arzp. (1), with parameters: a,; =
8/3675, are = —1192/2205, a,3 = 14768/441, p$ = 43
veh/km, p/ = 118 veh/km, L, = 1 km, [, = 0.3 and
g¢ = 1850/3 veh/h, Vr € R, CYA* = 2000 veh/h
and B,; = 0.25, Vr € R, Vj € J,. In the evaluation,
four scenarios with different demand levels of 2000, 3500,
4500, and 5500 veh/h are assessed. The scenario with
2000 veh/h represents the lowest demand, while the
5500 veh/h scenario signifies the peak demand. In this
framework, we examine the performance of the following
solution approaches:

o« SBA: This refers to the solution attained through
the proposed Scenario-Based Approximation (SBA)
solution methodology presented in Algorithm 1 In
total thirty one scenarios are generated where the
first thirty are used as input to Algorithm 1 and the
latter is used as the ground truth.

o Known: This signifies the solution to problem Pj,
assuming perfect knowledge of the demand which is
given by solving a single scenario.

o Average: This denotes the solution to problem Pg
assuming the average demand given by a singular
scenario. The average demand can be derived using
the proposed Gaussian Processes Regression (GPR)
method.

e Worst: This represents the solution for the worst-
case scenario. This can be obtained by solving
P3, assuming that the control variables d,q(7) and
Gr;ja(T) are uniform across all scenarios.

Note that all of these approaches are MPC strategies,
which assume a triangular-shaped MFD function. All
MPC parameters are set to Ty = 30 s, N¢ = 10, and
NP = 25, respectively. Finally, by applying a least-
square fit to the provided third-order polynomial MFD
the resulting triangular MFD parameters are: 6,1 =
4243/297, 6,2 = —4257/519, and §,3 = 55091/57.



Demand Level (veh/h)
2000 3500 4500 5000
SBA 0.0 1.0 0.0 1.0
Average 26.9 16.24 7.8 5.3
Worst 43.6 27.4 16.7 8.7

Gap (%)

TABLE II: Optimality Gap for varying demand levels.

Table I presents the results of all considered ap-
proaches in terms of the TTS metric, as defined by
Eq: (19). From the table, it becomes evident that both
the average and worst-case approaches lead to increased
travel times, particularly in high-demand scenarios. In
contrast, the SBA strategy performs better by providing
the shortest T'TS for all vehicles, highlighting its superior
performance in every situation. The SBA strategy only
has a small increase in travel times compared to the
scenario with perfect demand knowledge. Additionally,
Table II shows the “optimality gap” defined the differ-
ence between the TTS achieved when we know demand
perfectly and the results from other methods. Interest-
ingly, the table shows that the proposed SBA strategy
has less than a 1% drop in performance compared to
the scenario with perfect demand knowledge. When the
demand is low, both the average and worst-case strate-
gies show big differences when compared to the scenario
where the demand is perfectly known. However, this is
not the case in high-demand scenarios. In such situations,
a lot of vehicles are suggested to leave late because the
demand is so high. As a result, many vehicles are held
outside the network over time. However, as time goes by,
the feedback mechanism of MPC identifies the true value
of demand enabling them to improve their quality. The
data in both tables confirm that our proposed Scenario-
Based Approximation (SBA) method performs better
and is more reliable in various demand situations.

Figure 1 shows space-time density diagrams for all
methods, covering the four demand scenarios. Figure 1
(a) relates to the scenario with the lowest demand, where
all methods avoid major traffic congestion. Interestingly,
the SBA and the case with known demand perform
the best in this scenario, as there is a minor difference
between the two. The same pattern is observed in scenar-
ios with higher demand. While all strategies manage to
avoid congestion in all the scenarios, the SBA approach
is the only one that can keep the TTS metric close
to the value seen with known demand. Therefore, the
SBA strategy demonstrates its effectiveness in managing
different traffic conditions and dealing with uncertainties
in demayid. actosscall sionsidared Ferames WORK

This work proposes a novel formulation for the joint
route guidance and demand management problem, con-
sidering uncertainty in traffic demand, unlike previous
approaches, which assume perfect knowledge of traffic de-
mand. The proposed formulation results in a stochastic,

060 80100 120 140 160 150 200

2 40 60 S0 100 120 140 160 180 200
[554]

Fig. 1: Space-time density diagrams of densities of all
investigated solution approaches across the four demand
scenarios: (a) 2000, (b) 3500, (c) 4500 and (d) 5500
veh/h.

nonconvex, nonlinear MPC program where a scenario-
based MPC formulation is introduced to address the
stochastic nature of the problem. The scenario-based
MPC formulation is efficiently solved through a novel
solution methodology, which relaxes the original non-
linear problem into a linear problem and employs a
quadratic optimization procedure to ensure feasibility.
Finally, simulation results demonstrate the superiority of
the proposed scenario-based methodology over the worst
case and the simplistic averaging approaches. Future
research avenues will explore how to integrate model-
ing uncertainties and disturbances into the proposed
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