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Abstract— Multi-modal behaviors exhibited by surrounding
vehicles (SVs) can typically lead to traffic congestion and reduce
the travel efficiency of autonomous vehicles (AVs) in dense
traffic. This paper proposes a real-time parallel trajectory
optimization method for the AV to achieve high travel efficiency
in dynamic and congested environments. A spatiotemporal
safety module is developed to facilitate the safe interaction
between the AV and SVs in the presence of trajectory prediction
errors resulting from the multi-modal behaviors of the SVs. By
leveraging multiple shooting and constraint transcription, we
transform the trajectory optimization problem into a nonlinear
programming problem, which allows for the use of optimiza-
tion solvers and parallel computing techniques to generate
multiple feasible trajectories in parallel. Subsequently, these
spatiotemporal trajectories are fed into a multi-objective eval-
uation module considering both safety and efficiency objectives,
such that the optimal feasible trajectory corresponding to the
optimal target lane can be selected. The proposed framework is
validated through simulations in a dense and congested driving
scenario with multiple uncertain SVs. The results demonstrate
that our method enables the AV to safely navigate through a
dense and congested traffic scenario while achieving high travel
efficiency and task accuracy in real time.

I. INTRODUCTION

Autonomous vehicles (AVs) have the potential to signifi-
cantly enhance driving efficiency. For instance, a study by the
Texas A&M Transportation Institute found that the average
commuters in the United States spent 54 hours stuck in traf-
fic, costing them $1, 008 in wasted time and fuel in 2019 [1].
AVs could reduce these costs and improve the overall effi-
ciency of the transportation system. Decades of research and
industry development in the field of autonomous driving have
led to the applications of AVs in various aspects of our lives,
including urban transportation [2], delivery services [3], and
mining [4], etc. Despite the advancements in autonomous
driving technologies, safety remains a critical concern, par-
ticularly in dynamic urban traffic environments [5]. One
of the key underlying factors to this concern is the multi-
modal behaviors of surrounding vehicles (SVs), such as
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Fig. 1. Depiction of a three-lane driving scenario showing the
red EV, yellow perceived SVs, and unperceived blue SVs. In the
top subfigure, the EV is impeded by its front vehicles, while
the bottom subfigure shows that with multiple parallel optimized
trajectories, the EV can proactively change lanes to escape the
congested scenario.

sudden deceleration and lane changes. These behaviors are
difficult to predict, which significantly influence the motion
of ego vehicles (EVs) and pose a safety threat to the EV.
Besides, the multi-modal behaviors of SVs can lead to traffic
congestion in dense traffic scenarios, which compromises the
driving efficiency of the EV.

To overcome these challenges, the EV must be capable
of rapidly replanning in response to the uncertain motion of
SVs, ensuring split-second reaction to potential threats [6].
This requires computationally efficient trajectory optimiza-
tion methods that account for the motion uncertainties of
SVs. Additionally, the EV must proactively change lanes
to avoid being impeded and reduce travel time, thereby
improving driving efficiency, as illustrated in Fig. 1.

To enable efficient replanning in traffic flow, several works
have focused on decoupling longitudinal and lateral motion
to generate a smooth and feasible trajectory for the EV [7],
[8], [9]. Although these works transform the motion of the
EV into two independent one-dimensional movements to
reduce planning complexity, this decoupling structure may
result in a lack of coordination between the longitudinal
and lateral movements of the EV, potentially leading to
unsafe driving behaviors in sudden lane changes or abrupt
braking [10]. To address this issue, researchers have devel-
oped hierarchical path-speed decomposition motion planning
methods that enable EVs to interact safely with other vehicles
in dynamic environments [11], [12], [13]. These methods
involve planning a path to avoid static obstacles and opti-
mizing a speed profile to avoid dynamic obstacles [14]. For
example, in [13], an optimal path is selected among multiple
candidate polynomial paths obtained from state sampling
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methods, and an optimal acceleration profile is generated to
obtain a velocity curve based on the responsibility sensitive
safety model [15]. However, the path generated by the
sampling module may not accurately reflect spatiotemporal
information as it is not optimized for spatiotemporal safety
constraints. This can impact the quality of the solution for the
subsequent speed optimization module. Additionally, these
methods cannot fully exploit the actuator potential of the
nonlinear EV with nonholonomic constraints, resulting in
suboptimal control policies.

On the other hand, optimal control methods, such as
Model Predictive Control (MPC) [16], have the ability to
incorporate system models and constraints while anticipating
future states for autonomous driving [17], [18], [19]. In [20],
the safety term is encoded into the objective function of
MPC as a distance term to obstacles to avoid a potential
collision and realize aggressive lane change maneuvers. To
proactively avoid collisions, the control barrier function [21]
has been utilized to enforce the safety of the EV when
overtaking the front vehicle in the MPC framework [17]. De-
spite the advantages of optimal control methods in handling
constraints, the computationally burdensome optimization
process, particularly the inversion of the Hessian matrix,
remains a limiting factor for real-time planning within typ-
ical planning horizons of 5 to 10 seconds in autonomous
driving [22], [23]. To improve the computational efficiency
towards trajectory optimization problems for autonomous
driving, researchers have turned attention to the alternating
direction method of multipliers (ADMM) [24] to reduce the
computational burden of optimization processes [25], [26].
The ADMM splits the optimization problem into several
subproblems that can be efficiently solved within the optimal
control framework. While existing works often rely on a
predefined motion model without uncertainties for SVs [25],
[26], these approaches can lead to safety concerns in dynamic
and congested traffic flow due to model mismatches and
uncertain multi-modal behaviors of SVs. Considering uncer-
tain behaviors and computation efficiency, an efficient multi-
modal MPC approach based on the alternating minimization
method has been developed for safe and efficient interaction
with uncertain SVs for the EV [27]. It has shown promise
in parallel optimization of multiple trajectories in a traffic
flow with multi-modal behaviors exhibited by the SVs,
but it does not explicitly address driving consistency when
evaluating candidate trajectories. This could lead to frequent
lane changes in dense and congested traffic, which may
compromise driving comfort.

In this paper, an efficient trajectory optimization frame-
work is proposed such that the EV is able to navigate through
dense and congested traffic safely and efficiently, as illus-
trated in Fig. 2. To facilitate efficient driving, multiple nom-
inal trajectories are optimized simultaneously using multi-
threading and direct multiple-shooting, with each trajectory
corresponding to a unique target lane. Then, the optimal
trajectory is evaluated and selected for the EV to execute.

The main contributions of this work are as follows:
First, we propose a computationally efficient approach that

Fig. 2. The proposed optimization framework. The left module
generates multiple candidate trajectories in parallel, with each one
corresponding to a driving lane, using CPU multi-threading systems
in real time. The right module evaluates the generated candidate
trajectories and selects the optimal trajectory and lane based on
various metrics.

leverages spatiotemporal information between the EV and
SVs and employs a multi-threading and multiple-shooting
technique for parallel trajectory optimization. This allows
for the generation of multiple safe and feasible energy-
efficient candidate trajectories in real time while striking
a balance between performance and safety. Second, our
approach prioritizes driving consistency as a crucial factor
in trajectory evaluation, resulting in a smooth driving be-
havior that enhances driving continuity and stability, and
this reduces the likelihood of abrupt lane changes. Finally,
the proposed fully parallel implementation based on C++
and ROS2 achieves real-time performance in a dense and
congested traffic flow.

The rest of this paper is organized as follows. The problem
statement is presented in Section II. The proposed method-
ology is described in Section III. The numerical simulation
of the proposed algorithm on an autonomous vehicle system
is shown in Section IV. Finally, the conclusion is drawn in
Section V.

II. PROBLEM STATEMENT

In this section, we consider a three-lane dense and con-
gested drive scenario, as illustrated in Fig. 3. The EV is
represented by a nonlinear kinematic bicycle model [28]. The
state vector of the ego vehicle is defined as follows:

x = [px, py, θ, v, ω]
T ∈ X , (1)

where px and py denote the longitudinal and lateral positions
in the global coordinate, respectively; θ, v, and ω denote
the heading angle, velocity, and yaw rate, respectively. The
control input vector to the EV is defined as u = [a, ω̇]T ∈ U ,
where ω = v tan(δ)

L , L is the wheelbase, a is the acceleration,
and δ is the steering angle of the front wheels. The nonlinear
kinematic bicycle model can be formulated as follows:

ẋ =


ṗx
ṗy
θ̇
v̇
ω̇

 =


v cos (θ)
v sin (θ)

ω
0
0

+


0 0
0 0
0 0
1 0
0 1


[

a
ω̇

]
. (2)



Fig. 3. Illustration of the motion of a red EV in a dynamic
congested scenario with three lanes. Yellow and blue vehicles
represent perceived and unperceived vehicles, respectively. The
dashed red line shows the EV’s executed trajectory, while the solid
red line represents the target trajectory. Other lines with an arrow
denote unselected candidate trajectories of the EV.

In this dense and congested driving scenario, the EV may
be impeded by its front vehicles with uncertain behaviors
(e.g., velocity keeping, acceleration, deceleration), resulting
in poor driving efficiency and compromised safety. Besides,
frequent lane changes in such scenarios may also destabilize
the driving experience and threaten the EV’s passengers’
safety. To make this problem tractable, we make the fol-
lowing assumptions:

Assumption 1: (Safety Responsibility [5]) When the two
vehicles are driving in the same direction, if the rear vehicle
cr hits the front vehicle cf from behind, then the rear vehicle
cr is responsible for the accident.

Assumption 2: (Driving Maneuver [5]) A vehicle will
respond appropriately to dangerous situations and not hit
another vehicle from behind as long as the front vehicle
does not brake stronger than the maximum deceleration of
the vehicle behind.

Assumption 3: (Perception Ability) An EV can obtain
information about the position and speed of the three nearest
SVs.

To tackle these challenges, we aim to design an efficient
trajectory planning framework that enables the EV to safely
interact with SVs while keeping high travel efficiency. The
framework generates optimized trajectories in parallel, which
closely follow the centerline of different target lanes. Each
trajectory τ(t) ∈ T corresponds to a specific target lane
ξ ∈ Ξ, given as follows:

T :=
{

u(j)(t), x(j)(t)
}Nt

j=1
, 0 ≤ t ≤ T, (3)

Ξ := {lane1, lane2, lane3}, (4)

where T and Nt represent the optimization horizon and
the number of trajectories, respectively; Ξ denote the set of
driving lanes, where each target lane represents either a lane-
keeping maneuver, a left-lane-change, or a right-lane-change
maneuver for the EV, as depicted in Fig. 3.

The proposed parallel trajectory optimization framework
operates over a planning horizon T , generating trajectory τ
for each target lane ξ ∈ Ξ. The goal is to determine the

optimal lane ξ∗ and trajectory τ∗ in real time to achieve the
following objectives:

(O1) Efficiency: The proposed framework can parallel op-
timize multiple reference trajectories along the center
lane in real time, enabling the EV to navigate through
congested traffic with high travel efficiency.

(O2) Safety: The proposed strategy can leverage spatiotem-
poral information to ensure safe navigation through
dynamic congested traffics while maintaining a safe
distance from other vehicles.

(O3) Consistency and Stability: The proposed approach
should ensure spatiotemporal consistency to avoid fre-
quent lane changes, reducing the likelihood of abrupt
maneuvers that may affect driving stability.

III. METHODOLOGY

In this section, we first describe the goal-oriented move-
ment of the EV in Section III-A, which involves designing
appropriate costs to achieve desired tasks. Following up on
our previous work [29], we introduce the spatiotemporal
safety module for collisions avoidance in Section III-B.
Subsequently, we present the parallel sampling and trajectory
optimization method in Section III-C. Lastly, the decision-
making module that aims to select the optimal trajectory and
the target lane is presented in Section III-D.

A. Goal-Oriented Movement
The goal-oriented movement module is responsible for

generating trajectories aligned with the target lanes’ center-
line. To achieve this, we sample several points along each
target lane at the end of the planning horizon and use them as
constraints to generate candidate trajectories that align with
the target lanes’ centerline, as illustrated by the arrow of each
trajectory in the left module of Fig. 2.

To ensure that each optimized trajectory remains close
to the centerline of the lane, we enforce the final lateral
position of each trajectory to match the lateral position
of corresponding sampling points. This is accomplished by
setting the terminal cost to ensure stability in the quasi-
infinite horizon approach [30]. Likewise, we can set the EV’s
final target yaw angle and yaw rate state to tiny values to
endow the EV with a stable driving mode. Therefore, we
introduce a terminal cost to enforce the final state of each
trajectory in the vicinity of the desired state as follows:
CT = ϕ(x(t+ T )) = (ιT x(t+ T ))T QT (ιT x(t+ T )),

CT >

∫ T

0

L(x(t),u(t))dt,
(5)

where x(t + T ) is the terminal state vector; QT is a
weighting matrix; ιT = diag(0, 1, 1, 0, 1) extracts the lateral
position, heading angle, and yaw rate from the state vector;
L(x(t),u(t)) represents the running cost at time t. QT is set
to be a large value to ensure the terminal cost is larger than
the running cost [31].

To further enhance driving task performance, we introduce
a goal-tracking cost term for each trajectory as follows:

Cm(t) = (ιm(x(t)− xd(t)))
T Qmιm(x(t)− xd(t)), (6)



where xd(t) denotes the desired state vector at time t that
the EV aims to reach to accomplish its task; ιm extracts the
particular state vector of the EV from the state vector x. For
instance, in a cruise task, we set ιm = diag(0, 1, 0, 1, 0) to
extract the lateral position and velocity from the state vector
x. This enables the EV to cruise at a desired speed and drive
close to the centerline of the lane.

B. Spatiotemporal Safety Module

To realize safe interaction between the EV and the ith SV,
we need to keep the EV’s state within a safe region S defined
as follows:

S := {x(t) ∈ X |h(x(t),Oi(t)) ≥ 0}, (7)

where Oi = [Op,i,Ov,i]
T ; Op,i = [ox,i, oy,i] and Ov,i =

[ovx,i, ovy,i] denote the position and velocity vectors of the
ith SV, which evolves according to an uncertain system
model fSV (·); t denotes current time; h : Rn → R,
is a continuously differentiable safety barrier function that
encodes state constraints as follows:

h(x(t),Oi(t)) =
(px(t)− ox,i)

2

a2
+

(py(t)− oy,i)
2

b2
−1, (8)

where a and b represent the major and minor axis lengths of
a safe ellipse encompassing the form of the EV, respectively.

Since the laws of motion govern the SVs’ positions,
we heuristically infer that their nominal trajectory over the
planning horizon is based on a constant velocity model in a
planning horizon as follows:

f̄SV (Oi(t)) =

[
ȯx,i
ȯy,i

]
=

[
ȯvx,i
ȯvy,i

]
. (9)

Nevertheless, the multi-modal uncertain behaviors of SV
are hard to model accurately, especially with a simple
constant velocity model, which may lead to more significant
errors as the prediction horizon becomes longer. In this
context, considering safety equally in each time step during
the planning horizon can lead to overly conservative actions
that compromise driving efficiency. To compensate for these
errors and strike a balance between safety and performance
in trajectory planning, we introduce a time-varying discount
weight wi(t) in the safety constraint, given by:

wi(t) = λi exp

(
−t

γ

)
, (10)

where γ is a constant discount factor, and λi is a factor
representing the safety weight regarding the ith SV.

With this discount weight wi(t) and the barrier func-
tion (8), we introduce a spatiotemporal safety cost Cs(t) as
follows:

Cs(t) =

M∑
i=1

wi(t)H(x(t),Oi(t)), (11)

where M denotes the number of the perceived SVs, and
H(x(t),Oi(t)) is a safety measurement function based on

the barrier function (8), as follows:

H(t) =

1

η + h(x(t),Oi(t))

(
1− h(x(t),Oi(t))− c

ε+
√

(h(x(t),Oi(t))− c)2

)
,

(12)

where η ∈ R+ denotes a scale factor, and ε ∈ R+ is a small
regularization constant facilitating numerical stability.

Remark 1: Although the spatiotemporal cost terms Cs are
technically soft, they act like hard constraints as the penalty
is obtained immediately after the constraint boundary is
violated. However, unlike hard constraints, they have the ad-
vantage that the importance of different safety requirements
regarding different time steps in a horizon can be adjusted
by setting different weighting matrices wi(t).

C. Parallel Trajectory Optimization Framework

We design an optimal control framework to model the
parallel trajectory optimization problem. Then, we transform
the parallel optimal control problem into a parallel nonlin-
ear programming (NLP) problem to optimize the nominal
sampled trajectories based on the direct multiple shooting
method [32]. Specifically, the optimal control for the jth
trajectory takes the following form:

min
u(j)(t),x(j)(t)

∫ T

0

L(j)(x(t),u(t))dt+ ϕ(j)(x(T )) (13a)

s.t. x(0) = x0, Oi(0) = Oi,0, (13b)

ẋ(t) = fEV (x,u), (13c)

Ȯi(t) = f̄SV (Oi), (13d)

xmin ⪯ x(j)(t) ⪯ xmax, (13e)

umin ⪯ u(j)(t) ⪯ umax, (13f)

(u(j)(t), x(j)(t)) ∈ U × X , (13g)
∀t ∈ [0, T ],

where x0 and Oi,0 denote the initial state of the EV and the
ith SV, respectively; (13c) is the nonlinear motion model of
the EV defined in (2); xmin and xmax denote the minimum
and maximum state constraints of the EV, respectively; umin

and umax denote the minimum and maximum control inputs
of the EV, respectively; ϕ(j)(x(T )) = C

(j)
T represents the

terminal cost for the jth trajectory. The running cost of the
jth trajectory at time t is denoted by L(j) in the form:

L(j)(x(t),u(t)) = C(j)
m (t) + C(j)

s (t) + ∥u(j)(t)∥2R, (14)

where C
(j)
m (t), C

(j)
s (t), and ∥u(j)(t)∥2R denote the goal-

tracking cost, spatiotemporal safety cost, and energy con-
sumption cost for the jth trajectory, respectively; R is a
positive semi-definite diagonal matrix determining energy
efficiency.

We further reformulate the initial optimal control problem
(13a)-(13g) into a multiple shooting-based constrained NLP
problem to efficiently and accurately handle nonlinear EV’s
kinematics (2) to achieve efficient numerical solutions for
parallel trajectory optimization [33]. The fundamental idea



of direct multiple shooting is to break the trajectory into
N shorter segments. By doing this, the overall trajectory
optimization problem can be transformed into N smaller
shooting intervals that span the optimization horizon T [32].
Then, continuity constraints between two shooting intervals
are enforced as follows:

x̄k+1 := f(xk,uk)⊖ xk+1 = 0, (15)

where ⊖ denotes the difference operator of the state manifold
that is needed to optimize over manifolds [34]; f(xk,uk)
denotes the simulation of the nonlinear kinematics (2) over
one interval, starting from state xk with control input uk. In
this study, we utilize 4th-order Runge-Kutta integration with
a sampling time of Ts = 100 ms to discretize the original
system (2). The resulting NLP problem, which enables
parallel trajectory optimization based on multi-threading
computation, can be formulated as follows:

min
u
(j)
k ,x

(j)
k+1

C
(j)
T +

N−1∑
k=0

(
C

(j)
m,k +

M∑
i=1

C
(j)
s,k + ∥u(j)

k ∥2R

)
(16a)

s.t. x(0) = x0, Oi(0) = Oi,0, (16b)
x̄k+1 := f(xk,uk)⊖ xk+1 = 0, (16c)

Ok+1 = f̂SV (Ok), (16d)

xmin ⪯ x(j)k ⪯ xmax, (16e)

umin ⪯ u(j)
k ⪯ umax, (16f)

(u(j)
k , x(j)

k+1) ∈ U × X , (16g)

∀k ∈ IN−1
0 ,

where f̂SV is a discrete form of the predictive model of SVs
(9) based on an Euler method.

We can optimize the NLP problem (16a)-(16g) for each
nominal trajectory in a parallel manner using multi-threading
computation. Hence, we can obtain optimized candidate

trajectories {τj}Nt

j=1, where τj =
{

u(j)
k , x(j)

k+1

}N−1

k=0
; each

trajectory τj corresponds to a target lane ξj enforced by the
terminal constraint C(j)

T .
To achieve efficient trajectory optimization to realize fast

replanning that enables the EV to respond quickly and
robustly to dynamic environments and further mitigate the
effects of trajectory prediction errors of the SVs, we imple-
ment a receding horizon approach to optimize the NLP prob-
lem (16a)-(16g) based on sequential quadratic programming
(SQP).

At each time step, the EV will execute only the first
control input u∗

0 in the optimized sequence {u∗
k}

N−1
k=0 , which

is obtained from the optimal trajectory among Nt candidate
trajectories evaluated in the subsequent Section III-D. The re-
maining control sequence {u∗

k}
N−1
k=1 is subsequently utilized

as an initial solution for the warm start of the NLP problem
(16a)-(16g), thereby enhancing the convergence speed.

Remark 2: The quadratic structure of the objective func-
tion (16a) allows for efficient optimization using the Hessian
matrix information. However, computing the exact inverse

Hessian matrix is often computationally burdensome in real-
time applications. Instead, we utilize Gauss-Newton meth-
ods [35] to approximate the inverse Hessian matrix from
gradient information, facilitating more efficient optimization.

D. Decision-Making with Consistency

After checking the safety of the next position of each
candidate trajectory based on the barrier function (8), we
aim to determine the optimal decision behavior ξ∗ and
trajectory τ∗ for the EV. Specifically, we design an evaluation
algorithm that considers driving efficiency and stability for
the optimized candidate trajectories obtained in (16a)-(16g)
as follows:

{ξ∗, τ∗} = argmin
ξj∈Ξ,τj∈T

s(ξj , τj ,w), (17)

where the overall cost function s(ξ, τ,w) is defined as:

s(ξj , τj ,w) = wT f(ξj , τj), (18)

where the weight vector w = [wg, wl, wc, wm]T determines
the relative importance of each sub-cost for a trajectory;
f(ξj , τj) denotes a vector of sub-costs that captures various
aspects of the jth trajectory’s performance as follows:

f(ξj , τj) = [Fg, Fl, Fc, Fm]T , (19)

where Fg , Fl, Fc, and Fm represent the goal-tracking, lateral
deviation, comfort, and consistency costs, respectively.

1) Goal-tracking metric: The goal-tracking cost evaluates
the ability of the optimized candidate trajectories to accom-
plish a driving task. For a cruise driving task, this cost aims
to minimize the difference between the actual velocity of
the EV and the target cruise velocity vg . To account for the
motion uncertainty of SVs over a long horizon, we apply
an exponentially decreased weight with a discount factor γg
for the longer N −Nc time steps. Thus, we can compute an
initial cost for this term using the following equation:

Cg =

Nc−1∑
i=1

||vi − vg||2 +
N∑

i=Nc

exp

(
−(i−Nc)

γg

)
||vi − vg||2,

(20)
where vi denotes the actual velocity of the EV at time step i;
Nc represents the number of initial time steps with relatively
reliable position prediction of SVs at the beginning of the
optimization horizon, which has a total of N time steps (e.g.,
Nc = 10 when N = 50).

To compare the goal-tracking cost among different sub-
costs, we normalize Cg for each trajectory. This eliminates
the influence of different units on performance metrics,
giving us the goal-tracking cost Fg as follows:

Fg =
Cg − Cg,min

Cg,max − Cg,min
, (21)

where Cg,min and Cg,max are the minimum and maximum
values of Cg across all candidate trajectories, respectively.



2) Lateral deviation metric: The lateral deviation cost
penalizes the distance of the optimized candidate trajectories
to the center of each lane. The goal of this cost is to keep
the EV close to the centerline, thereby enabling the EV to
drive more stably and reduce the risk of collision with other
vehicles. It can be represented by a function Cl that depends
on the lateral position of the EV relative to the centerline of
each target lane as follows,

Cl =

Nc−1∑
i=1

||py,i − yc||2 +
N∑

i=Nc

exp

(
−(i−Nc)

γl

)
||yi − yc||2,

(22)
where py,i is the lateral position of the EV at time step i;
yc is the lateral position of the centerline of the lane; γl
is a discount factor. Similar to the goal-tracking cost, we
normalize Cl for each trajectory using the following lateral
deviation cost:

Fl =
Cl − Cl,min

Cl,max − Cl,min
, (23)

where Cl,min and Cl,max are the minimum and maximum
values of Cl among all candidate trajectories, respectively.

3) Comfort metric: The comfort cost penalizes the dis-
comfort experienced by passengers due to the change in
acceleration. The goal of this cost is to minimize the ac-
celeration change. It can be represented by a function Cc

that depends on the jerk of the EV as follows,

Cc =

Nc−1∑
i=1

||ji||2 +
N∑

i=Nc

exp

(
−(i−Nc)

γc

)
||ji||2, (24)

where ji =
ai+1−ai

Ts
is the jerk of the EV at time step i; γc

is a discount factor. We normalize Cc for each trajectory to
get the comfort cost as follows:

Fc =
Cc − Cc,min

Cc,max − Cc,min
, (25)

where Cc,min and Cc,max are the minimum and maximum
values of Cc across all candidate trajectories, respectively.

4) Consistency metric: This cost penalizes frequent lane-
changing behaviors, which may result in erratic and incon-
sistent driving. It can be represented by a function Cm that
depends on the last target lateral position yg,k−1 of last target
lane ξk−1 and new target lateral position yg,k of goal lane
ξk as follows:

Cm = ||yg,k − yg,k−1||2, (26)

where k denotes the current time step of driving. Similarly,
we normalize Cc for each trajectory using the following
equation:

Fm =
Cm − Cm,min

Cm,max − Cm,min
, (27)

where Cm,min and Cm,max are the minimum and maximum
values of Cm among all candidate trajectories, respectively.

IV. SIMULATION STUDY

In this section, we evaluate the effectiveness of our
proposed parallel trajectory optimization framework in an
adaptive cruise driving task under a dense and congested
traffic flow.

TABLE I
PARAMETERS OF VEHICLE MODEL

vmax 24 m/s vmin 0 m/s
θmax 0.227 rad θmin −0.227 rad
ωmax 5 rad/s ωmax −5 rad/s
amax 3 m/s2 amin −1.5 m/s2

ω̇max 2 rad/s2 ω̇min −2 rad/s2

Fig. 4. Cruise performance of the EV with a target cruise speed
15m/s and optimization horizon T = 5 s during 20 s simulation.

A. Simulation Setup

We conduct the simulation experiments using ROS2 on an
Ubuntu 22.04 LTS system environment with an AMD Ryzen
5 5600G CPU with 6 cores and 12 threads running at a clock
speed of 3.26 GHz and 16 GB of RAM. The control and
communication frequencies between the EV and SVs are set
as 10 Hz. The simulation time and optimization horizon T
are set as 20 s and 5 s, respectively. We utilize the state-of-
the-art optimization solver Acado [36] as the SQP solver for
the NLP problem (16a)-(16g) for each nominal trajectory in
a parallel manner using multi-threading computation in C++.

The EV aims to navigate through a dense and congested
traffic flow in a one-direction three-lane road while avoiding
the other nine SVs and keeping a target cruise speed vg =
15m/s. The SVs follow the intelligent driver model adopted
from [27] and move parallel to the centerline while adapting
their cruise velocity based on the distance to the cars in front.
The initial states and target speeds of SVs are set as follows:

• Initial States: O0 = [−10,−10, 9.5, 0]
T , O1 =

[25,−10, 8.5, 0]
T , O2 = [60,−10, 9.0, 0]

T , O3 =
[70,−6, 8, 0]

T , O4 = [85,−6, 8.5, 0]
T , O5 =

[100,−6, 9.2, 0]
T , O6 = [130,−2, 10, 0]

T , O7 =
[110,−2, 8, 0]

T , O8 = [160,−2, 12, 0]
T .

• The target longitudinal speed is set as 10m/s, 8m/s,
12m/s, 9.5m/s, 8.5m/s, 9.0m/s, 8.0m/s, 8.5m/s, and
9.2m/s, respectively.

The pertinent parameters of the nonlinear EV are shown in
Table I. The initial state vector and control input of the EV
are set as x0 = [0,−6, 0, 15, 0]T and u0 = [0, 0]T , respec-
tively. The following parameters are used: Nc = 10, N = 50,
Qm = diag(0, 103, 0, 105, 0), w1 = w2 = w3 = 5 × e−

t
50 ,

QT = diag(0, 109, 109, 0, 106), R = diag(2×104, 1×106),
c = 8, η = 1, ε = 10−5, γ = 50, γg = γc = γl = 40,
a = 3m, b = 2m, py,min = −10.5m, py,max = −1.5m,
M = 3, and w = [2500, 150, 100, 100]T .

We evaluate the following set of Algorithms:



TABLE II
DRIVING PERFORMANCE COMPARISON

Algorithm Cruise error Safety Efficiency Consistency
emean (m/s) emax (m/s) Smin (m) Psafe (%) Amean (m/s2) Tsolve (ms) Llong (m) PLC (%)

PTO1 2.136 6.527 1.635 100 0.116 23.096 256.159 -
PTO3 0.182 0.668 2.760 100 0.148 24.553 293.705 100
PTO6 0.166 0.5184 3.195 100 0.150 28.690 294.407 100

Fig. 5. Snapshots of the EV’s trajectory with the optimization
horizon T = 5 s in dense and congested traffic. Red, yellow, and
blue rectangles denote the EV, perceived, and unperceived SVs,
respectively. Each dashed line represents a lane-oriented trajectory,
and the red ones denote the selected target trajectory. The red arrow
denotes the current velocity vector of the AV. The number in each
rectangle denotes the current velocity of each vehicle. Simulation
video accessible at https://youtu.be/86oQ83jVPYg..

• PTO1: This is an ablation study of our approach,
achieved by solving (16a)-(16g) with a single optimized
trajectory that is consistent with the center lane.

• PTO3: Our proposed method, obtained by solving
(16a)-(16g) and (17), which optimizes over three nomi-
nal trajectories. Each trajectory corresponds to a unique
lane in the three-lane road.

• PTO6: Similar to PTO3, it optimizes over six nominal
trajectories. Four correspond to the center lane, and the
remaining two correspond to the two outermost lanes.
This is illustrated in Fig. 5.

B. Results

This subsection evaluates the performance of the three al-
gorithms in terms of task accuracy, safety, driving efficiency,
and driving stability, as shown in Table II. The minimum
barrier function value Smin of all three algorithms is positive
with respect to the three nearest vehicles, ensuring safe
interaction between the EV with uncertain SVs. Furthermore,
PTO6 exhibits a significantly larger safety barrier value than
PTO1 (3.195m versus 1.365m), with all candidate optimized
trajectories satisfying the safety requirements with Psafe =
100%. These findings demonstrate that the spatiotemporal
safety module enables the EV to safely interact with SVs.

Figure 4 depicts the evolution of cruise errors, provid-
ing an intuitive understanding of the cruise performance.
Notably, the cruise error of PTO1 increases rapidly after
11 s, which is caused by the congested scenario in front
of the EV. In contrast, PTO6 and PTO3 can enable the
EV to escape from the congested driving scenario through
multiple lane searching. To further elucidate the driving
process, Fig. 5 presents the trajectories and velocities of the
EV during its escape from the congested driving scenario
based on PTO6. As a result, PTO6 achieves the minimum
deviation emax from the desired cruise speed vg among the

Fig. 6. The evolution of optimization time of three algorithms with
planning horizon T = 5 s.

(a) PTO3 (b) PTO6

Fig. 7. The evolution of the EV’s target lane.

three algorithms and reduces the mean absolute cruise error
emean by 92.223% and 8.791% compared to PTO3 and
PTO1, respectively. These results highlight the advantage
of using multiple parallel trajectory optimization methods
in handling the uncertain behavior of SVs, which helps to
reduce the impact of trajectory prediction errors resulting
from uncertain SVs, leading to significant improvements in
tracking accuracy.

In terms of driving efficiency, all three algorithms have
an average optimization time Tsolve less than 100ms, and
the specific optimization time evolution can be observed
in Fig. 6. These findings demonstrate that these algorithms
facilitate real-time replanning of the EV in this congested
traffic. Regarding travel efficiency, PTO3 and PTO6 exhibit
a notably longer travel distance Llong than PTO1 (294.407 m
and 293.705 m versus 265.159 m). These results demonstrate
that our framework significantly improves driving efficiency
while maintaining a low average acceleration Amean and
short solving time Tsolve through leveraging multiple search-
ing trajectories. With regard to driving stability, Fig. 7
illustrates the evolution of the selected target lane during
driving, revealing that there is no sudden lane change during
each phase, resulting in good driving consistency. This
finding is further supported by the consistency percentage of
decision-making maneuvers PLC = 100%, which indicates
that there is no abrupt lane change during the driving task,
further confirming the EV’s good driving consistency.

https://youtu.be/86oQ83jVPYg.


V. CONCLUSION

In this paper, we presented a parallel trajectory optimiza-
tion method for fast replanning for the EV to achieve high
travel efficiency in dense and congested traffic. Our approach
efficiently generates feasible and safe candidate trajectories,
while maintaining high computational efficiency based on
the multiple-shooting and multi-threading techniques. Our
simulation results demonstrated the effectiveness of our
framework in improving safety, reducing travel time, and
maintaining driving consistency for the EV in dense and
congested traffic flow. In future work, we plan to extend
our framework to address multi-agent navigation problems.
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