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Long-term localization with map compression based on solar information

Youssef Bouaziz1,2, Eric Royer1, Guillaume Bresson2 and Michel Dhome1

Abstract— In this paper we address visual based localization
in outdoor environments where the appearance changes dra-
matically. Such environmental changes result in a substantial
transformation of the visual information of the scene, producing
a significant impact on the visual based localization perfor-
mance. Hence, these changes can lead to major difficulties
when associating data between the current image and the
landmarks in the map. One solution for this problem is to
keep adding landmarks to the map in order to cover various
environmental conditions. However, this solution leads to a
continued growth of the map, which in turn, will result in
a costly and resource-intensive localization. In this paper we
present a map management approach in which we exploit in-
formation related to the sun’s position to compare resemblance
between the traversals in the map and maintain a diverse map
that incorporates a minimum amount of data and ensures a
reliable localization in different environmental conditions. We
evaluated our approach on a dataset that incorporates more
than 100 sequences with different environmental conditions
and we compared the obtained results with a state of the art
approach.

I. INTRODUCTION

Visual based localization (VBL) has become a fundamen-
tal field in robotic applications and it represents an interesting
alternative to laser-based systems since it can provide an
accurate localization with inexpensive setup requirements.
Therefore, VBL has drawn the interest of many researchers
over the past few years and has seen a growing number
of real-time applications such as autonomous driving, aug-
mented reality, robot navigation.

In this paper, we are interested in real-time VBL in outdoor
environments for autonomous shuttles. In such applications,
shuttles are repeatedly traversing the same path at different
times. This means that they are very likely to experience
many different environmental conditions which can dete-
riorate the localization performance even when revisiting
familiar places. Day-night transition is one of the most
challenging cases for VBL in outdoor environments as it
engenders enormous variations in luminosity and brightness
that lead to a significant difference between images captured
at different times of the day. These variations can result in
major difficulties when associating data between the current
image and the landmarks in the map. Autonomous shuttles
must deal with such environmental changes in order to
provide reliable long-term localization.

Building a map that covers all environmental conditions
by continuously adding landmarks to this map can help
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improving localization performance in changing conditions.
However, this will result, also, in a ceaseless growth of
the map’s size that is relative to the number of traversals
(experiences) performed by the shuttle. This means that
after several traversals, localization will require an immense
storage space to store the map and high-end CPU to find
matching points between the current image and the corre-
sponding landmarks in a vast database. In other words, real-
time long-term localization will be impossible after a certain
number of localization sessions. Thus, a map update strategy
is required to prevent such cases and to ensure reliable real-
time long-term localization.

In our previous work [1], we employed an autonomous
shuttle for three months, totaling nearly 1500 km of au-
tonomous travel on an industrial site. During this operation,
we experienced some difficulties for long-term navigation.
One of the most challenging difficulties identified in this
previous work is lighting changes over the day, where
the tests demonstrated that variations in lighting (caused
by changes in the direction of the sunlight and the sun
elevation) have more impact than long-term changes of
the environment on the localization performance. This has
motivated us to exploit information related to the sun position
to design a map management approach with the purpose
of preventing the continuous growth of the map. The sun
position information are used to determine which traversals
to keep and which ones to remove from the map. Traversals
with correlated sun positions coordinates are considered to
have similar environmental conditions. Thus, our approach
consists, in a first time, in computing the sun positions
related to all the traversals in the map, then, in exploiting all
those computed values to classify this map into relevant and
irrelevant traversals to finally produce a compressed map that
incorporates a minimum number of traversals with diverse
environmental conditions.

Our approach is employed on an experience-based map-
ping system [2], [1] that is based on key-frames and local
features and is fundamentally similar to several open-source
frameworks like ORB-SLAM [3] and Maplab [4]. In our
experiments, we use Harris corner detector [5] for extracting
key-points which are matched with ZNCC — Zero-mean
Normalized Cross-Correlation — computed on 11×11 pixel
windows around each key-point. However, our method can
still be applied in the same way using other descriptors. We
evaluated our approach on a new dataset recorded on our
vehicle that we make available to the community and which



is called IPLT1(Institut Pascal Long-Term) dataset. We also
compared the results obtained with our approach with the
results obtained by another state of the art approach.

II. RELATED WORK

Considerable efforts have been made in VBL in static en-
vironments or with few minor changes, but it is only recently
that localization in dynamic environments with changing
environmental conditions has been addressed. Achieving
reliable lifelong navigation under such environments is one
of the biggest challenges for VBL.

Many works [6], [7] have addressed this challenge by
using image based matching techniques since traditional
feature-based comparison methods have shown weaknesses
in changing conditions. Murillo and Kosecka [6] proposed
to improve localization in such environments by describing
places with global descriptors computed on the entire images.
However, this requires an exhaustive search in the map to find
matches and recognize places. This means that in large-scale
environments, such an operation will be very costly and will
require high-end CPUs to achieve real-time performance. In
order to improve localization with global images descriptors,
Milford and Wyeth [7] enhanced global image descriptors
performance by introducing a sequential images match-
ing technique called SeqSLAM. This technique consists of
matching a sequence of current images with sequences of
images in the database. SeqSLAM has significantly improved
the performance of global images descriptors under harsh
conditions, but it exhibits major sensitivity to changes in
viewpoint.

Deep learning was employed in some approaches like [8],
[9], [10] to ameliorate localization performance in dynamic
environments. However, these methods require high-end
GPUs to achieve real-time performance and cannot provide a
6DoF pose estimation. Recently, several luminance invariant
descriptors such as LIFT [11], LUIFT [12], SOSNet [13] and
REST [14] were proposed to improve accuracy of matching
features in outdoor environments where brightness is subject
to important changes. Such descriptors can achieve better
performance in dynamic environment than SIFT [15] and
SURF [16] and they can be employed with other map
management approaches to further improve VBL robustness
under challenging conditions.

In their recent works, Bürki et al. [17] addressed the
landmarks retrieval issue in changing conditions. They have
employed information retrieval techniques from document
retrieval community to fetch the landmarks that are related
to the current environmental conditions. Similarly, Mac-
Tavish et al. [18] inspired a landmark retrieval approach
from recommender systems. They have proposed a col-
laborative filtering approach that recommends experiences
according to the current environmental conditions.

In order to control the map’s growth and to ensure a
lifelong navigation, Muhlfellner et al. [19] proposed a map

1We invite you to visit this link http://ipltuser:iplt_ro@
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management approach where they are scoring landmarks
according to the number of distinct localization sessions
in which they appear. Afterwards, the landmarks with the
lowest scores are removed in the offline map maintenance
operation. Bürki et al. [20] have proposed an approach in
which they have combined a landmark retrieval technique
with a map management operation. In this approach, the
retrieved landmarks will be updated if they lead to a suc-
cessful localization, otherwise, they will be replaced by new
landmarks.

In this work, we propose a map management strategy
with the aim of reducing the size of the map. This strategy
depends only on solar information related to each localization
session. The results show that localization on a map produced
by our approach was more reliable than localization on a map
produced by Muhlfellner et al.’s approach [19].

III. METHODOLOGY

This section addresses our proposed map update strategy.
In this approach we aim to maintain a reliable map with
a fixed size throughout the frequent traversals. The core
idea of our approach is to produce a map that incorporates
a minimum number of traversals (N̂ ) and able to operate
in different environmental conditions. N̂ is the number of
traversals to be maintained in the map after carrying out
the map management. Different values of N̂ were chosen
in the experiments section to evaluate the efficiency of our
approach in different cases.

The methodology of our approach is described in the
Figure 1. After each localization session, we test if the
number of traversals in the map (N ) is greater than the
predefined number N̂ . If it is the case, our map management
algorithm will be executed offline to reduce the size of the
map. N > N̂ means that the map contains an additional

New traversal

Map

compute similarity
between traversals

(map + new
traversal)

Classify the
traversals and

remove one of them

offline map management

localization
session finished

no

Add the new traversal to the map

N > N̂

yes

Map update

SLAM

Fig. 1: A diagram illustrating the map management process. A new
traversal is localized and added to the existing map. After finish-
ing localization and mapping with SLAM, the map management
algorithm is executed offline to check whether the map needs to be
compressed or not (if N > N̂ ). If the answer is yes, the algorithm
has to act in two parts. Firstly, it has to compute the similarities
between the N traversals in the map (N = N̂ + 1). Secondly, it
uses these similarity information to classify all the traversals and
pick out the one that needs to be removed.

traversal (N = N̂ + 1) which also means that it occupies
additional memory space. In this case, our approach has
to act offline to bound the size of the map, i.e. it has to
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decide which traversal has more resemblance to the others
to eventually remove it.

As explained in the Figure 1, this mechanism incorpo-
rates two main parts, the similarity computation part in
which we exploit information related to the sun position at
each acquisition time and associate the traversals with their
corresponding environmental conditions to finally compute
the similarity between them with respect to the associated
environmental conditions, and the classification part in which
we use these similarity information to classify the traversals
according to their importance and to remove the less impor-
tant ones.

A. Similarity computation

In this part, we take advantage of the sun position to
compare resemblance between the traversals in the map in
order to determine which ones to keep in the map and
which ones to remove. For each traversal in the map, we use
the Astronomical Almanac’s algorithm [21] to compute the
corresponding sun spherical coordinates: the Solar Elevation
Angle (el) and the Solar Azimuth Angle (az) (see Figure 2).
This algorithm takes as inputs the acquisition date/time and
GPS latitude/longitude coordinates of each corresponding
traversal. These inputs (date/time + GPS coordinates) are
captured at the first frame of each traversal. This can be
valid only when using short sequences like the case in this
paper where we used ∼ 200 m length sequences, each one
of them was recorded over ∼ 2 minutes. This means that
there will be no important gap in the sun position between
the start and the end of the traversal.

Fig. 2: Solar Elevation Angle and Solar Azimuth Angle [22].

After computing all the sun positions associated to the
N traversals in the map, we generate a similarity matrix D
with the shape of [N × N ]. D is a 2D symmetric distance
matrix containing the distances, taken pairwise, between the
computed sun positions of the N traversals.

In this paper, we tested two variants of the similarity
matrix D. The first variant, Del, is built by computing the
distances between the elevation angles of the traversals:

Del(i, j) = dist(eli, elj), ∀i, j ∈ [1, N ] (1)

Where the function dist computes the angular distance
between two solar elevation angles. The second variant,
Daz_el, is built using both of elevation and azimuth angles.
For each traversal i, we compute the Cartesian vector from

the spherical coordinates:

u⃗i =

cos azi cos eli
sin azi cos eli

sin eli

 , ∀i ∈ [1, N ] (2)

After that, we compute the distance matrix Daz_el by
calculating the angle between each pair of the N Cartesian
vectors:

Daz_el(i, j) = |arccos(u⃗i · u⃗j)|, ∀i, j ∈ [1, N ] (3)

Figure 3 illustrates an example of the similarity matrices
Del and Daz_el. Both matrices were built using the same
map that contains 5 traversals.

(a) Del (b) Daz_el

Fig. 3: Example of matrices Del and Daz_el built with a map
containing N = 5 traversals. The values of the matrices were
normalized between 0 and 1, black color refers to 0 and white
color refers to 1.

B. Classification and traversal removal

In this part, we exploit the matrix D (Del or Daz_el)
built in the previous step to find out which traversal has
to be removed. A hierarchical clustering [23] algorithm
is used to classify the matrix D in order to select the
traversal to remove. Figure 4 shows the different steps of
the classification and the traversal removal:

(a) D (b) Clustering D (c) Searching for min

Fig. 4: Steps for classification and the selection of the traversal to
remove.

(a) D is the distance matrix obtained from the previous
section, we apply this method the same way on Del and
on Daz_el. In this example, D refers to matrix Daz_el
obtained with a map containing N = 5 traversals.

(b) We classify D into N̂ (4 in this example: c1, c2, c3 and
c4) classes using the hierarchical clustering algorithm.
This will result in classifying the two traversals i and
j having the highest similarity in the same class (class
c2, i.e., i = 2 and j = 3 in this example).



(c) In this step, we want to remove a traversal from the
map while maintaining it as diverse as possible. To
do so, we have to remove either the traversal i or the
traversal j. Therefore, we search which one of them
has more similarity to the other traversals by looking
for for the minimum value in the ith and jth rows of
the matrix while ignoring the diagonal and the elements
with coordinates (i, j) and (j, i) (the hatched area in
the figure). After finding the minimum, we remove its
corresponding traversal (traversal 2 in the example).

Lighting changes produced by day-night transitions can
result in enormous visual gap between images recorded in
the same place but at different times of the day [14]. This
can create serious difficulties in local features matching
especially using traditional features descriptors like SIFT
and SURF. Our previous works [1] demonstrated that the
hour of the day has more impact than long-term changes
of the environment on the localization performance. This
was demonstrated after performing localization daily over
3 months on a map recorded once at the beginning of
the experiment. The results show that variations in the sun
elevation and in the direction of sunlight are resulting in
a more reduced number of correctly matched features than
other factors like a moderate rain or a gap of 3 months.

Localization under night condition can be considered as
a particular case since there are no lights provided by the
sun after the astronomical night. Therefore, street lights are
almost the only source of lighting which means that all
sequences recorded in the night-time are visually similar.
This means that keeping more than one night sequence in
the map is pointless, and on the other side, removing all
night sequences can lead to a serious problem and extremely
impact the localization performance on night sequences. For
this reason, we impose a new constraint to our algorithm:
the traversal with the lowest solar elevation angle will not
be nominated as the traversal to be removed (the night
traversals have a negative solar elevation angle), any other
night traversal will be removed. This will guarantee that the
produced map will incorporate only one night traversal.

IV. EXPERIMENTS AND RESULTS

To evaluate the performance of our approach, we use our
own collected dataset (IPLT dataset). This dataset contains
currently more than 100 sequences and each one of them
is about 200 m length. Our dataset incorporates multiple
environmental conditions (day, night, dusk, rain, overcast. . . )
and in all the sequences the vehicle has followed the same
path in a parking lot as shown in the Figure 5.

We were also interested in evaluating our approach on
other widely used datasets like Oxford RobotCar dataset [24]
or NCLT dataset [25], but unfortunately those datasets do
not provide a great number of sequences traversing the same
path which is primordial to test the efficiency of our work.
Therefore, we made our dataset open to the community hop-
ing that it will help researchers in this field to overcome this
lack. Our dataset was created from recorded images of two
gray-scale 100◦ FOV cameras mounted on our experimental

Fig. 5: Example of some sequences from IPLT dataset which were
recorded in a parking lot.

vehicle (one front and one rear camera) and wheel-odometry.
We divided our dataset into 10 mapping sequences and 93
test sequences. The mapping sequences are used to build our
reference map and the test sequences are used to evaluate
the localization performance on the produced map with our
map management approach. The 10 mapping sequences are
constituted from 3 sequences recorded in a sunny condition,
3 in overcast, 2 in rain, 1 in dusk and 1 in night. In Figure 6,
we present an overview of images from the 10 mapping
sequences.

2020-01-15-
11-15-33

2019-10-02-
15-03-40

2019-10-01-
16-54-55

2019-10-22-
15-01-25

2020-02-05-
17-53-21

2020-02-05-
18-19-19

2020-02-05-
18-37-10

2020-01-15-
13-23-09

2020-01-22-
10-22-06

2020-01-31-
16-07-34

Fig. 6: An overview of images from the mapping sequences taken
with the front camera. For each sequence we are indicating the
acquisition date by a different color and symbolizing the environ-
mental condition by a small icon (the colors are used to make easier
reading Table I).

As mentioned in Section III, our approach has to limit the
number of traversals used to build the reference map to a
predefined number N̂ . To do so, we keep performing SLAM
on the mapping sequences, one by one, and at the end of
each session we employ our map management approach to
shrink the size of the map as described in Section III.

Considering that the order in which the sequences are
added to the map can affect the resulting map, we tested our
approach with 100, 000 different orders of the N traversals.
This will result in reproducing several different N̂ -session
maps (We call an N̂ -session map a map composed of N̂
traversals) and the most reproduced N̂ -session map, denoted
by M∗, will be used in our tests. We have obtained 4
different N̂ -session maps using different configurations of
our approach: M∗

el, M
∗
az_el,

∼
M∗

el and
∼
M∗

az_el. The maps M∗
el

and M∗
az_el are obtained by performing our approach on



the two distance matrices Del and D∗
az_el respectively. We

denote
∼
M∗ the map that has been obtained by performing our

approach while imposing the constraint that ensures keeping
a night sequence on the map as described in Section III-B.

In the results, we represent the average number of inliers
observed in the test sequences along with the number of
localization failures as criteria to evaluate the performance
of the localization. Practically, we found that the localization
can be considered as reliable when there are at least 30
points matched between the current image and the database,
below this threshold, we count a localization failure. This
is a conservative threshold to ensure the security of our
autonomous vehicle [1].

In Figure 7, we present a comparison of the localization
performance between the different N̂ -session maps obtained

by our approach (M∗
el, M

∗
az_el,

∼
M∗

el and
∼
M∗

az_el) and the map
M0 that incorporates all the 10 traversals of the mapping
sequences. We also compared our approach with the map
MSM generated by the Summary Maps approach proposed
by Muhlfellner et al. [19].

In their approach, Muhlfellner et al. are scoring the
landmarks by the number of distinct sessions in which they
appear and the ones with lowest scores are removed.

For each choice of N̂ , the size of the maps generated
by our approach are very close since they incorporate the
same number of traversals. To ensure a fair comparison
with Muhlfellner et al.’s approach, we remove from the map
MSM the lowest scored landmarks until we get a map that
has a similar size with the other maps. Figure 8 presents an
overview of memory occupation and landmarks count of our

(a) N̂ = 3

(b) N̂ = 4

(c) N̂ = 5

Fig. 7: Localization performance comparison on M0, M∗
el, M

∗
az_el,

∼
M∗

el,
∼
M∗

az_el and the map MSM generated with the Summary Maps
approach [19]. Each color refers to a map as indicated in the legend, and the boxes represent the mean +/- the standard deviation of inliers
or localization failures on all the sequences of the corresponding class. Sub-figures (a), (b) and (c) represent the localization performance
when choosing 3, 4 and 5 respectively as values for N̂ .



maps for each choice of N̂ .

Fig. 8: A curve in which we inspect the size of M∗
el, M

∗
az_el,

∼
M∗

el,∼
M∗

az_el and MSM . For each value of N̂ , the curve is presenting
the corresponding memory occupation (Megabytes) and the number
of landmarks in each one of these maps (all the maps have
approximately the same size). For N̂ = 10, we provide the size
of the map M0.

We evaluated and compared the localization performance
in the 93 sequences when using the different maps pro-
duced (M0, M∗

el, M∗
az_el,

∼
M∗

el,
∼
M∗

az_el and MSM ) with
N̂ = {3, 4, 5}. These sequences were manually classified
into 5 different classes according to their corresponding
environmental conditions: 13 sequences in "sun" class, 39
in "overcast", 12 in "rain", 17 in "dusk" and 11 in "night".
The "global" class contains all 93 sequences while the
"global \ {night}" class contains all the sequences excluding
the night sequences (82 sequences).

For a better understanding of the results, we present in
Table I the traversals included in each of the maps produced
by our approach (M∗

el, M
∗
az_el,

∼
M∗

el and
∼
M∗

az_el). Accord-
ing to Figure 7, the localization performance has globally
improved when we increased the value of N̂ . For all the
choices of N̂ , the localization performance on the map M∗

el

with night sequences was very poor since this map does not
include any night traversals. This is not the case for M∗

az_el
which incorporates a night traversal. Both N̂ -session maps
∼
M∗

el and
∼
M∗

az_el also include a night traversal due to the
imposed constraint explained in Section III-B. According to

the figure, localization under overcast and rainy conditions
can be reliable even if the map does not include traversals
of the same class (e.g. for N̂ = 3, M∗

el contains a traversal
from "rain" class while it is not the case for the other maps
which is distinguishable by the inliers average. However, all
of them have no localization failures except for MSM ).

By increasing the value of N̂ , the localization performance
was improved in different classes for example on rainy
sequences for M∗

az_el and
∼
M∗

az_el and on overcast sequences
for M∗

el. Both maps
∼
M∗

el and
∼
M∗

az_el have shown similar
performances on different classes, and they have both man-
aged to ensure a reliable localization without any localization
failure.

The Summary Maps approach (MSM ) has shown a major
weakness as we significantly decrease the size of the map.
This weakness was more relevant with night sequences. This
can be explained by the fact that the 10 mapping sequences
include only one night sequence. Thus, landmarks of the
night traversal will have a low score since they were seen
only in one session. Consequently, these landmarks will be
removed with the Summary Maps approach. In the opposite
side, our approach has proved its capability of balancing
experiences in the map. Therefore, it has managed to greatly
decrease the size of the map while guaranteeing a reliable
localization under different environmental conditions. Ac-
cording to Figure 7 and Figure 8, our approach was able
to drastically reduce the size of the map (e.g. from 450MB
to 185MB for N̂ = 4) while ensuring a reliable localization
under different conditions.

V. CONCLUSION

We have introduced a map management approach which
computes and uses solar coordinates information to classify
and reduce the number of traversals in the map in order
to ensure a lifelong navigation. In the experiments part,
we have compared some different variants of our method
in multiple environmental conditions. The experiments have
demonstrated that with our approach we were able to achieve

TABLE I: Traversals included in each of the maps produced by our approach. The traversal names are colored to match the colors in the
Figure 6.

map M∗
el M∗

az_el

∼
M∗

el

∼
M∗

az_el

N̂ = 3
2020-01-15-11-15-33 2019-10-02-15-03-40 2019-10-02-15-03-40 2019-10-02-15-03-40
2019-10-02-15-03-40 2020-02-05-18-37-10 2020-02-05-18-37-10 2020-02-05-18-37-10
2019-10-22-15-01-25 2020-01-22-10-22-06 2020-01-22-10-22-06 2020-01-22-10-22-06

N̂ = 4

2020-01-15-11-15-33 2019-10-01-16-54-55 2019-10-02-15-03-40 2019-10-01-16-54-55
2019-10-02-15-03-40 2020-02-05-18-37-10 2020-02-05-18-37-10 2020-02-05-18-37-10
2019-10-22-15-01-25 2020-01-22-10-22-06 2020-01-22-10-22-06 2020-01-22-10-22-06
2020-02-05-17-53-21 2020-01-22-10-22-06 2020-01-22-10-22-06 2020-01-22-10-22-06

N̂ = 5

2020-01-15-11-15-33 2019-10-02-15-03-40 2019-10-02-15-03-40 2019-10-02-15-03-40
2019-10-02-15-03-40 2020-02-05-18-37-10 2019-10-22-15-01-25 2020-02-05-18-37-10
2019-10-22-15-01-25 2020-01-22-10-22-06 2020-02-05-17-53-21 2020-01-22-10-22-06
2020-02-05-17-53-21 2020-01-22-10-22-06 2020-02-05-18-37-10 2020-01-22-10-22-06
2020-01-31-16-07-34 2020-01-31-16-07-34 2020-01-22-10-22-06 2020-01-31-16-07-34



long-term performance with compressed maps outperforming
performance of localization of a state of the art approach.

In future works, we will concentrate on combining other
weather information with solar coordinates for further im-
provements in our approach.
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