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Abstract— Mobility-as-a-Service (MaaS) offers multi-modal
transport modes in a single service platform, which requires
tremendous data and software support. Among various types
of data, consumers’ data is vulnerable to the communication
channel as it must be transmitted from the consumer end to
the MaaS. Consumers put a high priority on the privacy of
their data in selecting a service. This motivates the need for
a secure information management system for MaaS to protect
consumers’ information from leakage. In this paper, we propose
a federated reinforcement learning (FRL) approach for the
information exchange intensive multi-modal journey planning
process. The FRL approach protects the information from
malicious information thieves by federating the global model
training to a local one without sensitive information exchange
while maintaining the same solution quality of enhancing MaaS
profit and consumer satisfaction. We perform experiments on
a test case based on New York City data. The results demon-
strate that the FRL approach is effective in the MaaS multi-
modal journey planning process. Compared to the baseline
approaches, consumer satisfaction and MaaS profit increase
by about 12% and 74%, respectively. This pilot study not only
provides privacy protection insight into the MaaS multi-modal
journey planning but also other privacy-concern applications.

I. INTRODUCTION

Mobility-as-a-Service is a recent innovative transport con-
cept that offers multi-modal transport modes in a single
service platform [1]. Consumers may enjoy a seamless
transport experience with one single entrance, including
real-time transport information searching, journey planning,
service pre-ordering, etc. MaaS has been operated in several
countries such as the USA, UK, Canada, and Australia
[2]. With MaaS, the transportation system in a city may
have reduced traffic congestion, energy consumption, and air
pollution [3]. Moreover, MaaS is a service provision model
that can integrate not only existing transport modes but also
future intelligent transportation systems applications such as
traffic information forecasting [4], ride-sharing [5], and idle
vehicles rebalancing [6]. Such a promising MaaS system
requires a mature software system to handle the tremendous
data among MaaS operators and consumers. The scheduler
is one of the key components that process the journey
planning query data repeatedly. Hence, the performance of
the scheduler as well as the software system significantly
affects consumer trust and acceptance of MaaS.
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Security is one of the performance indexes of MaaS.
For the centralized scheduler that processes sensitive data,
such as consumer home and work address and commuting
time, Insiders may attack the system to obtain unauthorized
information [7]. The situation could be worse if the scheduler
is intelligently designed using artificial intelligence (AI) to
consider consumer behavior, experiences, and preferences for
personal and unique transport services, which means more
sensitive information such as occupation and age have to
be processed [8]. Motivated by the privacy threat [9] and
research gap in MaaS intelligent scheduler, we investigate
countermeasures of this privacy threat to protect consumer
privacy. Among the technologies, we believe that distributed
processing could be a suitable technique to ensure the data
is not disclosed to other participants. To do this, federated
learning [10] that allows the training to be performed in
distributed client agents by their private and local dataset
could be integrated into the scheduling and reinforcement
learning algorithms in MaaS. Each data owner may train
their client model and securely share the learned gradient
to update the server model without invasion of data privacy.
Therefore, privacy is protected by restricting the interaction
between the local environment and agents other than the
environment owner. A federated MaaS platform could be
a promising solution to address the aforementioned privacy
issues.

In this paper, we investigate customer privacy protection
against semi-honest participants in the journey planning
process. To prevent information leakage, we transform the
MaaS journey planning process into a federated architecture.
The federation is built by dividing the centralized journey
planning problem with consumer behavior and Markov de-
cision process (MDP) formalization into sub-problems where
each consumer is responsible for their own sub-problem.
Based on the federation, a federated reinforcement learning
(FRL) approach is presented to train a model that solves the
problem without extensive information exchange. An equally
weighted experience sampling mechanism is incorporated
into the FRL to ensure the solution quality is similar to the
centralized one. Experiments based on New York City dataset
are conducted to evaluate the scenario under the FRL and
other baseline approaches. The experimental results show
that the FRL approach can maintain the same performance
as the centralized one that increases consumer satisfaction
and MaaS profit by about 12% and 74%.

The rest of this paper is organized as follows. Section
II defines the MaaS journey planning problem and the
threat models. Section III introduces the FRL approach for
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TABLE I
NOTATION SUMMARY.

Notations Meaning
G(N ,A) Graph of the transport network

F Set of mobility providers

f Mobility provider f ∈ F
N Set of nodes in the network

A Set of links in the network

Af Subset of A operated by f ∈ F
N+(i) Set of incoming locations of i

N−(i) Set of outgoing locations of i

K Set of consumers

k Consumer k

ok Origin node of consumer k ∈ K
dk Destination node of consumer k ∈ K
βf
ij Travel time cost of link (i, j) ∈ Af

δfij Discomfort index of link (i, j) ∈ Af

ρfij Price of link (i, j) ∈ Af

Wk Utility weights of consumer k

wk
β Weight of βf

ij

wk
δ Weight of δfij

wk
ρ Weight of ρfij

Cf
ij Capacity of link (i, j) ∈ Af

xk
ij

Binary variable for link (i, j) ∈ Ãs that
recommends to consumer k ∈ K

MaaS. IV presents the experiment setting and results. Finally,
Section V concludes this paper.

II. SYSTEM MODEL

In this section, we first define the threat model, multi-
modal journey planning and consumer satisfaction problem.
Table I summarizes the notation used.

A. Threat Model

We are interested in the scenario where all the participants,
such as insiders of MaaS, mobility providers, and consumers,
could be semi-honest, which is a common adversary model
in privacy-preserving computation [11]. Some may also
name it as honest-but-curious [12], which we may use these
two terms interchangeably in this paper. This semi-honest
model assumes that the participants are curious about any
information they can obtain by following the protocol merely.
In other words, they will not perform a malicious attack on
the system, but they may try to infer sensitive information
from the data they can access. Therefore, we can prevent
unpremeditated information leakage under this threat model.

B. MaaS Problem Formulation

For the data processing part in MaaS, we explore the
scenario where the largest amount of information is used by
the scheduler, i.e., the MaaS multi-modal journey planning
problem that considers consumer behavior, experiences, and
preferences for personal and unique transport services. The
two corresponding divided problems, the multi-objective

journey planning problem and the consumer satisfaction
problem, will be formalized in this section.

1) Multi-objective Journey Planning Problem: Consider
a MaaS transport network modeled by a directed graph
G(N ,A) where N and A is the set of nodes and links
in the network, respectively. We denote the set of mobility
providers by F and each mobility provider f ∈ F provides
transport services over their transport network Af ∈ A. A
transport service from i to j is provided on link (i, j) and
the time cost, discomfort index, price, and operation cost
of each service provided by f are represented by βf

ij , δfij ,
ρfij , and µf

ij , respectively. The MaaS scheduler computes
an optimal journey to be offered to the consumer based on
the consumer’s origin ok and destination dk and consumer
behavior. Since it is a multi-modal journey planning problem
for MaaS, the journey can be combined by multiple mobility
providers. The optimization formulation can be referenced in
the literature [13].

A binary decision variable, xkf
ij , is defined in the formu-

lation of the problem. xkf
ij are used to represent the mobility

service to be offered to the consumer:

xkf
ij =

{
1 if link (i, j)operated by f offers to k,

0 otherwise.
(1)

The objective of the problem is to determine the optimal
xkf
ij such that the total utility cost of consumers are mini-

mized: ∑
(i,j)∈Af ,k∈K,f∈F

(wk
ββ

f
ij + wk

δ δ
f
ij + wk

ρρ
f
ij)x

kf
ij , (2)

where βf
ij , δfij , and ρfij are the travel time, discomfort index,

and price of link (i, j) ∈ Af , respectively, and wk
β , wk

δ , wk
ρ

are the weighting of the corresponding utility terms.
Let N−(i) and N+(i) be the sets of outgoing and in-

coming locations of i, respectively, such that N−(i) = {j ∈
N|(i, j) ∈ A} and N+(i) = {j ∈ N|(j, i) ∈ A}. To ensure
the flow conservation in the transport network, the following
equation requires to be imposed in the problem.

∑
j∈N−(i)

xkf
ij −

∑
j∈N+(i)

xkf
ji =


1 if i = ok,

−1 if i = dk,

0 otherwise,

∀i ∈ N , k ∈ K, f ∈ F , (3)

Since the capacity of the transport service is limited, an
equation is included to restrict the total number of consumers
in the transport service:∑

k∈K

xkf
ij ≤ Cf

ij , ∀(i, j) ∈ Af , f ∈ F (4)

where Cf
ij is the capacity of transport service from i to j

that operated by f ∈ F .
As a whole, the multi-objective journey planning problem

is given as follows:



Problem 1 (Multi-objective Journey Planning Problem):

min
xkf
ij ,yf

ij

(2)

s.t. (3)–(4).
This problem is an integer linear program where a standard
solver can solve if the weight of the objectives, W k =
[wk

β ;w
k
δ ;w

k
ρ ], are given. However, the utility weight W k

represents the preference for different objectives and it is
hard to be defined. This is because they are difference
for each consumer having different behaviors, experiences,
and preferences. Therefore, another problem, namely, the
consumer satisfaction problem, is formulated to determine
the utility weight.

2) Consumer Satisfaction Problem: The objective of con-
sumer satisfaction problem is to determine the set of utility
weights that are best for consumer satisfaction and retention
rate to the transport service based on the consumer profiles.
As a result, the MaaS profit is expected to increase accord-
ingly.

We model the consumer retention process as a 4-tuple
MDP ⟨S,A, P,R⟩, where S ,A, P , and R are the set of states
and actions, state transition and reward function, respectively.
The state skt ∈ S is the concatenation of consumer satisfac-
tion and consumer profiles. The action akt ∈ A is the utility
weight introduced in Problem 1, i.e., akt :=

[
wk

β ;w
k
δ ;w

k
ρ

]
for time t and consumer k. P (skt+1|skt , akt ) represents the
satisfaction variation from states skt ∈ S to skt+1 ∈ S for
acting action akt ∈ A. R(skt , a

k
t , s

k
t+1) represents the total

profit due to the transition from skt to skt+1 after acting akt .
The consumer satisfaction level in the state is represented

by a N -level integer value, which also indicates the retention
rate proportionally. Intuitively, the probability of consumers
retains to the system is higher if they are satisfied with it.

We define Hk as the satisfaction level of consumer k.
It is a variable affected on the transport service offered
by the MaaS. In general, the satisfaction increases if the
consumer is satisfied with the offered journey and decreases
otherwise. The consumer satisfaction change is a function of
the expectation difference on each utility:

Hk :=


Hk + n if Ek ≥ E

k
,

Hk − n if Ek ≤ Ek, ∀k ∈ K,
Hk otherwise,

(5)

where E
k

and Ek is the upper and lower expectation
difference threshold, n is the step size of the satisfaction
level, and the expectation difference is defined as

Ek = w̃k
β(β̃

k
okdk − βk

okdk) + w̃k
δ (δ̃

k
okdk − δkokdk)+

w̃k
ρ(ρ̃

k
okdk − ρkokdk), ∀k ∈ K. (6)

where W̃ k = [w̃k
β ; w̃

k
δ ; w̃

k
ρ ] is the utility weight of consumer

k, β̃k
okdk , δ̃

k
okdk , ρ̃

k
okdk are the utility expected implicitly by

the consumer, and ok and dk are the origin and destination
of consumer k, respectively. Expected utility is the utility of
an ideal journey for the consumer. It can be determined by

Fig. 1. Satisfaction transition representation.

solving the planning problem as if the consumer is traveling
alone in the system. The actual utility is the utility of the
journey to be planned by MaaS, which can be deviated from
the expected utility with an incompetent planner and limited
capacity. Therefore, an incompetent planner may have a
negatively large expectation difference on average.

A sample state transition representation of n = 1 is given
in Fig. 1. The consumer experience of each journey may
lead to satisfaction increases, decreases or unchanged, which
affect the status and admission of the next journey. Similar
consumer satisfaction models can be found in other field of
studies such as supply chain [14] and product management
[15].

Therefore, the consumer satisfaction problem can be for-
mulated as:

Problem 2 (Consumer Satisfaction Problem):

max
ak
t

∑
k,t

R(skt , a
k
t , s

k
t+1)

s.t. (5)–(6).
With the MDP model, this problem can be solved by

a reinforcement learning-based approach that trains by the
transition and action of the consumers.

C. MDP model Components

1) State: The state st represents the information of the
consumer, including the consumer’s profile and satisfaction
level. The profile is composed of the consumer’s sensitive
personal information, such as income and age. The satis-
faction level can be considered as sensitive information to
be protected. Therefore, the state of the consumer is the
information we aim to protect.

2) Environment: We use the term environment to rep-
resent the state transition of the set of consumers in the
MaaS. With different journey xkf

ij planned by the MaaS
scheduler, the environment may proceed to a different next
state skt+1 and returns a reward rkt to the client agent at each
time t. It can also be represented by transition probability
P (st+1|st, at).

3) Action: The action akt represents the utility weight[
wk

β ;w
k
δ ;w

k
ρ

]
which indicates the weight of the terms of

objective function: time, discomfort, and price in (2). The
value of the weights affects the optimal journey to be planned
in Problem 1.



4) Reward: The reward is a scalar feedback signal to
indicate whether the agent is performing well. We use the
reward rkt to represent the profit of MaaS for consumer k at
time t, which is equivalent to the price minus the operating
cost µf

ij , i.e,

rkt =
∑

i,j,k,f

(ρfij − µf
ij)x

kf
ij . (7)

The objective of the MaaS scheduler is to maximize the
reward. Intuitively, this could be achieved by offering the
journey with the highest price and cost difference. However,
inappropriate journeys may decrease the consumer satisfac-
tion level and retention rate. Therefore, the scheduler should
offer satisfied journeys to the consumers.

5) Agent: The agent represents the component for deter-
mining the action based on a given state. The agent aims
to maximize the reward with an optimal action. Since the
action is the utility weight, different actions affect the offered
journey and thus the consumer satisfaction. Hence, the agent
should learn to output utility weights that can increase the
long-term reward. There are two types of networks in an
agent: actor and critic. The actor network is used to output
action based on the input state. A critic network is used to
evaluate the performance of the state and action pairs.

6) Policy and value function: We use neural networks to
approximate the policy and value function to be trained by
the FRL algorithm. The neural network that approximates
policy and value function is called the actor and critic
network, respectively. To maintain the generality of the FRL
approach, we use a standard deep fully-connected neural
networks as the structure in this paper. Since the action is
an array ranging from 0 to 1 so we use the sigmoid as the
activation function for the actor.

III. FEDERATED REINFORCEMENT LEARNING

In this section, we present the FRL algorithm that solves
the problems introduced in Section II-B with privacy protec-
tion.

As discussed in Section II, the FRL algorithm is used to
solve Problem 2. The MaaS aims to protect against informa-
tion leakage during the actor and critic model training and
inference. The MaaS scheduler is responsible for solving the
Problem 2. In the centralized scenario, the MaaS scheduler
would require the consumer to upload their profile and
satisfaction level as the state skt ∈ S for journey planning.
This information could leak to semi-honest participants in
MaaS if the algorithm is not privacy protected. Hence, we
present the FRL algorithm to prevent information leakage
under the semi-honest threat model assumption.

To avoid information leakage, the architecture is trans-
formed to be a federated architecture, as shown in Fig. 2. In
this architecture, the information and transition experience
is stored locally in the consumer’s device during the model
training. The FRL algorithm is a federation based on the deep
deterministic policy gradient [16] which is a model-free off-
policy algorithm for determining the continuous action. So
it matches our case where the utility weights are continuous

values. In the federated architecture, each consumer builds a
local client agent responsible for the individual utility weight.
The neural network structure in the client and server are the
same.

In each iteration, a set of consumers participate in the
model inference and update. To ensure an unbiased sampling,
the server sample the experience based on the buffer indices
on behalf of clients instead of based on the participating con-
sumer only. Each consumer holds a client experience replay
buffer ERk that stores the transition tuple (skt , a

k
t , r

k
t , s

k
t+1)

for updating the client actors and critics. The reason for
using an experience replay buffer to store transition for mini-
batch sampling is to ensure the samples are independently
and identically distributed. If the transitions are used to train
the models immediately after being recorded, they would be
sequential transitions, and become unstable.

The following update rules of the four models, namely,
actor local, actor target, critic local, and critic target network,
are applied to update the actor and critic based on a mini-
batch sample with size B. The parameters of critic local θQ

are updated based on the loss:

1

B

∑
i

(ri + γQ′(si+1, π
′(si+1|θπ

′
)|θQ

′
)−Q(si, ai|θQ))2

(8)
where i is the index of sample in the mini-batch and γ is the
discount factor. The parameters of actor local θπ are updated
by computing the policy gradient:

∇θπJ ≈
1

B

∑
i

∇aQ(s, a|θQ)|s=si,a=π(si)∇θππ(s|θπ)|si .

(9)
Critic target θQ

′
and actor target θπ

′
are updated softly

by assigning the parameters from the corresponding local
networks with a factor of τ :

θQ
′
:= τθQ + (1− τ)θQ

′
, (10)

and
θπ

′
:= τθπ + (1− τ)θπ

′
. (11)

Each participating client computes the gradients of actor
and critic based on the update rules in each iteration.
The mini-batch sample of each participating consumer is
randomly selected by the server on behalf of the clients
to enhance unbiased sampling. Each client selects samples
according to the indices instructed by the server and com-
putes gradients using their local experience only. As a result,
all experience are stored in the client and not transmitted
elsewhere. The gradients are then aggregated for updating
the server actor and critic. Notice that in some federated
learning algorithms, the server aggregates the model param-
eters instead of the gradient. However, aggregating the model
parameters is not applicable in our case as we use Adam [17]
as the optimizer, which contains a momentum term during
the model update. Aggregating the model parameters updated
by Adam using local experience makes the training unstable.
The detailed algorithm is shown in Algorithm 1.



Fig. 2. Interaction between the environment, consumers and the MaaS coordinator.

IV. EXPERIMENTS

A. Experiment Setup

We present the experiments using the FRL approach to
evaluate the performance. The experiments are based on real-
world data from New York City (NYC). The graph of this
NYC scenario is constructed based on the taxi zone maps1

in the Manhattan region of NYC. The nodes in the transport
network represent the taxi zone. We add an edge between
two zones if the zones are neighbors on the map. Therefore,
isolated zones without connected nodes are ignored and the
corresponding data are filtered out. As a result, 63 zones in
the map form a network in an irregular shape. 3 mobility
providers are simulated to provide mobility services on each
edges, resulting in 963 edges in the network. Each edge is
associated with three utilities: time, discomfort, and price.
The values are randomly generated between 0 and 1.

The set of consumers K is simulated based on another
NYC datasets. The transport query and consumers’ profiles
are sampled from the NYC Taxi and Limousine Commis-
sion Trip Record Data2 and Citywide Mobility Survey3,
respectively. The expected utility weight vector is calculated
based on the profiles for Eq. (6) only, which is unknown
to the MaaS scheduler throughout the experiments. Initial
consumer satisfaction levels are 3. Problem 1 is solved by a
standard optimizer in CVXPY [18] after the utility weights
are obtained from the actor.

1https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-
ddgc

2https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
3https://www1.nyc.gov/html/dot/html/about/citywide-mobility-

survey.shtml

TABLE II
PARAMETER SETTINGS.

Parameter Definition Value
|N | Number of nodes 63

|A| Number of links 963

|F| Number of mobility providers 3

|Km| Number of consumers per episode 10

Cf
ij Capacity 3

|R| Replay buffer size 106

B Minibatch size 128

γ Discount factor 0.99

τ Target network soft update rate 0.001

- Actor learning rate 0.0001

- Critic learning rate 0.0003

- Neural network optimizer Adam

ϵ0 Initial random explore rate 1

ϵ̄ Explore rate decay per episode 0.995

T Number of iteration per episode 100

M Number of episodes 2000

- Number of neural network layers 3

- Number of neurons of each layer 256

- Range of satisfaction level 1 to 5

E
k upper expectation threshold 0.0

Ek lower expectation threshold -0.1



Algorithm 1 Federated Reinforcement Learning
1: Initialize server actor local π(s|θπ) and critic local

networks Q(s, a|θQ) with parameters θπ and θQ

2: Initialize parameters of server actor target π′(s|θπ′
)

and critic target networks Q′(s, a|θQ′
) with parameters

θπ
′ ← θπ and θQ

′ ← θQ

3: for k = 1 to |K| do
4: Initialize consumer k parameters
5: end for
6: Broadcast θπ , θQ, θπ

′
, and θQ

′
to client agents

7: for episode = 1 to M do
8: for iteration t = 1 to T do
9: Sample Kin

t ⊆ K for model inference
10: for consumer k ∈ Kin

t do
11: jk ← random number between 0 and 1
12: if jk < ϵ then
13: akt ← random vector between 0 to 1
14: else
15: akt ← π(skt |θπ)
16: end if
17: end for
18: Execute action at = [a1t , . . . , a

|Kin
t |

t ] to obtain
new state st+1 = [s1t+1, . . . , s

|Kin
t |

t+1 ] and reward rt
19: for consumer k ∈ Kin

t do
20: Store (ski:i+N , aki:i+N , rki:i+N , ski:i+N+1)
21: end for
22: Sample Kup

t ⊆ K for model update
23: if transitions in

⋃
k∈Kup

t
ERk ≥ B then

24: Sample a mini-batch transitions with size B
from

⋃
k∈Kup

t
ERk

25: for consumer k ∈ Kup
t do

26: Compute critic and actor gradient based
on Eq. (8) and (9) for transitions in ERk, respectively

27: end for
28: end if
29: Update critic and actor local based on the aggre-

gated critic and actor gradient, respectively
30: Update critic and actor target based on Eqs. (10)

and (11), respectively
31: Broadcast θπ , θQ, θπ

′
, and θQ

′
to clients

32: end for
33: ϵ := ϵϵ̄
34: end for

B. Experiment Results

We conduct experiments on three aspects: MaaS profit,
Consumer satisfaction, and sampling mechanism. Two base-
line approaches were evaluated with the FRL approach,
namely, “random” and “fixed” approaches. The former sets
the utility weights by random values between 0 and 1, while
the latter always sets the utility weights to ones.

1) MaaS profit: To test the effectiveness of the FRL
approach, we run the experiments with the two baselines
for 2000 episodes, and each episode contains 100 iterations
of transport queries of a different set of random consumers

TABLE III
AVERAGE REWARD OF DIFFERENT APPROACHES IN THE NYC SCENARIO.

Approach Average reward (profit)
FRL 358.28

Fixed utility weights 236.77

Random utility weights 174.82

Fig. 3. Moving average of rewards of different approaches in the NYC
scenario. The time window of the moving average is equal to 40.

and evaluate the profit, which is the reward returned by
the environment as discussed in Section II-C.4. The average
profit against the episode is shown in Table III. Among the
compared approaches, the FRL approach has the highest
average profit 358.28 on average, and both “fixed” and “ran-
dom” approaches are much worse than that. To see the trend
during training, we plotted the moving average of profits
in Fig. 3. From the figure, the profit of the FRL approach
increases against the training episodes. This indicates that the
FRL approach can learn from the experience and improve
the policy gradually. Since the initial ϵ is high, most of
the actions taken in the initial episodes are random. In the
later episodes, ϵ decays to a small value, so the good FRL
policy dominates the actions to be taken, further improving
the policy for exploitation. For “random” and “fixed”, they
remain in a low reward level which indicates the incapability
of adapting to consumers with different preferences.

2) Consumer Satisfaction: Consumer satisfaction shows
us whether the consumer tends to retain using MaaS. Fig. 4
show the average satisfaction level of each episode. The color
indicates the satisfaction level, as shown in the color bar on
the right of the figures. The average satisfaction of the FRL,
“fixed” and “random” approaches are 4.12, 4.06, and 3.28,
respectively. The FRL shows a clear increasing trend at the
beginning episode and then converges to around 4.12, which
suggests the policies improve along with the episode. “fixed”
and “random” remain in a lower satisfaction level. Therefore,
a higher satisfaction level can increase the retention rate and
also increase the profit.



Fig. 4. Average satisfaction level of each episode in the NYC scenario.

Fig. 5. Moving average of rewards of FDDPG approach and biased baseline
in the NYC scenario. The time window of the moving average is equal to
40.

3) Sampling Mechanism: As discussed in Section III, an
inappropriate sampling mechanism may significantly dimin-
ish the performance. To evaluate the effectiveness of the
sampling mechanism in FRL, we compare the training with
a biased baseline approach. The biased approach means that
the experience is sampled from a consumer at a time. Fig.
5 shows the reward against the training episode of the FRL
and the baselines. We can see from the figure that the FRL
performs better than the biased baseline, which indicates the
importance of an unbiased sampling mechanism. Without
an unbiased sampling mechanism, bias could be introduced
in federated training if a group of consumers frequently
participate in the training than the rest of the consumers.
Therefore, ensuring the sampling diversity as in the sampling
mechanism of the FRL can enhance the performance.

V. CONCLUSIONS

The privacy threats endanger the popularity of MaaS. Cu-
rious participants may steal sensitive information through the
privacy loophole. To protect the information, we proposed a
federation architecture and an FRL approach that ensures the
information is only accessible by its owner. Only interme-
diate results such as gradient are shared during the training.

With this architecture, consumers can enjoy the MaaS service
without being concerned about information leakage. The
experiment results show that consumer satisfaction and MaaS
profit increases by about 12% and 74%, respectively, using
the FRL approach.

In the future, we may include additional cyber-security
measures for MaaS to ensure information privacy in the
client’s local device. We may also extend the privacy-
preserving architecture to other reinforcement learning-based
approaches in transportation, such as the one in [19].
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