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Abstract— With the electrification in freight transportation,
the availability of fast-charging facilities becomes essential to
facilitate en-route charging for freight electric vehicles. Most
studies focus on planning charging facilities based on mathe-
matical modeling and hypothetical scenarios. This study aims to
develop a data-driven integrated framework for fast-charging
facility planning. By leveraging the highway traffic data, we
extracted, analyzed, and compared spatial and temporal flow
patterns of general traffic and freight traffic. Furthermore,
graph theory-based network evaluation methods are employed
to identify traffic nodes within the highway network that play
a significant role in accommodating charging infrastructure.
A candidate selection method is proposed to obtain potential
deployment locations for charging stations and to-go chargers.
Based on this, we present a multi-period bi-objective optimiza-
tion model to provide optimal solutions for the placement of
charging facilities, with the objectives of minimizing investment
cost and maximizing demand coverage. The case study on
the Amsterdam highway network shows how existing traffic
data can be used to generate more realistic charging demand
scenarios and how it can be integrated and evaluated within the
optimization framework for facility planning. The study also
shows that the proposed model can leverage the potential of
early investment in improving the charging demand coverage.

I. INTRODUCTION

Transportation has become one of the major contributing
sectors to emissions, accounting for approximately one-
quarter of all greenhouse gas emissions in Europe [1].
The Netherlands is ambitious to achieve zero-emission road
traffic by 2050. With incentivizing policies and tax-related
measures, the Netherlands has become one of the leading
electric transport players in the world. In freight transport,
Netherlands’ government plans to raise the market share of
clean heavy-duty vehicles to reach 30% by 2030 [2]. Con-
sidering the ambition of zero-emission policy and the current
developing trend, the market for electric freight vehicles will
grow continuously and thus requires the construction of new
charging infrastructure.
There are two main types of charging solutions: alternating
current (AC) slow charging and direct current (DC) fast
charging. AC charging is mainly served for destination
charging at workplaces or residences, as it requires more
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time to load. An AC slow charger may take 6–8 hours to
recharge the vehicle battery to full state, while a DC fast
charger can recharge up to 80% within about 30 minutes
[3]. The high efficiency of DC fast chargers is attributed
to the higher voltage and direct flow of DC current into
the battery without conversion. This characteristic makes
DC charging a promising solution for long-distance travel
[3]. It allows en-route charging to ease driving anxiety and
driving range restrictions. The current charging infrastructure
is insufficient to support the future growth of EVs. In
particular, the existing charging infrastructure lacks enough
fast chargers [4]. In 2019, there are more than 200 fast-
charging stations in the Netherlands. Researchers expect
significant growth in the number of fast-charge points for
electric cars over the coming years, to a maximum of 8,000
by 2025 [5]. Amsterdam, The Hague, Rotterdam, Utrecht,
and Brabantstad have been designated as the focus areas to
develop charging infrastructure since 2009 [6].
To promote electrification in freight transport, the goal of
this study is to propose fast-charging infrastructure planning
strategies for the en-route charging of commercial freight
vehicles along the highway. This study builds a planning
framework consisting of data fusion, network evaluation,
candidate location selection, and an optimization model for
planning. A multi-period bi-objective optimization model is
constructed to find the optimal locations and scales of fast
charging facilities considering the investment and charging-
demand coverage. The case study is conducted based on the
Amsterdam highway network. The study provides evidence
for long-term charging facility investment and supports the
electrification of intercity logistics.

II. LITERATURE REVIEW

With the increasing market share of electric vehicles
in road transportation, extensive research has investigated
the charging infrastructure-planning problem. Based on the
way to represent charging demand, research approaches
can be categorized into the node-based model, flow-based
model, and trajectory-based model [7], [8]. In the node-
based model, it is assumed that the charging demand is
generated at the nodes in the network [9], [10]. The flow-
based model uses a set of origin–destination trips and allows
charging demand to be served during journeys [11]. The
trajectory-based model considers the travel pattern of electric
vehicles [12], [13] and might incorporate the individual
charging decision and route scheduling [14]. Optimization
models would be established after obtaining charging de-
mand. Many researchers considered multiple objectives for
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various benefits of different stakeholders. Yang et al. [3]
established bi-objective programming models for charging
demand assignment, fast charging station operation, and
power line expansion, with objectives to maximize charging
service profit and minimize total charging time. Bian et
al. [15] proposed the charging station configuration model
from the perspective of users considering traffic congestion
and signal-lights waiting time. To find the Pareto optimal
solution set, the simulated annealing particle swarm opti-
mization algorithm was used with objectives of minimum
investment cost, maximum profitability, and minimum time-
consuming cost. Liu et at. [16] established the bi-level
planning model for electric vehicle charging stations and
used the firefly algorithm to find solutions. The upper model
optimized the location and capacity of charging stations with
the objective of maximizing the annual profit. The lower
model optimized individual electric vehicle charging plans to
achieve minimum charging cost. Wang et al. [17] proposed
an optimization model for the planning of slow-charging
piles and fast-charging piles, incorporating the impact of
road traffic conditions on the user’s charging additional cost.
To efficiently find the Pareto solution sets, the NSGA-II
algorithm was improved by modifying the initial population
generation and crossover operator. The algorithm was proved
to have better performance in terms of searchability and
global convergence.
The development of charging infrastructure is likely to
take several years in practice. Considering the dynamic
charging demand and limited investment, it is difficult to
deploy all the charging stations within one-step planning[18].
Some researchers have suggested that sing-stage optimization
could lack the capacity to deal with long-term charging
demand dynamics [19]. Charging infrastructure planning
can be formulated as a sequential decision-making process,
enabling the construction strategies to be changed according
to charging demand [20], [21]. Meng el at. [22] selected
candidate charging station sites based on social limitations
and proposed a sequential expansion-downsizing strategy for
station construction. The proposed method provided flexible
construction plans to balance the increase and decrease of
charging demand. The objective was to minimize the total
social cost by incorporating drivers’ cost and construction
investment. Kadri et al. [18] used a multi-stage stochastic
integer programming approach to address uncertainties in
both EV-trip numbers within the road network and EV flows
within trips. Scenario trees were used to approximate the
evolution of the stochastic process over time, and the benders
decomposition approach was extended to find optimality.
Compared to the deterministic model, the proposed stochas-
tic one provided a significantly greater coverage of charging
demand. Previous studies have provided in-depth insights
into the charging station location problem. A majority of
charging facility deployment strategies are based solely on
mathematical modeling and implemented in hypothetical
scenarios. As real-world data becomes more accessible and
informative, more research is needed to develop data-driven
planning methods capturing valuable information from a

variety of sources (traffic flow, point-of-interest (POI) in-
formation, network configuration). In addition, the charging
infrastructure layout should fit into the structure of the road
network, reflecting the characteristic of the network. Yet,
research into potential charging station locations has rarely
considered network evaluation. Furthermore, many studies
have applied multi-period planning and multi-objective plan-
ning in recent years, but few have combined these two
aspects into a model that takes into account both demand
dynamics and benefit trade-offs. To this end, the contribution
of this study has three folds: 1) to leverage the information
of freight traffic data and POI data into the charging facility
planning process; 2) to propose a comprehensive selection
process of candidate locations for charging facilities incor-
porating charging demand, network structure, interests of
service providers, and construction flexibility; 3) to develop
a multi-period bi-objective optimization model considering
the charging demand dynamics over years and the trade-offs
between total cost and demand coverage.

III. METHODOLOGY
This study will model the charging facility planning prob-

lem and provide insight into how charging facility providers
can make construction plans for the future of freight
transportation electrification. The proposed methodological
framework shown in Figure 1 consists of four parts: data
preparation, network evaluation, candidate location selection,
and charging location optimization. Data preparation and
network evaluation leverage the valuable information of data
and knowledge of graph theory into the planning process.
Using indicators of centrality, the rankings of nodes within
the highway network can be determined. We will identify
the nodes that play a more significant role in the network by
evaluating the connections among nodes. Moreover, a clear
procedure for selecting candidate locations is established.
For integrated planning, the mathematical model considered
multi-period optimization with two objectives minimizing
total cost and maximizing demand coverage.

A. Data Preparation
The proposed framework will be implemented on the real

highway network in the Netherlands. The datasets required in
this study include freight traffic flow data, highway network
data, and POI data. Traffic data on highways can be obtained
from the data website, NDW [23]. We extracted one-week
traffic data from the date 2022-06-27 to 2022-07-03. The
information includes the date, time period, route ID, flow,
speed, and vehicle class. Freight traffic flow data can be used
to determine freight charging demand. As a percentage of
the total traffic flow, the market penetration rate is used to
determine the amount of traffic to be charged. The datasets of
the highway road network and POI data can be obtained from
Open Street Map [24]. POI data would provide information
on the category of locations and geographical coordinates.

B. Network Evaluation
The highway network can be defined as an undirected

graph G = (N,A), where N represents the set of nodes



Fig. 1. Methodological framework

(highway junctions) and A = {(i, j), i, j ∈N, i ̸= j} represents
the set of arcs (roads). Network evaluation would answer the
question of how important a node is in the highway network.
To evaluate the role of nodes, centrality indicators are
calculated including degree centrality, closeness centrality,
and betweenness centrality. Degree centrality (DCi) measures
the number of connected nodes (Equation (1)). Nodes with
a high degree score have higher connectiveness. Closeness
centrality (CCi) measures the average inverse distance to all
other nodes, reflecting a node’s closeness to others (Equation
(2)). Nodes with a high closeness score have a shorter total
distance to all other nodes. Betweenness centrality (BCi)
represents the degree to which nodes stand between each
other. It involves calculating the shortest paths between all
pairs of nodes in the network (Equation (3)).

DCi =
D

N −1
(1)

CCi =
1

∑i, j∈G,i ̸= j di, j
(2)

BCi = ∑
i, j,v∈G,i̸= j ̸=v

σ j,v(i)
σ j,v

(3)

Where N is the total number of nodes; di, j represents the
shortest path length between node i and node j; G is the
vertices set in the network; σ j,v is the total number of shortest
paths from node j and node v; σ j,v(i) is the number of those
paths passing through node i.

C. Candidate Location Selection

The charging facility planning model considers deploying
charging facilities in the candidate locations rather than
all possible locations. There are four types of candidate
locations for the deployment of charging facilities: 1) those
with existing facilities; 2) those recommended by network
evaluation results; 3) those selected by service providers; and

4) those for to-go charging.
Existing facilities are included first on the list as the existing
charging stations can be expanded. In the second type of
candidate locations, the graph theory will determine the high-
way nodes of importance, and candidate locations will be
selected around these nodes. Furthermore, this study includes
locations chosen by service providers based on business
considerations. In addition to building charging stations, the
last type of candidate location considers that fast chargers can
be deployed at supermarkets (instead of charging stations) to
provide high-efficiency charging. For the selection process,
those POIs with the labels ‘fuel station’, ‘truck stop’, and
‘parking area’ are considered for existing facilities, while
those labeled ‘supermarket’ are for to-go charging. It should
be noted that only POIs that are less than 500 meters from the
highway are considered to serve enroute charging demand.

D. Multi-period Bi-objective 0ptimization Model

A multi-stage optimization model is proposed with the
objectives of minimizing the total cost and maximizing
the coverage number of freight vehicles. Considering the
development of transport electrification, it is assumed that
the proportion of electric freight vehicles increases over the
years. The notation for the optimization model is presented
in Table I.

TABLE I
NOTATION

Variable Description
Parameters
K Set of planning horizons.
I Set of candidate locations for charging stations.
J Set of candidate locations for to-go charging piles.
Ck The total cost of the planning horizon k.
Dk The demand coverage of the planning horizon k.
γ The weight in the objective of demand coverage.

c
xk−1

i ,xk
i

s The cost of station i from the state xk−1
i to xk

i .
ct The cost of installing one fast charging pile near the supermarket.
dk

i The demand coverage of charging station i in horizon k.
dk

j The demand coverage of to-go charging facilities j in horizon k.
qk

i The freight flow can be covered by facility i in horizon k.
pk Market penetration rate of electric freight vehicles in horizon k.
bk The maximum investment in horizon k.
capl The capacity of a charging station with the scale l.
capt The capacity of a to-go charging pile.
Nmink The minimum number of charging stations in horizon k.
Nmaxk The maximum number of charging stations in horizon k.
Mmink The minimum number of locations for to-go chargers in horizon

k.
Mmaxk The maximum number of locations for to-go chargers in horizon

k.
disti, j The distance between station i and station j.
distmin The minimum distance between two charging stations.
s The maximum construction scale of charging stations.
n The maximum number of fast-charging plies near the supermarket.
Decision variables
ηk

i Binary variable: whether a charging station is deployed at the
location i in horizon k.

ηk
j Binary variable: whether to-go chargers are deployed at the

location j in horizon k.
xk

i The construction scale of station i in horizon k.
yk

j The number of installed fast-charging piles near supermarket j in
horizon k.



1) Planning horizons: This model considers five planning
horizons, representing different stages of development, with
EFV penetration rates of 20%, 40%, 60%, 80%, and 100%.
The initial planning period uses the current charging facility
layout. Starting from the second planning period, each subse-
quent period builds upon the layout of the previous periods.
This means that the results of one horizon serve as the input
for the optimization model of the next horizon.

2) Model formulation: The first objective is to minimize
the total cost in Equation (4), considering that the service
provider would control the project investment and reduce it
as much as possible. As indicated by the previous research
on charging facility planning, the total cost could be an
influential factor in the scale of the planning project (e.g.
the number and size of charging stations). The construction
cost in each horizon consists of the cost of charging stations
and the cost of to-go charging at supermarkets (in Equation
(5)).

min Z1(k) =Ck (4)

Ck =
I

∑
i=1

c
xk−1

i ,xk
i

s +
J

∑
j=1

(yk
i − yk−1

i )ct , k ∈ K (5)

The second objective in Equation (6) is maximizing the
coverage of charging demand. The parameter γk determines
whether the next-horizon planning is included in the current
planning objectives. In Equations (7) and (8), the demand
coverage is determined by electric freight flow coverage and
facility capacity. The electric freight flow coverage can be
calculated by penetration rate pk multiplying the average
freight flow at the nearest starting point of highway segments.
The facility capacity is determined by the construction scale
of charging stations and to-go charging facilities.

min Z2(k) =−(Dk + γkDk+1) (6)

Dk =
I

∑
i=1

min(qk
i pk,caplxk

i )+
J

∑
j=1

min(qk
j p

k,captyk
j),

i ∈ I, j ∈ J,k ∈ K (7)

γk =

{
1 k=1,2,3,4
0 k=5

(8)

Subject to constraints:

I

∑
i=1

c
xk−1

i ,xk
i

s +
J

∑
j=1

(yk
j − yk−1

j )ct < bk, k ∈ K (9)

η
k
i η

k
j disti, j < dist min, i, j ∈ I,k ∈ K (10)

xk
i ≤ xk+1

i , i ∈ I,k ∈ K (11)

yk
j ≤ yk+1

j , j ∈ J,k ∈ K (12)

Nmink <
I

∑
i=1

η
k
i < Nmaxk, k ∈ K (13)

Mmink <
J

∑
j=1

η
k
j < Mmaxk, k ∈ K (14)

η
k
i ∈ (0,1), i ∈ I,k ∈ K (15)

0 ≤ xk
i ≤ s, i ∈ I,k ∈ K (16)

0 ≤ yk
j ≤ n, j ∈ J,k ∈ K (17)

The limitations for investment are set for each planning
horizon. Constraints (9) ensure that the cost in each horizon
can not exceed the pre-set value. Constraints (10) indicate
that the distance between two stations should be larger than
the minimum distance threshold. Constraints (11) and (12)
ensure that the scale of charging stations and the number
of to-go chargers can not decrease with development, as it
is considered that the charging facilities constructed in the
previous horizons will remain in the subsequent horizons. For
the first horizon (k = 1), the planning is based on the initial
(existing) facility layout (k = 0). Constraints (13) and (14)
set restrictions on the number of facilities. Constraints (15)
represents the binary decision variables on whether to build
facilities in candidate locations. Constraints (16) and (17)
define two sets of integer variables for the scale of charging
facilities, namely, scales of charging stations xk

i and scales
of to-go charging facilities yk

i .
3) Solution Algorithm: we apply the non-dominated sort-

ing genetic algorithm II (NSGA-II) to solve the bi-objective
optimization problem with multiple horizons. Figure 2 shows
how NSGA-II solves the proposed multi-period bi-objective
charging facility planning model. In each horizon, NSGA-II
will produce Pareto optimal solutions. These solutions will
be compared to select one for the implementation and to
be used to update the facility layout preparing for the next-
period optimization.

Fig. 2. The procedure of optimization

IV. CASE STUDY

A. Travel Pattern Analysis

Figure 3 (a)-(d) depict traffic flow during morning and
evening peak hours on both workdays and weekends. Com-
paring Figure 3 (a)(b) to Figure 3 (c)(d), it is evident
that overall traffic demand was higher on workdays than
weekends, in both morning and evening peak periods. During



workday mornings, the northern part of the study area, in-
cluding A4, A9, and A2, exhibited increased traffic demand.
In the evenings, demand decreased, particularly in the north,
while heavy traffic persisted on A9 and A1. On weekends
(Figure 3 (c)), the road network experienced low traffic de-
mand, with an average volume below 1400 vehicles per hour
in the morning. However, during evening peak hours, there
was an increase in traffic volume on A9, A4, and A1. The
temporal and spatial distributions of truck demand (in Figure
4 (a)-(d)) were relatively different from the overall traffic on
the highway. Temporal patterns of truck volume were similar
on workdays and weekends, morning and evening. Spatially,
certain road segments (e.g., A9, A1/A10 intersection, south-
west A10) consistently experienced high truck travel demand
on both workdays and weekends. Suburban areas along A4
and A1 also had notable traffic demand.

Fig. 3. The distribution of overall traffic flow

Fig. 4. The distribution of truck traffic flow

B. Candidate Location Selection

To select the candidate locations, POI information is
filtered according to the built-environment category. POIs
with the label ‘fuel station’, ‘parking area’, ‘truck stop’, and
‘supermarket’ remained. It is noted that only the locations
that lie in the 500-meter buffering of the highway would
be used as candidates. Next, nodes in the highway network
are evaluated. Table II shows the information of the top 10

ranked candidates. The indicators, degree centrality (DC),
closeness centrality (CC), and betweenness centrality (BC)
are calculated and normalized. The score is the average of
indicators. Node 17 is ranked the top with the highest values
for all indicators, followed by Node 11, 5, and 3.

TABLE II
THE NUMERICAL RESULTS OF NETWORK EVALUATION

Rank Score DC CC BC ID
1 1.673 1.000 0.310 0.363 17
2 1.609 1.000 0.267 0.342 11
3 1.489 1.000 0.287 0.202 5
4 1.446 1.000 0.265 0.181 3
5 1.250 0.667 0.277 0.306 20
6 1.209 0.667 0.292 0.249 18
7 1.188 0.667 0.295 0.226 4
8 1.164 0.667 0.248 0.249 25
9 1.136 0.667 0.267 0.202 24
10 1.130 0.667 0.225 0.239 12

Figure 5 shows the distribution of nodes in the highway
network. The nodes in red color represented the nodes with
the top 10 rankings, which play a more important role in this
highway network. These nodes were the highway junctions
that were more connected with other junctions and were
more likely to influence other junctions in the network. As
shown in Figure 6, 119 candidate locations are selected in
total, with 84 candidates for charging station deployment
and 35 candidates for to-go charging points installment. The
candidates selected by POI data accounted for the largest
proportion 63.4%. According to the network evaluation, 15
candidate locations were added near the top 10 nodes in the
network, as indicated by the orange points.

Fig. 5. The distribution of evaluated nodes

Fig. 6. The distribution of evaluated nodes and candidate locations



C. Integrated Charging Facility Planning

The optimization model will find the (near) optimal so-
lutions for locations and construction scales of charging
facilities. For charging stations, we define five construction
scales for charging stations, extremely-small scale stations,
small-scale stations, medium-scale stations, large-scale sta-
tions, and extremely-large-scale stations, represented by xk

i =
(1,2,3,4,5). xk

i = 0 means there is no station constructed
at the location i. For to-go chargers at supermarkets, we
optimize the number of charging piles to install (yk

i ). The
optimization model has parameters in terms of investment,
capacity, construction scale, distance, etc. The settings of
parameters are presented in Table IV in Appendix A. In
setting these parameters, we have taken into account the
parameter settings in previous research [25], [26] and have
tuned the parameters based on our case study. For NSGA-II
algorithm, we set the population size to be 500, the iterations
number to be 300, the crossover probability to be 0.9, and
the mutation probability to be 0.1.

D. Multi-period Facility Planning

During multistage planning, the initial results of the infras-
tructure planning can certainly affect subsequent planning
stages. As bi-objective optimization can have more than
one optimal solution in each horizon, called Pareto optimal
solutions, one solution should be selected from the Pareto
set for the next-horizon planning. To evaluate these impacts
of solution selection, two scenarios are defined following
different solution selection rules in each horizon planning.
In Scenario 1, the solution with maximum demand coverage
is selected for next-horizon planning. In Scenario 2, the
solution with (the nearest) median demand coverage is se-
lected. To evaluate the performance of looking ahead policy
of our model, we define Scenario 3 in which the planning
of each horizon only considers the demand in the current
horizon, instead of the potential changing in the nearest
future. In Scenario 3, the objective on the demand coverage
only considers the effects on the current horizon, and the
solution with maximum demand coverage was selected for
next-horizon planning.
By comparing Scenario 1 and Scenario 2, we can observe the
impact of solution selection on the final deployment layout.
And Scenario 2 and Scenario 3 can show whether planning
one step ahead can benefit long-term planning. As shown
in Table III, Scenario 1 has a total cost of 6.250 million
euros (MER), and the demand coverage can reach 369 freight
vehicles per hour in the last planning horizon. Scenario 2
saves 61% of total cost compared to Scenario 1, the covered
demand decreases by 29%. Therefore, selecting maximum
demand coverage in every horizon could obtain solutions
with higher demand coverage, while it is noted that the
cost-efficiency of investment could be smaller. When looking
into the planning horizons, it can be found that Scenario 1
tends to construct new facilities as many as possible reaching
the upper limit of the maximum number of facilities. The
investigation of to-go chargers at the early stage indicates the
advantage of flexible chargers at supermarkets for capturing

charging demand with a relatively lower initial investment.
The number of facilities in Scenario 2 is above the half level
of that in Scenario 1.
Compared to Scenario 1, Scenario 3 neglects the growth of
charging demand and tends to invest less in the first four
horizons. Although in each horizon, Scenario 3 selects the
solution with the largest demand coverage, it covers 94%
charging demand compared to that in Scenario 1. In the final
horizon, Scenario 1 constructs more charging stations than
Scenario 3 and has the same number of to-go chargers.

TABLE III
THE OPTIMIZATION RESULTS OF SCENARIOS

Horizon 1 Horizon 2 Horizon 3
Scenario 1
Construction cost (MEUR) 1.450 1.500 1.000
Demand coverage (veh/h) 98 204 256
Number of stations 9 12 12
Number of to-go chargers 25 25 25
Scenario 2
Construction cost (MEUR) 0.03 0.508 0.508
Demand coverage (veh/h) 37 95 157
Number of stations 7 8 9
Number of to-go chargers 15 19 23
Scenario 3
Construction cost (MEUR) 1.142 1.458 0.700
Demand coverage (veh/h) 98 196 256
Number of stations 9 11 12
Number of to-go chargers 21 25 25

Horizon 4 Horizon 5 Total
Scenario 1
Construction cost (MEUR) 1.300 1.000 6.250(100%)
Demand coverage (veh/h) 316 369 369(100%)
Number of stations 13 15 15
Number of to-go chargers 25 25 25
Scenario 2
Construction cost (MEUR) 0.502 0.9 2.448(39%)
Demand coverage (veh/h) 203 262 262(71%)
Number of stations 10 11 11
Number of to-go chargers 24 24 24
Scenario 3
Construction cost (MEUR) 0.950 1.100 5.350(86%)
Demand coverage (veh/h) 304 346 346(94%)
Number of stations 12 12 12
Number of to-go chargers 25 25 25

Figure 7 shows the distribution of charging facility de-
ployment plans of Scenario 1 and Scenario 2 respectively. In
order to display the locations of newly constructed stations,
existing stations are not shown. The yellow points represent
the constructed charging stations only in Scenario 1. The
red points represent the charging stations constructed both
in Scenario 1 and Scenario 2. It should be noted that the
locations for charging stations in Scenario 2 are also selected
in Scenario 1. The overlap of scenarios may help facility
planners to identify the locations that are more cost-efficient
in the configuration of optimal deployment strategies. The
spatial distribution of these stations is in line with the
highway segments with high freight traffic flow in Figure
4.

E. Sensitivity Analysis on Investment Limitation
In the optimization model, the cost in each horizon can

not exceed an investment limit (b = 1.5 million euro). To in-
vestigate the impact of the investment limitation, we defined



Fig. 7. The distribution of charging stations in Scenario 1 and Scenario 2

an investment rate θ . By setting the maximum investment
to be b ∗ θ , the optimization results for θ = 0.4, 0.6, 0.8,
1.0, 1.2, 1.4, and 1.6 in each horizon were derived and
the demand coverages were presented in Figure 8. The
demand coverage grows with facilities building/upgrading
from Horizon 1 to 5. Higher values of investment limits result
in larger demand coverage in each horizon. The investment
limitation has a significant impact on increasing demand
coverage when θ increases from 0.4 to 1.0. It is possible
that θ =1.4 may leverage the full potential of investment, as
the small difference between θ =1.4 and θ =1.6 may result
from limitations on facility size and number. In addition, the
market penetration rate of freight vehicles has been set to be
increased evenly across horizons, the covered demand does
not change in the same manner. With the larger value of θ ,
the slopes of lines in Figure 8 become closer to the growth
rate of market penetration.
Taking θ = 1.0 as the reference, Figure 9 shows the per-
centages of total construction cost and demand coverage
with varying θ . It is noted that θ less 1.0 could produce
solutions that are more cost-efficient, as the percentage
of total construction cost is lower than the percentage of
demand coverage. Therefore, higher investment limitation
tends to increase charging demand coverage, but this effect
weakens as it increases. When θ is larger than 1.0, even with
higher investment, the demand coverage can not be improved
significantly.

V. CONCLUSION

In this study, we develop a data-driven integrated frame-
work for fast-charging facility planning to address the grow-
ing enroute freight charging demand. By analyzing highway
traffic data, we extract the spatial and temporal patterns of
the freight flow. The charging demand is determined based
on freight traffic data and used to identify the significant
traffic nodes along highways based on graph theory. We
propose a candidate selection method to locate potential sites
for charging stations and to-go chargers. We build a multi-
period bi-objective optimization model to find optimal charg-
ing facility locations, considering minimum investment cost
and maximum demand coverage. We applied the proposed
framework to the Amsterdam highway network and utilized
NSGA-II to solve the model. Scenario comparison reveals

Fig. 8. The demand coverage in each planning horizon

Fig. 9. The total demand coverage of planning horizons

that the scenario (Scenario 1) considering next-horizon plan-
ning and selecting the solution with the highest demand
coverage covers more charging demands when compared
to other scenarios (Scenario 2 and 3). Sensitivity analysis
demonstrates that higher investment can significantly in-
crease demand coverage in each horizon (θ < 1), although
the impact diminishes as the investment further increases.

There are several directions for future research. We can
extend the methodological framework to include logistics-
related POI information, such as distribution centers and
warehouses, and use the origin-destination data of electric
freight vehicles. In addition, we apply Euclidean distance
to select the potential locations in this study, which can
be less realistic as roads in the real-world network are
connected. Future research may consider obtaining the route
between potential stations and freight vehicles on highways
and calculating the charging demand coverage based on the
real network. Finally, this study takes the highway near
Amsterdam as a case study, more investigations can be done
to extend the modeling problem to large highway networks.



APPENDIX

The parameters are listed in Table IV. In setting these
parameters, we refer to the parameter settings in previous
research [25], [26] and have tuned the parameters based on
our case study.

TABLE IV
PARAMETER SETTINGS

Variable Setting
distmin 3 (km)
s 5
n 5
ct 2000 (euro)
capl , l ∈ L [0, 30, 35, 40, 45, 50] (vehicles/hour)
capt 2 (vehicles/hour)
pk,k ∈ K [0.2, 0.4, 0.6, 0.8, 1]
bk,k ∈ K [1.5, 1.5, 1.5, 1.5, 1.5, 1.5] (million euro)
Nmink,k ∈ K [0, 0, 0, 0, 0]
Nmaxk,k ∈ K [5, 5, 5, 5, 5]
Mmink,k ∈ K [0, 0, 0, 0, 0]
Mmaxk,k ∈ K [15, 15, 15, 15, 15]
c0,l

s , l ∈ L [[0, 0.5, 0.6, 0.7, 0.8, 0.9] (million euro)
c1,l

s , l ∈ L [0, 0, 0.2, 0.3, 0.4, 0.5] (million euro)
c2,l

s , l ∈ L [0, 0, 0, 0.25, 0.35, 0.45] (million euro)
c3,l

s , l ∈ L [0, 0, 0, 0, 0.3,0.4] (million euro)
c4,l

s , l ∈ L [0, 0, 0, 0, 0, 0.45] (million euro)
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