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Abstract— Digital Twins (DTs) are steadily gaining popularity
for the study of large systems in real time. In order to build
an efficient and reliable DT, it is crucial to perform calibration
prior to its use, that is, to use real data to estimate unknown
parameters in the DT, that are of great importance for the
actual physical process. This work studies the calibration of
the Intelligent Driver Model (IDM) to infer driver behaviour,
a crucial task when building a DT of the traffic network.
We introduce a statistical model to calibration which takes
into account the model uncertainty, while also taking into
account possible correlations between individual vehicles that
have similar characteristics. In contrast with other works
in the literature, we assume that vehicles belong to a pre-
specified group and develop a Bayesian approach to derive
the posterior distributions of the parameters that characterise
each group’s behaviour. We apply the proposed approach
to the IDM and derive probability density functions of the
unknown model parameters and the model uncertainty. The
proposed probabilistic approach is validated using realistic
SUMO micro-simulations of a highway stretch. We present
estimation results that show that the proposed approach can
accurately derive the posterior distributions of the calibration
parameters. In addition, we compare the proposed approach
with a literature methodology and show that our approach
higher quality posterior distributions of the parameters of
interest than the literature approach.

I. INTRODUCTION

Digital Twins (DTs) were developed from the Internet of
Things as a way to formulate highly efficient simulation
models from physical processes, that allow remote moni-
toring and control of the system [1]. A DT is continuously
updated as real data are acquired in (near) real-time, which
are typically used in combination with synthetic data gener-
ated from simulators. A simulator is an implementation of
a complex mathematical model that maps input variables to
an output, and brings physical realism in high spatiotemporal
spaces [2].
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In order to build an efficient and reliable DT, it is crucial
to perform calibration prior to its use, that is, to use real data
to estimate unknown parameters in the DT, that are of great
importance for the actual physical process [3]. Calibration
is the process that improves the representativeness of the
simulator, or mathematical model, with respect to a physical
phenomenon. Calibration parameters are present only in the
simulator and have meaning in the physical experiment, how-
ever their values are either unknown or unmeasured during
the running of the physical experiment. Hence, calibration
is defined as the process of determining plausible values of
the unknown parameters to match the observations obtained
from the physical experiment [4].

Traffic flow simulation has been widely used in trans-
portation planning, analysis and safety studies, and several
microscopic and macroscopic models have been proposed
over the years [5], [6]. Microscopic traffic models simulate
single vehicles and the dynamic variables of such models
represent microscopic properties like the position, speed
and acceleration of individual vehicles. Macroscopic models
assume a sufficiently large number of vehicles within a road
segment such that each stream of vehicles can be treated as
flowing in a tube. However it is well known that no model
is perfect [7], hence calibration is a crucial procedure for the
application of traffic flow models.

Several papers over the years have investigated micro-
scopic traffic model calibration, such as car-following mod-
els. Such models control a vehicles’ behaviour with respect
to the front, or preceding, vehicle in the same lane. In
order to realistically represent vehicle behaviour there is
a need to collect data in order to efficiently calibrate the
car-following model of interest. In this work we focus on
the calibration of the Intelligent Driver Model (IDM). The
calibration task is typically formulated as a least squares
approach to minimise the difference between the simulated
and observed measurements [8]. The Maximum Likelihood
Estimation (MLE) approach was also proposed, that aims to
estimate a point ‘best’ estimate of the unknown parameters
of interest [9], [10]. More recently, the Bayesian inference
paradigm was used as an alternative, aiming to derive the
probability density function of the unknown parameters [11],
[12]. To improve the estimation accuracy of the Bayesian
framework, [13] used a hierarchical model formulation for
multiple individual vehicles, while [14] extended this hier-
archical framework to take into account the autocorrelation
per individual driver.



Despite the extensive study of the efficient calibration of
car-following models, the potential of the Bayesian paradigm
for the calibration and validation of car-following models has
not been thoroughly explored in the literature. In this work
we aim to build upon the literature and derive probability
density functions of the unknown calibration parameters in
the IDM, while taking into account the correlation parame-
ters between individual vehicles that might be classified to
the same group of vehicle behaviour and characteristics. In
this work, we develop a general framework for the statistical
calibration of the IDM utilising the Bayesian paradigm, by
accepting the fact that the mathematical model, or simulator,
is not perfect and take into account model uncertainty, i.e.
the discrepancy between real-life measurements and simu-
lator outputs. Finally, the proposed approach is applied to
the IDM, utilising realistic synthetic data for a 4km-long
highway stretch, obtained from the SUMO microsimulator,
and it is compared with a literature methodology.

The paper is organised as follows. In the next section
(Section II) we outline the IDM, which will be used to
validate the proposed approach. In Section III we introduce a
general statistical calibration model, while in Section IV we
propose the Bayesian framework to derive the probability
density function of the unknown calibration parameters of
interest. In Section V we validate our proposed methodology
using synthetic data from the SUMO microsimulator and
present estimation results of the proposed approach. Section
VI summarises the main results of this work and outlines
future work.

II. PROBLEM STATEMENT

Assume a set of vehicles D = {1,..., D} that traverse
in a road segment which we observe for T" hours and 7 =
{1,...,t,t+1,..., K} the set of all time-steps. The IDM
specifies a vehicle’s ¢ € D acceleration given the vehicle’s
speed, u;, distance relative to its leading vehicle, s;;, and
speed difference Au;; = u;y—uyy, where [ € D is the leading
vehicle and u;; the speed of the leading vehicle at time ¢ [10].
The acceleration of the IDM is defined as
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Vi € D, t € T, where ug is the desired speed, sg is the
minimum gap of vehicle ¢ and the precending vehicle, Tias
is the minimum travel time interval between vehicle 7 and the
leading vehicle, ay,x is the maximum vehicle acceleration,
[ the comfortable breaking deceleration and § a constant
that represents the rate at which a vehicle’s acceleration
is changing when the vehicle is approaching the desired
velocity [13].

In this work we propose a Bayesian calibration frame-
work aiming to derive probability density functions of
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Fig. 1: The proposed statistical calibration concept.

the unknown model parameters, or calibration parame-
ters, 0 = [ug, Tuafe, Amax, 3,9, So] T, as we observe x;; =
[Sit7 Uit Auit]T and y;; = {ait}, Vt € T and Vi € D, whilst
acknowledging correlation parameters between groups of ve-
hicles and model uncertainty, i.e. the discrepancy between the
model output, and real-life measurements. These parameters
depend on the vehicles, i.e. each individual vehicle ¢ € D
has its own set of parameters, denoted by 6;.

III. A STATISTICAL MODEL FOR CALIBRATION

For the physical process under study, let y;; denote the
response at a specific time ¢ € 7 obtained using x;;. We
assume a dynamic calibration model given as

Vit = 9(Xit) + €t = n(Xit, Oix) + o, (Xit) + €it,
Xit+1 = 0(Xit, Yit) (2)

Vi € D and Vt € T. The true value of the real process when
the inputs take values x;; is denoted by g(x;;). Function
n(-,-) denotes the simulator output when the inputs take
values x;; and ;. The discrepancy function, dg,, (+), encodes
the difference between the simulator evaluated at the ‘true’
0., n(Xit, 0;.), and mean g(x;;) of the real system [3]. We
assume €;; ~ N(0,02) are independent. The objective of
this work is to derive probability density functions of the
unknown calibration parameters, 7(0;|y;) and the unknown
discrepancy between the simulator and real-life measure-
ments, 7(dp, (X;)|y:)-

The basic idea of model (2) (also represented graphically
in Figure 1) is that a real process can be represented by
a simulator 7(-,-), which must be run under the ‘true’
calibration parameters 6,. However, we need to take into
account the model uncertainty, dg(-), as a simulator is usually
built under certain assumptions that might not fully represent
real-life [15].

For the IDM given by (1), we have that 6; =
i, 7D alid, 8O 60 s xiy =[50, wir, Aug]T,
Yit = {a,;t} and Uit 4+1 = Uit =+ a,;tAt, Vi € D and Vt € T,
where At denotes the model update time interval. Hence, the
calibration model (2) of the IDM becomes:

Yit = 1N(Wit, Sit, Air, 03x) + O, (Wit, Sit, D) + €4,
Ujp1 = Uit + a At 3)



IV. BAYESIAN CALIBRATION

In this section, we develop a general Bayesian calibration
approach that can be applied to calibrate dynamic models,
e.g. microscopic car-following models. Prior distributions
of car-following model parameters are considered to derive
posterior distributions of these parameters using Bayes’
theorem. The proposed solution approach is formulated such
that it takes into account the model uncertainty.

Assume that 7(x,8,) is a known mathematical model,
e.g. the IDM as described in (1), with fixed but unknown
calibration parameters 6., and x = [x],...,x5]|T denotes
the input settings. Prior distributions are required for the un-
known parameters 6, denoted as 7(0), to derive the posterior
distributions of interest. In order to make appropriate use of
observations of the physical system it is important to take
into account the model uncertainty [15].

We represent prior uncertainty about the discrepancy func-
tion dg, (x), using a Gaussian process (GP) model [16]. A
GP model is fully defined by its mean and variance function.
We assume the GP prior

8o, (x) ~ GP [fT(x)B,0°k(x,x'; 9)] 4)

where f(x) = [fo(x), f1(X),..., fo—1(x)]" is a g-vector of
known regression functions, 3 = (8g, B1,... ... ,Bg—1)T €
W is also a g-vector which contains unknown regression
coefficients, 0 < k(x,x’;¢) < 1 is the correlation function,
¢ € ® is the vector of correlation parameters and o2 >
0 is the constant variance. We select constant regression
functions f(x) whose coefficients 3 are to be inferred from
the data [17]. Under prior (4), a collection of function
evaluations 8y = [g(x1),...,06(xp)]T has a multivariate
normal distribution,

8y ~ N [FB,0°K(¢)], (5)

where F = [f(x;) f(x2)...f(xp)]T is the D x ¢ model
matrix and K(¢) is the D x D correlation matrix with
K@) = k(xs, %1, ), X5,%x, € X, s = {3,t}, I = {¢,t'}.

Combining (2) with (5) we get the likelihood distribution
Yy ‘ 07 /37 U2a ¢7 0_3 ~ ND,K(TI(X, 0) + F/@a 02K(¢)7 O—EIK)»
where y = [y1,...,y5|" is the D x K matrix of all vehicles
acceleration and all time-steps, and I is the K x K identity
matrix. We set M, = n(x,0) + F3 and the likelihood
function is:
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(6)

Following, prior distributions are assumed for the un-
known parameters 8. We assume that vehicles with common
characteristics belong to the same group, i.e. they have a
similar driving behaviour, and more than one groups exist.
We assume there exist G' groups of parent set of parameters

and we choose multivariate normal distributions for each set
of group-related parameters, i.e. 8, ~ N (Kg,,S5.), ¢ =
{1,..., G}, with mean vector p;5 and variance covariance
matrix S(;C. Note that, each vehicle 5 € D has a different set
of parameters 8, as also mentioned before, obtained through
N (éc, S(;F), where the mean and variance are associated with
the vehicles’s group.

A common selection for 3 and o2 of the GP prior (4), is to
use conjugate prior distributions [16]. Hence we assume that
B|o? follows a normal distribution and o an inverse-gamma
distribution, Blo? ~ N(Bo,02S) and 02 ~ 1G(d1,02),
where 3y is the ¢ known mean vector, S is a known
symmetric, positive definite ¢ x ¢ matrix and d1,02 > 0
are known hyperparameters. For the noise variance o2 and
the vector of correlation parameters ¢ we choose exponential
prior distributions, 02 ~ Exp()\,2) and ¢ ~ Exp(A4), where
Aoz and Ay = [Ag, Ay, Aaw]T are known hyperparameters.
The exponential distribution is a right-skewed distribution
in which small values are more likely to occur than higher
values, an appropriate assumption both for the error variance
and the correlation parameters, as vehicles with common
characteristics are highly correlated, hence due to the choice
of the squared exponential correlation function, small values
of ¢ are more likely to occur. The joint prior density is given
by

m(0,8,0°%, ¢,02) = w(0)n(Blo*)w(0*)m(P)w(02), (7)

and the posterior distribution is given by

(6, 8,0%, ¢,02ly) o< 7(0)n(B)m (%) 7 ()7 (02)
Xﬂ-l(Y|97ﬁ702a¢’O’§)' (8)

Note that the values used for vehicle acceleration, denoted
by y, are obtained through the IDM and the parameters x
are measured through sensors mounted on the vehicles.

The challenge here is that (8), is not available in closed-
form and the integrals cannot be solved analytically. Hence
in order to obtain a sample from the posterior distribution,
7(0, 3,02, ¢,02|y), we employ sampling techniques based
on Markov Chain Monte Carlo (MCMC) methods [18]. The
idea of MCMC is in a sense to by-pass the mathematical
operations rather than to implement them. MCMC methods
construct a Markov chain with steady state distribution equal
to the posterior density of interest. A widely used MCMC
algorithm that is relatively simple, is the Metropolis-Hastings
algorithm [19] and it will be used for the purposes of this
work (see [20] for more information).

The marginal posterior distribution of the unknown cali-
bration parameters 6, is obtained by numerically integrating-
out all nuisance parameters:

w0l = [ [ [, [ w0.8.0%6.02)dpds% a0
oc2JopJo2Jp
©))
Once a sample from 7(0]y), is obtained we can also derive
m(dg(x)]y) through (2) and the sample from 7(8|y).
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Fig. 2: SUMO representation of the highway stretch.

V. SIMULATION RESULTS

To evaluate the performance of the proposed probabilistic
approach we examine a simulation study of a 4km-long
highway stretch using the SUMO microscopic simulator [21],
shown in Figure 2. The highway stretch has two lanes in
each direction of traffic and the speed limit is 120 km/h.
To create traffic within the network, we consider the IDM.
We observe the network for 7' = 2 hours with D = 1,500
vehicles passing through the specific network.

We utilise the proposed calibration framework and ob-
tain estimation results that are compared with the ground
truth used during the simulation. The behaviour of each
vehicle ¢ € D is described through parameters 6; =
[0, Tsate, Gmaxs B So] (We treat § as a constant with value
set to 4 [10]) and assume a-priori G = 3 groups of parent
set of distributions for the unknown calibration parameters:

o Group 1 (Gl): Aggressive vehicles
e Group 2 (G2): Normal vehicles
o Group 3 (G3): Submissive vehicles

As mentioned, each group has its own set of parameters
0., ¢ = {1,2,3} for which we assume that logf, ~
N (“9}’ Séc ), to avoid negative values that do not have phys-
ical meaning. For each vehicle i € D that belongs in group c,
we assume its parameters follow 8; ~ log N (6., Sg,)- Our
aim is to utilise the obtained data and prior information of
all unknown parameters to derive the posterior density of the
parameters that describe each group.

We evaluate the calibration results in the form of posterior
distributions, as shown in Figure 3. Column 1 in Figure 3
corresponds to Group 1, column 2 to Group 2 and column 3
to Group 3, while each row represents a different calibration
parameter, i.e. ug, Tgfe, Gmax> B and sg, respectively. In
Figure 3, the red line depicts the true distribution of 8,
i.e. the distribution assumed when running the simulation
experiment, the grey lines represent the per vehicle estimated
posterior distributions of 6, the blue line depicts the mean
posterior distribution and the green line the median posterior
distribution of all vehicles in the group. As shown, the
estimated average posterior densities are very similar to the

Par. MAE DKL
Gl G2 G3 G1 G2 G3
uo 0.13 0.8 0.17 | 46x10~% 9x10~%T 18 x10=3
Teate 0.03 024 0.02 0.15 0.11 0.13
Gmax 0.11 006 0.12 0.09 0.23 0.56
B 0.03 0.06 0.15 0.19 0.43 0.67
50 0.02 001 0.09 0.36 0.10 0.05

TABLE I: MAE and KL divergence, Dky, of the estimated
posterior distributions of the calibration parameters for each
of the three vehicles’ groups.

true densities for all parameters and the three groups, with the
mean values of the estimated distributions being very close
to the true mean, while the estimated standard deviations are
larger than the standard deviations of the true distributions.
We further evaluate the performance of the proposed
approach in terms of the Mean Absolute Error (MAE)

D
MAE = % D 105 — 6,4, (10)
i=1
where 9;"“6 is set to the mean value of the ‘true” distribution
used in SUMO for p = 1,...,P and 6,; is the mean
value of the estimated posterior densities for each calibration
parameter marginalised over each vehicle ¢ € D. In addition,
we calculate the Kullback-Leibler (KL) divergence [22],
between the derived posterior probability distribution 7(8|y)
and the actual probability distribution assumed during the
simulation experiment denoted as f(@]y). The KL diver-
gence is given by

Dy [x(01y)|£(0ly)] = /

0co

7(8ly) log V(OM] de.

f@ly)
(an

Note that a KL divergence equals to zero indicates that the
two compared distributions are identical.

Table I illustrates the MAE and KL-divergence, Dy, of
the proposed calibration approach. As shown, the MAE is
very low for all parameters and all three groups of vehicles
indicating than the mean values of the true and estimated
posterior distributions are very close, as also shown in Figure
3. In addition, Dk is approaching zero for uy and all
groups, supporting that the true and estimated distributions
are actually of the same family. Parameters Tiage, Gmax, 5 and
so also yield small values of Dk indicating that the true and
estimated distributions are very similar. The only exception
is the posterior distributions of an,x and 3 for Group 3 that
appear to slightly differ from the true distributions, however
the mean of the distributions still remains close to the true
mean. This result might be affected by the population of
Group 3, which is 70% smaller than Group 2 and 40%
smaller than Group 1, meaning that the number of vehicles
might not be sufficient to ‘learn’ the specific parameters with
high accuracy.

Following, we compare the proposed calibration approach
with a two-level hierarchical approach proposed by [13], that
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Fig. 3: Estimated posterior distributions of the unknown calibration parameters, 8. The red line depicts the true distribution
of 0, the grey lines represent the per vehicle estimated posterior distributions of 8, the blue line depicts the mean posterior
distribution of all vehicles in the group and the green line the median posterior distribution of all vehicles in the group.
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Proposed Approach Two level hierarchical approach
Par. | MAE Dk, st. dev. | MAE | Dgr st. dev.
uo 0.16 | 0.001 1.03 2.64 | 0.004 2.5
Tafe| 0.10 0.13 0.54 0.27 0.18 1.01
amax | 0.10 0.30 1.07 0.88 0.47 1.24
8 0.08 0.43 1.13 0.26 0.44 1.02
S0 0.12 0.17 0.94 0.86 0.32 1.17

TABLE II: MAE, KL divergence, Dk, and standard de-
viation (st. dev.) of the estimated posterior distributions of
the calibration parameters for the proposed and the literature
two-level hierarchical approach.

assumes that each vehicle has an individual set of calibration
parameters with their mean and variance drawn from one
parent distribution shared across all vehicles. In Table II
we present the MAE, KL divergence, Dy, and standard
deviation of the estimated posterior distributions of our pro-
posed approach, averaged across the three different groups of
vehicles, and the literature two-level hierarchical approach.
As shown, the two level hierarchical approach consistently
yields larger MAE compared to the proposed approach for
all parameters and the standard deviation is around two times
larger than the standard deviation of the proposed approach.
As shown in Figure 3, the true distributions (red lines)
have small standard deviation, hence using a distribution
with much larger standard deviation to obtain the driver’s
behaviour will introduce more variability in the samples and
the output of the model might not represent reality. The
KL-divergence of the two-level hierarchical approach is also
higher than the proposed approach, however the resulted
values indicate that the estimated posterior distributions of
both approaches and the true distribution assumed in the
simulation experiment are of the same family.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a novel statistical model
for the calibration of car-following models and in particular
the IDM. The proposed approach considers model uncer-
tainty and possible correlations between individual vehi-
cles that have similar driving characteristics. The proposed
probabilistic approach was validated using realistic SUMO
micro-simulations of a highway stretch. Results showed that
the proposed approach yields high-accuracy posterior distri-
butions of the unknown calibration parameters of interest.
Further, we compared the proposed approach with a state-
of-the-art approach and showed that our proposed approach
yields posterior distributions with mean value closer to the
true mean and significantly smaller standard deviation than
the literature approach.

Future plans include the validation of this approach in real-
life datasets and the calibration of other microscopic models.
Further we aim to extend this approach to learn the number of
group of vehicles as an unknown parameter rather than using
a pre-specified number of groups. Finally, we aim to compare

the proposed approach with other state-of-the-art approaches
that are not necessarily under the Bayesian paradigm.
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