
Adaptive Spatio-Temporal Voxels Based Trajectory Planning for
Autonomous Driving in Highway Traffic Flow

Zhiqiang Jian1, Songyi Zhang1, Lingfeng Sun2, Wei Zhan2, Masayoshi Tomizuka2, and Nanning Zheng1†

Abstract— Trajectory planning is crucial for the safe driving
of autonomous vehicles in highway traffic flow. Currently, some
advanced trajectory planning methods utilize spatio-temporal
voxels to construct feasible regions and then convert trajectory
planning into optimization problem solving based on the feasi-
ble regions. However, these feasible region construction methods
cannot adapt to the changes in dynamic environments, making
them difficult to apply in complex traffic flow. In this paper,
we propose a trajectory planning method based on adaptive
spatio-temporal voxels which improves the construction of
feasible regions and trajectory optimization while maintaining
the quadratic programming form. The method can adjust
feasible regions and trajectory planning according to real-time
traffic flow and environmental changes, realizing vehicles to
drive safely in complex traffic flow. The proposed method has
been tested in both open-loop and closed-loop environments,
and the test results show that our method outperforms the
current planning methods.

I. INTRODUCTION

Highways are suitable application scenarios for au-
tonomous driving [1]. In these scenarios, the key issue is
how to deal with the interaction between the ego vehicle and
the other agents in the traffic flow. A trajectory planner aims
to solve the problem. The trajectory planner can generate
a trajectory that meets the kinodynamic constraints of the
vehicle in real-time according to the current state of the ve-
hicle and the environment, and ensure the safety, efficiency,
and comfort of the vehicle when traveling along the planned
trajectory.

Currently, a kind of the state-of-the-art trajectory planning
methods searches for a feasible region in the spatio-temporal
domain, and all the trajectories belonging to it can guarantee
the safety of the vehicle. Afterward, an optimization problem
is defined according to the feasible region, and its solution
uniquely corresponds to the planned trajectory. For exam-
ple, Ding et al. [2] propose the Spatio-Temporal Semantic
Corridor (SSC) to build a feasible region based on the
results of behavior planning, and then define an optimization
problem and solve it to plan a trajectory. Similarly, Zhang
et al. [3] propose the Spatio-Temporal Voxels (STV) for
feasible region construction and also define an optimization

*This work was supported by the National Natural Science Foundation
of China (No.62088102, 61790563).

1Z. Jian, S. Zhang, and N. Zheng are with the Institute of Artificial In-
telligence and Robotics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049,
P.R. China; flztiii, zhangsongyi@stu.xjtu.edu.cn;
nnzheng@mail.xjtu.edu.cn

2L. Sun, W. Zhan, and M. Tomizuka are with the Department of
Mechanical Engineering, University of California, Berkeley, CA 94720,
USA; lingfengsun, wzhan, tomizuka@berkeley.edu

†N. Zheng is the corresponding author.

Fig. 1. This figure shows one frame of the traffic flow from the CitySim
dataset. The green boxes indicate the annotated vehicles.

problem under the constraints of the feasible region to obtain
a trajectory. These methods have achieved good performance.

However, these methods still have some shortcomings.
Ding et al.’s method relies on the behavior planner, and
unqualified behavior planning results will lead to unqualified
planned trajectories. Zhang et al.’s method does not have
the above problem, but its feasible region construction and
trajectory optimization are not flexible enough. Zhang et
al.’s method use voxels to describe the feasible region,
but the number and size of the voxels are fixed and the
lateral kinodynamic constraints of the vehicle are ignored.
Besides, its objective function only considers jerks, which
is insufficient. These problems make the method perform
poorly in more dense traffic flows.

In order to solve the problems, this paper proposes an
Adaptive Spatio-Temporal Voxels Based Trajectory Planning
(ASVP) method. The ASVP method improves the method
proposed by Zhang et al.: In terms of the feasible region
construction, the ASVP method uses multi-resolution voxels
to construct the feasible region, and the number of the voxels
in the feasible region can also change according to the
complexity of the environment. In terms of the optimization
problem definition, the objective function and the constraints
are both modified, and more factors are considered in the op-
timization. Based on the improvements, the proposed method
can ensure the safe, efficient, and comfortable traveling of
the vehicle in complex traffic flows.

The proposed method is tested in both open-loop and
closed-loop environments. The open-loop tests are conducted
by replaying the CitySim dataset [4], as shown in Fig. 1. The
closed-loop environment uses the gym simulator [5]. In both
tests, the proposed method achieves significant performance
in the safety and efficiency of the vehicle. Besides, an
ablation study is designed, which verifies the effectiveness

ar
X

iv
:2

31
0.

02
62

5v
1 

 [
cs

.R
O

] 
 4

 O
ct

 2
02

3



C1

C2

C3

C4

C5L5

L4

R2

R3

R4

R5

Voxels Generation

C1

C2

C3

C4

C5L5

L4

R2

R3

R4

R5

Voxel Graph Building

C1

C2

C3

C4

C5L5

R3

R4

R5

Voxel Graph Search

Feasible Set for Turn 
Left Behavior

s

t

Planned Trajectory for 
Turn Left Behavior

s

t

Quadratic 
Programming

Voxel Sequence 
Changing

Verification

Evaluation

Optimization

Planned TrajectoryVoxels Voxel Graph Voxel Sequence

s
d

Fig. 2. This figure shows the framework of the proposed method, which includes four modules. In the first three modules, the blue vehicle is the ego
vehicle. The colored circles indicate the voxels and different colors represent different lanes. The colored arrows indicate the edges of the voxel graph. In the
last module, the colored boxes are the voxels in the spatio-temporal domain. The black region indicates the marked obstacle vehicle in the spatio-temporal
domain. The blue curve indicates the planned trajectory.

of the innovations proposed in the paper.
In conclusion, the contributions of the paper are as follows.
• A novel feasible region construction method is pro-

posed, which can be adjusted according to the environ-
ment and adapted to scenarios of different complexity.

• The defined optimization problem considers the safety,
efficiency, and comfort of the vehicle while maintaining
the quadratic programming form.

• Combining the above innovations, an effective highway
traffic flow trajectory planning method is implemented,
which is open source. 1

II. RELATED WORKS

One of the main methods of trajectory planning is to
convert the planning problem into an optimization problem
[6]. Some methods try to directly solve the optimization
problem, such as the Sequential Quadratic Programming
(SQP) method applied by Ziegler et al. [7]. However, since
the optimization problem is non-convex and has high com-
plexity, more methods simplify the problem before solving it,
including sampling and evaluation methods [8]–[11], spatial
and temporal domain separation methods [12]–[15], and
direct spatio-temporal domain simplification methods [2],
[3], [16], [17].

The sampling and evaluation methods sample some trajec-
tories, and then evaluate these trajectories through the objec-
tive function. The trajectory with the lowest cost is selected
as the planning trajectory. For example, Werling et al. [8]
use polynomial curves to generate sampling trajectories in
the Frenet coordinate system, and then evaluate them through
the objective function to achieve trajectory planning. Zhang
et al. [11] also apply polynomial curves to generate paths and
velocity profiles to obtain sampling trajectories, and finally
complete trajectory planning through evaluation.

1https://github.com/flztiii/traffic_flow_
trajectory_planning

The spatial and temporal domain separation methods plan
separately in the spatial and temporal domains, and then
combine the two to obtain the planned trajectory. For ex-
ample, Xu et al. [12] use the sampling-evaluation method
to obtain the separate initial solutions from the spatial and
temporal domains, and then use the numerical optimization
method to obtain the planned trajectory. Fan et al. [14] pro-
pose a method similar to Expectation-Maximization (EM) to
iteratively optimize the trajectory in the separated spatial and
temporal domains, thereby obtaining the planned trajectory.

The direct spatio-temporal domain simplification methods
construct a simplified feasible region in the spatio-temporal
domain according to the environment and the vehicle’s
kinodynamic constraints and then solve the optimization
problem in the feasible region. For example, Ziegler et al.
[16] apply the state lattice method to discretize the spatio-
temporal domain, thus realizing the simplification. The SSC
proposed by Ding et al. [2] and the STV proposed by Zhang
et al. [3] also obtain a simplified feasible region, so as to
optimize the trajectory accordingly. Currently, this kind of
method achieves the best performance in highway trajectory
planning. The method proposed in this paper is also carried
out following the idea.

III. METHOD

A. Framework

The proposed method’s framework is shown in Fig. 2. The
method’s framework is inspired by Zhang et al.’s method
[3], but we have modified the framework’s modules. The
planner updates at 5 Hz frequency and outputs the trajectory
in the future time period T to the control module in real-
time. In each planning episode, the planner conducts feasible
region construction and trajectory optimization. These two
processes are carried out in the Frenet coordinate system and
the ego vehicle and other agent information are all converted
to the Frenet coordinate system [17]. In this case, the spatio-

https://github.com/flztiii/traffic_flow_trajectory_planning
https://github.com/flztiii/traffic_flow_trajectory_planning


temporal domain can be described by the s-d-t coordinate
system. The s axis is the lane’s direction, and the d axis is
perpendicular to the lane’s direction.

In the feasible region construction, spatio-temporal voxels
are generated according to the environment. Each voxel
corresponds to a lane l, where l ∈ {L,C,R}. Lane L
indicates the left lane, R indicates the right lane, and C
indicates the current lane. Afterward, a voxel graph is built
and each voxel’s cost is calculated. For each behavior, a voxel
sequence with the least cost is searched in the voxel graph.
Behaviors include left lane change, right lane change, and
lane keeping.

In the trajectory optimization, each voxel sequence is mod-
ified according to its corresponding behavior, and a feasible
region can be obtained accordingly. According to the feasible
region, a quadratic programming problem can be defined
to describe the trajectory planning problem. The quadratic
programming problem’s solution uniquely corresponds to the
planned trajectory. Then, the planned trajectory is verified.
If the verification fails, the voxel sequence will be changed
and the quadratic programming will be performed again.
If the verification succeeds, the planned trajectory’s cost is
evaluated. Finally, for each behavior, a trajectory with the
cost is planned. The trajectory with the lowest cost is output
to the control module.

B. Feasible Region Construction
We discretize the future time period T into n segments

{∆Ti}n−1
i=0 . for ∀i, ∆Ti+1 ≥ ∆Ti. For each lane l in each

time segment ∆Ti, a voxel set {vl,i,j}m−1
j=0 will be generated.

Each voxel v represents a box region in the spatio-temporal
domain and is defined as v = (ls, us, ld, ud, lt, ut)T. us
and ls are the voxel v’s upper and lower bounds on the s
axis. ud and ld are the voxel v’s upper and lower bounds
on the d axis. ut and lt are the voxel v’s upper and lower
bounds on the t axis. For ∀i, there exists uti − lti = ∆Ti

and uti = lti+1.
Voxels generation. The generated voxel set is defined as

{vl,i,j}m−1
j=0 . For ∀j, the voxel vl,i,j’s the upper and lower

bounds on the t axis remain unchanged and are denote as
utl,i and ltl,i, which can be calculated according to the time
segments {∆Ti}n−1

i=0 .
Then, the voxel vl,i,j’s upper and lower bounds usl,i,j

and lsl,i,j on the s axis are calculated. According to the
vehicle’s initial longitudinal position s0 and velocity v

(s)
0 ,

the reachable lower bound s
(min)
l,i of the s axis when the

vehicle decelerates at the maximum deceleration within the
time ltl,i and the reachable upper bound s

(max)
l,i of the s axis

when the vehicle accelerates at the maximum acceleration
within the time utl,i can be obtained [3]. For each lane l, its
related agent set is defined as Ol. (For example, if l = L,
Ol will be the agents on the left lane.) For ∀o ∈ Ol, its
occupied range of the s axis within time ltl,i to utl,i can be
obtained, which is defined as [s

(min)
o , s

(max)
o ]. In this case,

the free range set Sl,i can be calculated as follows.

Sl,i = [s
(min)
l,i , s

(max)
l,i ] \

⋃
o∈Ol

[s(min)
o , s(max)

o ]. (1)

Algorithm 1 Voxel Graph Building
Input: Voxel set V
Output: Voxel graph G

1: for i = 0, · · · , n− 1 do
2: Gi ← ∅
3: for v ∈ {vl,i,j |l ∈ {L,C,R}, j ∈ [0,m− 1]} do
4: Initialize a node η with the voxel v
5: if not i = 0 then
6: for ηf ∈ Gi−1 do
7: if not LaneCheck(η, ηf ) then
8: continue
9: if not IntersectionCheck(η, ηf ) then

10: continue
11: Push ηf into η’s father set Gf
12: Push CalcCost(η, ηf ) into η’s cost set C
13: Push η into Gi
14: Push Gi into G

Sl,i contains multiple free ranges of the s axis. Each free
range corresponds to a voxel and the free range’s number in
Sl,i is m. The jth free range’s upper and lower bounds are
usl,i,j and lsl,i,j .

At last, the voxel vl,i,j’s upper and lower bounds udl,i,j
and ldl,i,j on the d axis are calculated. The vl,i,j’s upper
and lower bounds on the d axis are related to its lane l. If
l = L or l = R, udl,i,j and ldl,i,j will be the corresponding
lane boundary’s position shrunk by the vehicle’s width. If
l = C, according to the vehicle’s initial lateral position
d0 and velocity v

(d)
0 , its reachable lateral range will be

calculated, which determines udl,i,j and ldl,i,j . Through the
above process, all the voxels in the time period T can
be generated, defined as V = {vl,i,j |l ∈ {L,C,R}, i ∈
[0, n− 1], j ∈ [0,m− 1]}.

Voxel graph building. The voxel graph G contains n
layers and each layer Gi contains multiple nodes η. The node
η consists of the voxel v, the cost set C and the parent node
set Gf . The voxel graph’s building is shown in Alg. 1. For the
nodes in the first layer G0, since there is no need to consider
its cost set and parent node set, the nodes can be directly
defined according to the voxels.

For the nodes in the ith layers, their definition is as
follows. First, for each voxel v in the voxel set {vl,i,j |l ∈
{L,C,R}, j ∈ [0,m− 1]}, a node η is defined accordingly.
Each node ηf in the previous layer Gi−1 is judged whether
it is the parent node of η. Judgment conditions include lane
checking and intersection checking. In the lane checking,
it is judged whether the lane of the node η’s voxel is the
current lane. If so, the lane of the node ηf ’s voxel must also
be the current lane. If not, the lane of the node ηf ’s voxel
must be the same as η, or be the current lane. The lane
checking aims to prevent multiple lane changes during one
planning episode. In the intersection checking, it is judged
whether the overlapping of the nodes η and ηf ’s voxels on
the s axis and d axis is larger than the threshold. If the lane
checking and intersection checking are satisfied, the node ηf



will be added into the node η’s parent node set Gf . Finally,
the cost c is calculated according to the nodes η and ηf ’s
voxels and added to the node η’s cost set C. The calculation
is as follows.

c = 1− 2sinter

∆T 2
i (a

(s)
max − a

(s)
min)

, (2)

where sinter is the overlapping length of the nodes η and
ηf ’s voxels on the s axis, a(s)max is the vehicle’s longitudinal
maximum acceleration, a

(s)
min is the vehicle’s longitudinal

maximum deceleration. The cost reflects how much other
agents limit the vehicle’s motion. When c = 0, other agents
have no restrictions on the ego vehicle’s motion, and when
c = 1, other agents completely restrict the ego vehicle’s
motion.

Voxel graph search. After building the voxel graph G, the
final step is to generate the voxel sequence Vb = {vl,i}n−1

i=0

for each behavior b. Nodes that correspond to the behavior
b are selected in the voxel map G’s last layer Gn−1. For
example, if the behavior b is left lane change, the nodes
whose voxels’ corresponding lane is the left lane will be
selected. For each selected node, the depth-first search is
applied to get the paths connecting it and the nodes in the
first layer G0. The path with the least cost will be chosen
as Vb. Through the above process, the voxel sequences
corresponding to all three behaviors can be obtained.

C. Trajectory Optimization

Voxel sequence change. For each behavior b, a trajec-
tory Ξb is planned according to the voxel sequence Vb =
{vl,i}n−1

i=0 . If the behavior b is not lane keeping, the voxel
sequence Vb needs to be changed and the process is as
follows.

The index i in the voxel sequence Vb is found, so that voxel
vl,i and vl,i+1 have different lanes. In the voxel graph G’s
i+1th layer Gi+1, the voxels that hold the same lane as the
voxel vl,i are selected. These voxels are intersected with the
voxel vl,i on the s axis separately, and the maximum range
is regarded as the voxel vl,i’s new upper and lower bounds
on the s axis. Similarly, in the voxel graph G’s ith layer Gi,
the voxels that hold the same lane as the voxel vl,i+1 are
selected. These voxels are intersected with the voxel vl,i+1

on the s axis separately, and the maximum range is regarded
as the voxel vl,i+1’s new upper and lower bounds on the
s axis. Afterward, The voxel vl,i and vl,i+1’s union on the
d axis is regarded as the two voxels’ new upper and lower
bounds on the d axis. The voxel sequence change aims to
allow the planner to consider the agents on both lanes at the
same time in the process of changing lanes to ensure safety.

Optimization definition. an optimization problem is de-
fined based on the voxel sequence Vb to achieve trajec-
tory planning. The key to optimization problem definition
includes optimization variables, constraints, and an objec-
tive function. For the optimization variables, the planned
trajectory is described by a piece-wise quintic Bezier curve
Ξ(t) = {ξ(σ)i (t)|i ∈ [0, n−1], σ ∈ {s, d}}, whose expression

is as follows.

ξ
(σ)
i (t) = ∆TiB

(σ)
i (

t− ltl,i
∆Ti

), t ∈ [ltl,i, utl,i],

B
(σ)
i (x) =

5∑
k=0

(
5
k

)
p
(σ)
i,k (1− x)(5−k)xk,

(3)

where ltl,i and utl,i are the voxel vl,i’s upper and lower
bounds on the t axis and ∆Ti = utl,i− ltl,i. P = {p(σ)i,k |σ ∈
{s, d}, k ∈ [0, 5], i ∈ [0, n − 1]} are the piece-wise Bezier
curve’s control points. As long as P is determined, the
piece-wise Bezier curve Ξ(t) can be uniquely determined.
Therefore, P can be regarded as the optimization variables.

The constraints include equality constraints and inequality
constraints. Among the equality constraints, the first consid-
eration is that the planned trajectory’s initial configuration
needs to be the same as the ego vehicle’s current configura-
tion, so the following equation needs to be satisfied.

ξ
(s)
0 (ltl,0) = s0, ξ

(d)
0 (ltl,0) = d0,

∂ξ
(σ)
0 (ltl,0)

∂t
= v

(σ)
0 ,

∂2ξ
(σ)
0 (ltl,0)

∂t2
= a

(σ)
0 , σ ∈ {s, d},

(4)

where s0 and d0 are the vehicle’s initial longitudinal
and lateral positions, v(s)0 and v

(d)
0 are the vehicle’s initial

longitudinal and lateral velocities, and a
(s)
0 and a

(d)
0 are the

vehicle’s initial longitudinal and lateral accelerations. Among
the equality constraints, the second consideration is that the
planned trajectory needs to meet the C2 continuity, so the
following equation needs to be satisfied.

∂µξ
(σ)
i (utl,i)

∂tµ
=

∂µξ
(σ)
i+1(ltl,i+1)

∂tµ
,

µ =0, 1, 2, σ ∈ {s, d}, i ∈ [0, n− 2],

(5)

where ∂µξ
(σ)
i (t)

∂tµ is the function ξ
(σ)
i (t)’s µ order derivative.

For the inequality constraints, safety and comfort are
considered. The constraint brought by safety is that the
Bezier curve Ξ(t) must be contained in the voxel sequence.
The constraints brought by comfort are that the Bezier curve
Ξ(t)’s first-order, second-order, and third-order derivatives,
which represent the limits on velocity, acceleration, and jerk
respectively, must be within the limit range. Due to the
Bezier curve’s convex hull property, as long as the Bezier
curve’s control points are within the limit range, all the points
on the Bezier curves can be guaranteed to be within the limit
range [2]. Therefore, the safety inequality constraints are as
follows.

lsl,i ≤ p
(s)
i,k ≤usl,i, ldl,i ≤ p

(d)
i,k ≤ udl,i,

i ∈ [0, n− 1],
(6)

where lsl,i and usl,i are the voxel vl,i’s upper and lower
bounds on the s axis, and ldl,i and udl,i are the voxel vl,i’s
upper and lower bounds on the d axis. The comfort inequality
constraints are as follows.

v
(σ)
min ≤ p

(σ)
i,k

′ ≤ v(σ)max, k ∈ [0, 4],

a
(σ)
min ≤ p

(σ)
i,k

′′ ≤ a(σ)max, k ∈ [0, 3],

j
(σ)
min ≤ p

(σ)
i,k

′′′ ≤ j(σ)max, k ∈ [0, 2],

i ∈ [0, n− 1], σ ∈ {s, d},

(7)



where v
(s)
min and v

(s)
max are the vehicle’s longitudinal velocity

upper and lower bounds, v
(d)
min and v

(d)
max are the vehicle’s

lateral velocity upper and lower bounds, a
(s)
min and a

(s)
max

are the vehicle’s longitudinal acceleration upper and lower
bounds, a(d)min and a

(d)
max are the vehicle’s lateral acceleration

upper and lower bounds, j
(s)
min and j

(s)
max are the vehicle’s

longitudinal jerk upper and lower bounds, and j
(d)
min and

j
(d)
max are the vehicle’s lateral jerk upper and lower bounds.
p
(σ)
i,k

′, p(σ)i,k
′′ and p

(σ)
i,k

′′′ are the Bezier curve Ξ(t)’s first-order,
second order, and third-order derivatives’ control points (A
Bezier curve’s derivative is still a Bezier curve), which are
the linear combination of the Bezier curve Ξ(t)’s control
points [18].

The objective function is defined as
∑4

j=0 wjεj , which is
weighted sum of five terms. The term ε0 is calculated as
follows.

ε0 =
∑

σ∈{s,d}

n−1∑
i=0

∫ utl,i

ltl,i

(∂3ξ
(σ)
i (t)

∂t3

)2

dt. (8)

The term ε0’s purpose is to minimize the jerk. The term ε1
is calculated as follows.

ε1 =
∑

σ∈{s,d}

n−1∑
i=0

(
ξ
(σ)
i (utl,i)− α

(σ)
i

)2

, (9)

where α
(s)
i and α

(d)
i are the ideal longitudinal and lateral

end positions of the Bezier curve’s ith segment. The term
ε1 aims to make the end position of the Bezier curve’s each
segment close to the expectation. α(s)

i and α
(d)
i ’s calculation

are as follows. The front and rear agents of the bounding
voxel vl,i on the lane l are found from time ltl,i to utl,i. If
the front agent does not exist, α(s)

i will be set to the voxel
vl,i’s upper bound on the s axis. If the front and rear agents
exist, the front agent’s position sf on the s axis at time ltl,i
and the rear agent’s position sr on the s axis at time utl,i
will be obtained. Then, α(s)

i can be calculated as follows.

γf = sf +
(v

(s)
0 )2 − (v

(s)
f )2

2a
(s)
max

− v
(s)
0 Tres,

γr = sr +
(v

(s)
r )2 − (v

(s)
0 )2

2a
(s)
max

+ v(s)r (Tres + utl,i − ltl,i),

α
(s)
i =

{
γf , γr ≤ γf ,

wf

wf+wr
γf +

wr

wf+wr
γr, else,

(10)
where v

(s)
0 is the ego vehicle’s initial longitudinal velocity,

v
(s)
f is the front agent’s longitudinal velocity, v(s)r is the rear

agent’s longitudinal velocity, Tres is the preset response time,
a
(s)
max is the vehicle’s maximum longitudinal deceleration, and

wf and wr are preset weights. If the rear agent does not
exist, α

(s)
i equals to γf . α

(d)
i is determined by the voxel

vl,i’s lane. For example, if the voxel vl,i’s lane is the left
lane, α(d)

i equals to the lane width. The term ε2 is calculated
as follows.

ε2 =
∑

σ∈{s,d}

n−1∑
i=0

(∂ξ(σ)i (utl,i)

∂t
− β

(σ)
i

)2

, (11)

where β
(s)
i and β

(d)
i are the ideal end velocities of the Bezier

curve’s ith segment. β
(s)
i is also determined by the voxel

vl,i’s front agent on the lane l from time ltl,i to utl,i. If the
front agent does not exist, β(s)

i will be set as the upper limit
of velocity allowed by kinematics. If the front agent exists,
β
(s)
i will be set to the front agent’s longitudinal velocity. β(d)

i

is set to zero. The term ε3 is calculated as follows.

ε3 =

n−1∑
i=0

∫ utl,i

ltl,i

(∂ξ(d)i (t)

∂t

)2

dt. (12)

The purpose of the term ε3 is to make the lateral velocity
close to constant and the lateral position change uniformly.
The term ε4 is calculated as follows.

ε4 =

n−1∑
i=0

∫ utl,i

ltl,i

(∂2ξ
(s)
i (t)

∂2t

)2

dt. (13)

The term ε4 aims to make the longitudinal acceleration close
to constant and the longitudinal velocity change uniformly.

Optimization solver. It can be easily seen through the
calculation that the defined constraints are linear, the defined
objective function is quadratic, and its quadratic coefficient
matrix is semi-positive. These properties show that the de-
fined optimization problem is quadratic programming. There-
fore, Object-Oriented Software for Quadratic Programming
(OOQP) [19] can be applied to solve the problem to obtain
the planned trajectory. The planned trajectory is verified
whether it is acceptable. The verification conditions are
whether the trajectory meets all the constraints and whether
the trajectory’s curvatures are smaller than the threshold.

Verification and evaluation. If the optimization fails or
the planned trajectory fails to pass the verification, the voxel
sequence Vb will be changed again. We continuously remove
the tail voxel of the voxel sequence and repeat the opti-
mization until the planned trajectory passes the verification.
Due to the existence of ∆Ti+1 ≥ ∆Ti, the tail voxel of the
voxel sequence has stronger constraints in the optimization.
Therefore, as the tail voxel of the voxel sequence is kept
removed, the optimization problem becomes increasingly
easier to be solved. As the above process continues, the
planned trajectory will become more and more aggressive.
After the trajectories for each behavior are planned, the
trajectories are evaluated. The evaluation method uses Eq. 2
to calculate the cost of the voxel sequence corresponding
to the trajectory, and the trajectory with the lowest cost is
output to the controller.

IV. EXPERIMENTAL RESULTS

The experiment includes the open-loop tests, closed-loop
tests, and ablation study. The purpose of the open-loop tests
is to compare the proposed method, the SOTA method,
and human drivers through a large number of tests under
safety and efficiency and proves the proposed method’s
effectiveness. The purpose of the closed-loop experiment
is to conduct a long-term test to demonstrate the proposed
method’s stability. In the process, we analyzed the planning
process using the proposed method, and further verified the
effectiveness of the method. The ablation study aims to verify



whether the proposed innovations can improve the planner. In
the experiment, the proposed method is implemented based
on C++ and Robot Operating System (ROS) [20], and runs
on a computer equipped with a CPU i7-8750H. The vehicle’s
maximum longitudinal acceleration and deceleration are 2
m/s

2, maximum lateral acceleration and deceleration are 2
m/s

2, and maximum longitudinal and lateral jerks are 2
m/s

3. The parameters used by the method are detailed in
the open source code.

A. Open-Loop Tests

In the open-loop tests, the CitySim dataset is applied [4].
Compared with the NGSIM dataset, the CitySim dataset has
higher vehicle density and complexity.

For the experiment design, Sun et al.’s method [21] is
referred to. 10 seconds of traffic flow is randomly selected
from the CitySim dataset, from which an agent is randomly
selected as the ego vehicle. The agent’s state is regarded as
the ego vehicle’s initial state, and the lane the agent is in
after 10 seconds is regarded as the target lane. Afterward,
the agent is removed from the traffic flow and a trajectory
planning method is used to update the ego vehicle’s state
in the traffic flow. The states of other agents in the traffic
flow are updated according to the CitySim dataset. The
update frequency is 5 Hz and the update duration is 10
seconds. During the planning process, the planning method
only considers other agents within 100 meters of its own
lane and adjacent lanes. For the case where the target lane
is the same as the current lane (lane keeping) and the case
where the target lane is different from the current lane (lane
change), each one is carried out 100 times respectively, and
the success rate, failure rate, risk, and efficiency are recorded.

The success rate is defined as the ratio of the number of
times the ego vehicle does not collide with other agents and
is in the target lane at the end of the test to the total number
of tests. The failure rate is defined as the ratio of the number
of times the ego vehicle collided with other agents or failed
to plan to the total number of tests. The risk is defined as the
ratio of the time the vehicle is in danger to the total testing
time. The danger is defined as the situation in which the ego
vehicle’s available response time is less than 1 second. The
response time is defined that when the front agent brakes
with the maximum deceleration, the ego vehicle can brake
with the maximum deceleration after the response time, so
as to ensure that the ego vehicle will not collide with the
front agent. In common sense, a response time of 1 second
is enough to ensure the safety of the vehicle. The efficiency
is defined as the average velocity of the ego vehicle.

The proposed method and the STV method [3] proposed
by Zhang et al. are used for testing. We implement the
STV method and apply it for real-time trajectory planning.
At the same time, the ego vehicle’s corresponding agent’s
states from the dataset are also recorded as the human driver.
The testing results are shown in Tab. I. In the test, the
average time consumption of the proposed method’s one
single planning episode is 58.3 ms, which fully meets the
real-time requirements.

TABLE I
COMPARISON OF DIFFERENT METHODS IN THE OPEN-LOOP TEST.

Method
Lane Keeping Lane Change

Succ. ↑ Fail ↓ Risk ↓ Effi. ↑ Succ. ↑ Fail ↓ Risk ↓ Effi. ↑

STV 56% 44% 45.9% 11.76 0% 83% 50.9% 15.30
Human - - 25.8% 12.41 - - 52.4% 16.29
Ours 91% 9% 10.2% 12.74 45% 24% 23.7% 17.11

(a) (b)

(c) (d)

Fig. 3. This figure shows four screenshots in the open-loop tests. The red
boxes indicate the agents. The blue box indicates the ego vehicle operated
by the human driver. The green box indicates the ego vehicle using the
proposed method. Fig. (a), (b), and (c) are the lane keeping and Fig. (d) is
the lane changing.

It can be seen that according to each measurement stan-
dard, the proposed methods outperform the STV methods
in all the metrics. The reasons for the STV method’s poor
performance in the test mainly include three points. The
first reason is that the traffic flow in the CitySim dataset
is too dense and the ego vehicle cannot maintain a sufficient
distance from other agents, so the STV method is difficult to
generate the required voxels, causing planning failure. The
second reason is that the STV method does not consider the
lateral kinodynamic constraints in the voxels generation, so it
cannot perform real-time trajectory planning in lane chang-
ing. The third reason is that the STV method’s objective func-
tion is too naive and constraints are too strict, which makes
it difficult to achieve better results in trajectory optimization.
The proposed method solves the above problems and makes
the effect of the planning method greatly improved.

Compared with the human driver, the proposed method
also achieves lower risk and higher efficiency. Fig. 3 shows
four examples of the comparison between the proposed
method and the human driver. Fig. 3 (a), (b), and (c)
are the screenshots of the lane-keeping tests. Fig. 3 (a)
shows a sparse environment, where the proposed method
makes the ego vehicle travel faster than the human driver to
achieve higher efficiency. Fig. 3 (b) shows a little bit dense
environment, where the proposed method prefers to keep a
long distance to the front agent to achieve lower risk. Fig. 3
(c) shows a very dense environment, where the proposed
method almost performs the same as the human driver.
These three cases can illustrate how the proposed method
can achieve lower risk and higher efficiency than the human
driver. Fig. 3 (d) shows a case that a human driver conducts
a dangerous lane change in the dense traffic flow, where the
proposed method fails to conduct the same behavior. In the
lane-changing test scenario, the reason for the low success
rate of the proposed method is that the traffic flow in the



0 100 200 300 400
t (s)

-2
-1
0
1
2

La
t. 

ve
l (

m
/s

)

0 100 200 300 400
t (s)

14

16

18

20
Lo

n.
 v

el
 (m

/s
)

(a) Longitudinal velocity of the ego vehicle

(b) Lateral velocity of the ego vehicle

Fig. 4. This figure shows the longitudinal and lateral velocities of the
ego vehicle during the 8 minutes close-loop tests. The red lines indicate the
longitudinal and lateral velocity limitations. The shadowed region indicates
an example of vehicle following.

CitySim dataset is dense, and lane-changing often requires
an aggressive strategy. However, the proposed method uses a
more cautious strategy due to the lack of accurate prediction
of the other agents’ behaviors. As a result, in some cases, the
proposed method is more likely to let the vehicle maintain
the lane.

B. Close-Loop Tests

In the closed-loop test, the gym simulation [5] is applied.
A four-lane highway scene is constructed through gym
simulation, and other agents are randomly placed in it. The
ego vehicle’s maximum longitudinal velocity is set to 20 m/s,
and that of other agents is set to 15 m/s. The ego vehicle
runs continuously for 8 minutes using the proposed method,
and the vehicle’s longitudinal and lateral velocities during
the process are recorded.

The vehicle finally passes the test successfully. Within 8
minutes, the vehicle safely interacted with other agents on
the scene and maintained a high velocity. During the period,
the vehicle successfully completed several times of smooth
following and changing lanes to overtake. The vehicle’s
longitudinal and lateral velocity during the whole test process
is shown in Fig. 4.

From Fig. 4, it can be seen that the ego vehicle’s longitudi-
nal and lateral velocities meet the constraints. During the test,
the ego vehicle changes lanes and overtakes 12 times, and
its average longitudinal velocity reaches 16.86 m/s, which is
higher than the other agents’ maximum velocity. It shows that
when using the proposed method, the ego vehicle will not be
hindered by the other low-velocity agents, and can travel with
higher efficiency. Especially, the gray area in Fig. 4 is the
ego vehicle’s longitudinal velocity profile during a follow-
up process lasting about 1 minute. It can be seen that when
following a front agent using our planning method, the ego
vehicle can decelerate smoothly until it reaches a steady state
at the same velocity as the front agent. In contrast, the STV
method is difficult to achieve stable vehicle following, and
there will be frequent acceleration and deceleration during
the vehicle following process. The reason is that the change

18

20

160 1 2 3 4 5
t (s)

Lo
n.

 V
el

. (
m

/s
)

0 1 2 3 4 5

0

2

-2

t (s)

La
t. 

V
el

. (
m

/s
)

0 1 2 3 4 5

0

2

-2

t (s)Lo
n.

 A
cc

. (
m

/s
)

0 1 2 3 4 5

0

2

-2

t (s)La
t. 

A
cc

. (
m

/s
)

0 1 2 3 4 5

0

2

-2

t (s)Lo
n.

 Je
rk

 (m
/s

)

0 1 2 3 4 5

0

2

-2

t (s)

La
t. 

Je
rk

 (m
/s

)

(a) Planning scenario

(b) Attributes of planned trajectory

Fig. 5. This figure shows an example of the planned trajectory during
lane changing. (a) The left picture shows the visualization of the simulator
and the right picture shows the visualization of the planning program. The
yellow box indicates the ego vehicle, the blue and red boxes indicate the
other agent. The red curve indicates the planned trajectory. (b) The blue
profiles are the attributes of the planned trajectory. The red lines indicate
the limitations.

of the objective function and the constraints on the position
and velocity of the front agent are continuous in our defined
optimization problem but discontinuous in the STV method.

In order to further demonstrate the proposed method,
one single planning episode’s result is in Fig. 5. Fig. 5
(a) shows the scenario of this planning episode. Due to
the obstruction of a low-speed agent in front and no other
agents on the right lane, the proposed method plans the right
lane-changing trajectory for overtaking. Fig. 5 (b) shows
the properties of the planned trajectory. It can be seen that
the planned trajectory’s longitudinal and lateral velocities,
accelerations, and jerks are continuous, which proves that the
planned trajectory by our method satisfies the C2 continuity.
In addition, the planned trajectory’s longitudinal and lateral
velocities, accelerations, and jerks all meet the constraints,
which proves that the trajectory planned by our method can
meet the needs of comfort.

C. Ablation Study

The ablation study uses the same process as the open-
loop tests. In the ablation study, we fix the number of
voxels in the voxel sequence as the first comparison method.
The voxels’ sizes in the time domain are fixed, that is,
∆Ti+1 = ∆Ti,∀i, as the second comparison method. Only
the jerks are considered in the objective function, that is,
wj = 0, j = 1, 2, 3, 4, as the third comparison method.
Only the jerks and end states are considered in the objective
function, that is, wj = 0, j = 3, 4, as the fourth comparison
method. These four methods are used to test separately, and
compared with the results obtained by the original method,
as shown in Tab. II.

It can be seen from the table that when the number of
voxels is fixed, the method is worse than the original method
under all metrics, which can prove that the introduction of the



TABLE II
COMPARISON OF DIFFERENT METHODS IN THE ABLATION STUDY.

Method
Lane Keeping Lane Change

Succ. ↑ Fail ↓ Risk ↓ Effi. ↑ Succ. ↑ Fail ↓ Risk ↓ Effi. ↑

Comp. I 81% 19% 10.5% 12.53 3% 60% 26.3% 15.42
Comp. II 82% 18% 4.9% 12.41 20% 62% 19.2% 16.26
Comp. III 59% 41% 18.9% 11.65 16% 58% 28.1% 15.31
Comp. IV 91% 9% 10.2% 12.63 43% 26% 23.5% 16.10

Origin 91% 9% 10.2% 12.74 45% 24% 23% 17.11

changeable voxel number is effective. Then, when the size
of voxels in the time domain is fixed, other metrics except
risk are worse than the original method. The reason for this
result is that the size of the voxel in the time domain is
positively correlated with the vehicle’s response time. Fixing
the size of voxels in the time domain will make the vehicle’s
response time as close as possible to this size, and when the
vehicle’s response time cannot approach this size, it will lead
to planning failure. This characteristic causes the vehicle to
either be in safety or planning fail. That’s why using fixed-
size voxels leads to a high failure rate and low risk. The
original method solves this problem using multi-resolution
voxels. Besides, the results of the 3rd and 4th comparing
methods prove that the original method can improve the
planner by introducing new items in the objective function.

V. CONCLUSIONS
In this paper, a variable-length, multi-resolution voxel

sequence is used to represent highway scenes, and a new
optimization problem is defined to describe the trajectory
planning problem. Combining the above two innovations,
this paper implements an environment-adaptive trajectory
planning method, which can enable autonomous vehicles to
achieve efficient, safe and comfortable traveling in highway
scenarios. Experiments prove that the proposed method can
perform better than the current planning methods. In future
work, on the one hand, we will expand the applicable
scenarios of this method so that it can be applied to urban
environments. On the other hand, we plan to combine this
method with the prediction method [22], [23], introduce the
motion uncertainty of other agents [24], and further improve
the effect of the method.

REFERENCES

[1] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of
motion planning for highway autonomous driving,” IEEE Transactions
on Intelligent Transportation Systems, vol. 21, no. 5, pp. 1826–1848,
2019.

[2] W. Ding, L. Zhang, J. Chen, and S. Shen, “Safe trajectory genera-
tion for complex urban environments using spatio-temporal semantic
corridor,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp.
2997–3004, 2019.

[3] T. Zhang, W. Song, M. Fu, Y. Yang, X. Tian, and M. Wang, “A unified
framework integrating decision making and trajectory planning based
on spatio-temporal voxels for highway autonomous driving,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp.
10 365–10 379, 2021.

[4] O. Zheng, M. Abdel-Aty, L. Yue, A. Abdelraouf, Z. Wang, and
N. Mahmoud, “Citysim: A drone-based vehicle trajectory dataset for
safety oriented research and digital twins,” 2022. [Online]. Available:
https://arxiv.org/abs/2208.11036

[5] E. Leurent, “An environment for autonomous driving decision-
making,” https://github.com/eleurent/highway-env, 2018.

[6] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of mo-
tion planning techniques for automated vehicles,” IEEE Transactions
on intelligent transportation systems, vol. 17, no. 4, pp. 1135–1145,
2015.

[7] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
bertha—a local, continuous method,” in 2014 IEEE intelligent vehicles
symposium proceedings. IEEE, 2014, pp. 450–457.

[8] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenet frame,” in 2010
IEEE International Conference on Robotics and Automation. IEEE,
2010, pp. 987–993.

[9] K. Chu, M. Lee, and M. Sunwoo, “Local path planning for off-
road autonomous driving with avoidance of static obstacles,” IEEE
transactions on intelligent transportation systems, vol. 13, no. 4, pp.
1599–1616, 2012.

[10] X. Li, Z. Sun, D. Cao, D. Liu, and H. He, “Development of a new
integrated local trajectory planning and tracking control framework
for autonomous ground vehicles,” Mechanical Systems and Signal
Processing, vol. 87, pp. 118–137, 2017.

[11] J. Zhang, Z. Jian, J. Fu, Z. Nan, J. Xin, and N. Zheng, “Trajectory
planning with comfort and safety in dynamic traffic scenarios for
autonomous driving,” in 2021 IEEE Intelligent Vehicles Symposium
Workshops (IV Workshops). IEEE, 2021, pp. 342–349.

[12] W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha, “A real-time motion
planner with trajectory optimization for autonomous vehicles,” in 2012
IEEE International Conference on Robotics and Automation. IEEE,
2012, pp. 2061–2067.

[13] J. Villagra, V. Milanés, J. Pérez, and J. Godoy, “Smooth path and
speed planning for an automated public transport vehicle,” Robotics
and Autonomous Systems, vol. 60, no. 2, pp. 252–265, 2012.

[14] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu,
H. Li, and Q. Kong, “Baidu apollo em motion planner,” arXiv preprint
arXiv:1807.08048, 2018.

[15] W. Lim, S. Lee, M. Sunwoo, and K. Jo, “Hybrid trajectory planning for
autonomous driving in on-road dynamic scenarios,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 1, pp. 341–355,
2019.

[16] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast tra-
jectory planning in dynamic on-road driving scenarios,” in 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2009, pp. 1879–1884.

[17] W. Ding, L. Zhang, J. Chen, and S. Shen, “Epsilon: An efficient
planning system for automated vehicles in highly interactive environ-
ments,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 1118–1138,
2021.

[18] G. Farin, Curves and surfaces for computer-aided geometric design:
a practical guide. Elsevier, 2014.

[19] E. M. Gertz and S. J. Wright, “Object-oriented software for quadratic
programming,” ACM Transactions on Mathematical Software (TOMS),
vol. 29, no. 1, pp. 58–81, 2003.

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[21] M. Sun, F. Baldini, P. Trautman, and T. Murphey, “Move beyond
trajectories: Distribution space coupling for crowd navigation,” in
Robotics: Science and Systems. RSS Foundation, 2021, pp. 1–12.

[22] L. Sun, C. Tang, Y. Niu, E. Sachdeva, C. Choi, T. Misu, M. Tomizuka,
and W. Zhan, “Domain knowledge driven pseudo labels for inter-
pretable goal-conditioned interactive trajectory prediction,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2022, pp. 13 034–13 041.

[23] L. Sun, W. Zhan, D. Wang, and M. Tomizuka, “Interactive prediction
for multiple, heterogeneous traffic participants with multi-agent hybrid
dynamic bayesian network,” in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), 2019, pp. 1025–1031.

[24] Z.-H. Yin, L. Sun, L. Sun, M. Tomizuka, and W. Zhan, “Diverse
critical interaction generation for planning and planner evaluation,” in
2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2021, pp. 7036–7043.

https://arxiv.org/abs/2208.11036
https://github.com/eleurent/highway-env

	INTRODUCTION
	RELATED WORKS
	METHOD
	Framework
	Feasible Region Construction
	Trajectory Optimization

	EXPERIMENTAL RESULTS
	Open-Loop Tests
	Close-Loop Tests
	Ablation Study

	CONCLUSIONS
	References

