
RobotKube: Orchestrating Large-Scale Cooperative Multi-Robot
Systems with Kubernetes and ROS

Bastian Lampe *, Lennart Reiher *, Lukas Zanger *, Timo Woopen *,
Raphael van Kempen , and Lutz Eckstein

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract— Modern cyber-physical systems (CPS) such as
Cooperative Intelligent Transport Systems (C-ITS) are increas-
ingly defined by the software which operates these systems.
In practice, microservice architectures can be employed, which
may consist of containerized microservices running in a cluster
comprised of robots and supporting infrastructure. These
microservices need to be orchestrated dynamically according to
ever changing requirements posed at the system. Additionally,
these systems are embedded in DevOps processes aiming at
continually updating and upgrading both the capabilities of
CPS components and of the system as a whole. In this
paper, we present RobotKube, an approach to orchestrating
containerized microservices for large-scale cooperative multi-
robot CPS based on Kubernetes. We describe how to automate
the orchestration of software across a CPS, and include the
possibility to monitor and selectively store relevant accruing
data. In this context, we present two main components of
such a system: an event detector capable of, e.g., requesting
the deployment of additional applications, and an application
manager capable of automatically configuring the required
changes in the Kubernetes cluster. By combining the widely
adopted Kubernetes platform with the Robot Operating System
(ROS), we enable the use of standard tools and practices for
developing, deploying, scaling, and monitoring microservices
in C-ITS. We demonstrate and evaluate RobotKube in an
exemplary and reproducible use case that we make publicly
available at github.com/ika-rwth-aachen/robotkube.

I. INTRODUCTION

Cyber-physical systems (CPS), such as Cooperative Intel-
ligent Transport Systems (C-ITS), comprise a diverse range
of interconnected entities that can vary in number and type.
Next to automated vehicles, there may exist traffic control
systems, road side units, control centers, and (edge-) clouds
providing additional services. This leads to the question of
how the software for all these different systems can work
together efficiently and safely over time.

One popular approach to build such complex software
systems are microservice architectures [1]. The complete
system is broken up into many loosely coupled, fine-grained
services. They communicate through predefined protocols.
Services in this architecture are typically run in containers, a
type of virtualization allowing services to be run in isolation
of each other. A major challenge when using containers
in microservice architectures is the orchestration of said
containers. Orchestration involves the automated deploy-
ment, scaling, and management of containerized applications.

*These authors contributed equally to this work.
All authors are with the Institute for Automotive Engineer-
ing (ika), RWTH Aachen University, 52074 Aachen, Germany.
{firstname.lastname}@ika.rwth-aachen.de

Kubernetes is a popular open source system for this task used
by many large software companies worldwide. It already
comes with a lot of the capabilities that would also be needed
in a C-ITS employing a microservice architecture. [2]

Kubernetes lacks methods for orchestration that are
domain-specific, e.g., to C-ITS. Specific tasks that are needed
only at certain times, like deploying required applications, or
the recording of relevant data, must be defined either by C-
ITS administrators, or programmatically by C-ITS develop-
ers. The required tasks may depend on the specific content
of data exchanged in the Kubernetes cluster instead of on
metadata, e.g., the load of a server. RobotKube describes new
software components, which are themselves containerized
and can be orchestrated by Kubernetes, that extend the
regular capabilities of Kubernetes to those specific to robotic
systems in general and to C-ITS in particular.

We present an event detector, a software component based
on the Robot Operating System (ROS), that can take as input
any data provided by services in the cluster, analyze the
data based on analysis rules implemented by developers, and
formulate tasks based on the result of these analyses. Possible
tasks include deploying new applications, the reconfiguration
of existing applications, or the recording of a set of data
which was determined relevant for further analysis and
storage as part of a DevOps process.

In addition, we introduce an application manager acting as
the link between the event detector and the Kubernetes con-
trol plane. It translates requirements for specific applications
or configurations communicated by the event detector into a
specific workload for the Kubernetes cluster. Together with
the event detector and its operator plugin, the application
manager forms an operator application that automates the
management of the cluster based on occurring events.

We apply RobotKube in an exemplary use case where
a cloud-based operator application detects when two auto-
mated vehicles approach each other. It then deploys commu-
nication software allowing them to transmit additional sensor
data to the cloud. There, a dynamically deployed recording
application gathers corresponding sensor and location data
and saves them to a database. This use-case represents the
first step in a data-driven DevOps process allowing Collective
Learning [3]. The location data of one vehicle can serve as a
label in the sensor data set of the the other vehicle and vice
versa. Training data sets for supervised learning can hereby
be generated automatically without human labeling.

This use case is of course only one of many which are
possible with the approach described in this work.

ar
X

iv
:2

30
8.

07
05

3v
1 

 [
cs

.R
O

] 
 1

4 
A

ug
 2

02
3

https://orcid.org/0000-0002-4414-6947
https://orcid.org/0000-0002-7309-164X
https://orcid.org/0009-0005-0292-2660
https://orcid.org/0000-0002-7177-181X
https://orcid.org/0000-0001-5017-7494
https://github.com/ika-rwth-aachen/robotkube


In summary, our work makes these main contributions:
• Introduction of RobotKube, an approach to auto-

matically orchestrating containerized microservices for
large-scale cooperative multi-robot systems based on
Kubernetes and ROS.

• Presentation of two main components of RobotKube:
an event detector acting upon the occurrence of data
patterns, e.g., requesting the deployment of additional
applications; and an application manager capable of
automatically configuring required changes in the Ku-
bernetes cluster. Together, the two components act as
an automated Kubernetes operator application.

• Examination of RobotKube in an exemplary use case
involving the automated deployment of various software
components to multiple connected C-ITS nodes, and the
recording of data relevant to the use case.

• Publication of the experimental setup and involved
Docker images to make the exemplary use case repro-
ducible and allow other researchers to see the system
in action.

II. RELATED WORK

Our work heavily builds upon containerization, Kuber-
netes, and the Robot Operating System (ROS). For an
introduction to these tools, see [2], [4], [5], [6]. Our approach
combines advantages from each of these tools.

Containerization, the process of encapsulating applications
and their dependencies into isolated units, offers a range of
benefits for application management. It enables rapid de-
ployment and over-the-air updates. Compatibility issues are
reduced, and applications become portable across machines.
Components can be easily reused and shared with others.
Containers have a lightweight footprint and minimal over-
head, optimizing resource utilization. Maintenance is simpli-
fied as applications and dependencies are encapsulated. This
makes them suitable to container orchestration software [6].
Different tools for containerization exist. The authors in [7],
[8], [9] propose snaps for production robots because they
make available interfaces for accessing low-level hardware
and come with a robust update system. In our approach, we
choose Docker containers because of their popularity, their
easy integration into Kubernetes, and their versatility in the
development phase of our approach. It is conceivable to move
to a different containerization framework later.

Orchestration is ”the automated configuration, manage-
ment, and coordination of computer systems, applications,
and services” and ”helps to more easily manage complex
tasks and workflows” [10]. Kubernetes is one popular or-
chestration platform that brings several advantages to the
deployment and management of containerized applications.
It abstracts infrastructure complexities, ensuring portability
across different environments. It enables automatically ad-
justing resources based on workload demands, and supports
horizontal scaling. Kubernetes offers self-healing capabili-
ties, automatically restarting failed containers, and supports
rolling updates and rollbacks for seamless application up-
grades. It provides service discovery and load balancing

mechanisms for efficient traffic routing and distribution. Ku-
bernetes’ declarative configuration allows for reproducibility
and version control, reducing configuration drift. [2], [4].

The described capabilities make Kubernetes suitable to
large-scale robotic systems. Popular alternatives include
docker compose [11] and docker swarm [12]. In the context
of robotics, Kubernetes is employed for Industry 4.0 appli-
cations [13]. Examples in the context of C-ITS include [14],
[15], [16], [17]. The current trend towards software-defined
vehicles reinforces the importance of orchestration tools like
Kubernetes in C-ITS. Their use can reduce the time period
for the release of software updates [14], [18]. An important
driver of the need for orchestration software can also be
found in the increased connectedness between automated
vehicles and supporting infrastructure. Increased research
activity is found regarding the use of sensored infrastructure
and edge clouds for C-ITS. Sensored road side units can
play an important role in supporting automated vehicles in
their operation [19], e.g., by providing additional perception
data to mitigate challenges like occlusions and limited sensor
range [20]. Edge clouds or clouds can be used for function
offloading to make use of more powerful compute resources
outside of vehicles [21]. An orchestration system managing
C-ITS shall therefore encompass all interacting subsystems
including automated vehicles and supporting infrastructure.
While other research focuses on, e.g., real-time capabilities
of orchestration [13], and requires human operators [22], our
work describes an approach to automate cluster operations.
In contrast to other automated systems in which operators
are either only cloud-based [15], or vehicle-based [23],
RobotKube is in principle decentralized and agnostic to
whether operators are, e.g., based in the cloud, in sensored
road side units, or in automated vehicles.

Applications and Services for robotic systems are often
developed using common software frameworks and middle-
wares. For RobotKube, we choose ROS, a widely adopted set
of open source software libraries and tools for building robot
applications. It provides advantages for development through
its ecosystem of tools, libraries, and capabilities. Its global
community continuously enhances the software ecosystem.
ROS is widely used in research projects and production
robots worldwide. It supports various platforms, including
Linux, Windows, and microcontrollers. ROS is open source,
offering customization and integration flexibility [5].

Alternatives to ROS include YARP [24], EB Assist
ADTF [25], ASOA [26], and AUTOSAR Adaptive [27].
These come with different capabilities and objectives, but
can partly also be made compatible with ROS. There also
exist the products of Apex.AI [28] which build upon ROS.

Due to their extensive capabilities, a combination of our
chosen tools is already used in various contexts of robotic ap-
plications in general and C-ITS in particular. Based on their
characteristics, they are especially suited to be employed in
microservice or service-oriented architectures (SOA). Au-
tomotive SOAs that make use of these tools have been
proposed in various initiatives both in academia and in
industry [23], [26], [29], [30], [31], [32], [33].



Kubernetes Cluster

Recording ApplicationsOperator Applications

Recording Plugin
Event Detector

Operator Plugin
Event Detector C-ITS Applications

Application V&VApplication Registries Data-Driven Development

Databases
Application Manager

Kubernetes Control Plane

Initial Cluster Configuration

Fig. 1. The overall system architecture of the RobotKube approach contains its essential components and depicts the general orchestration and application
development process in a C-ITS. An initial configuration is used to deploy C-ITS applications. These include two types of special applications. Operator
applications can interact with the control plane to, e.g., deploy additional applications, which are made available in application registries. Recording
applications can selectively store data in databases. The stored data can be used for data-driven development of new applications, or for application
updates. All applications need to be verified and validated before they are made available in the application registries.

III. ROBOTKUBE

RobotKube is an approach to orchestrating containerized
ROS-based robotic applications in microservice architectures
using Kubernetes. We present and apply our approach in
the context of C-ITS, but also point to its applicability to
large-scale robotic systems in general. RobotKube describes
new software components in a novel architecture that enables
a highly automated operation of C-ITS, including dynamic
software deployments, data-driven development, and verifi-
cation and validation of applications.

Building on top of Kubernetes gives access to many
features relevant for the operation of a C-ITS. These include,
but are not limited to: fault tolerance through high availability
nodes, sophisticated rollout and rollback processes, self-
healing mechanisms, load balancing mechanisms, and on-
demand horizontal autoscaling. The incorporation of ROS
similarly enables access to and usage of a vast existing
ecosystem of open source software and tools for robotics
applications, including automated vehicles and C-ITS.

A. System Architecture

The overall system architecture of RobotKube is depicted
in Fig. 1. A manually defined initial cluster configuration in
the form of a set of C-ITS applications is deployed by the
Kubernetes control plane to all agents that are part of the
cluster and part of the C-ITS. Initially, the C-ITS adminis-
trators act as operators who define the cluster configuration
and the set of initial deployments.

• An application within the scope of RobotKube is a set of
one or several microservices with a particular purpose
within the C-ITS.

• An operator within the scope of RobotKube is a per-
son or software that manages application deployments,
life cycles, cluster configurations and additional cluster
management tasks within the C-ITS.

Applications are developed as part of a data-driven develop-
ment process. Before being deployed, each application and its
services must pass application V&V, i.e., the verification and
validation of their desired functioning. Applications that have
passed this stage are made available in application registries.

A core goal of RobotKube is to automate the cluster op-
eration through operator applications that can automatically
deploy, configure, and manage applications in the cluster.
The operator applications act on developer-defined events
in the cluster. Events are associated with occurences of
certain patterns in the data exchanged in the cluster, and are
detected by dedicated event detector components. Based on
the events, a second component, the application manager,
issues new deployments or reconfigurations. As an example,
an operator application may detect that a connected vehicle is
approaching an intersection and then automatically deploys
a supportive function onto a nearby sensored road-side unit.

The detection of developer-defined events is also rele-
vant for recording applications that enable on-demand data
recording to a database. Recorded data can in turn be used
for data-driven development of C-ITS applications, including
automated collective learning techniques [3].

Table I lists more key design principles of the RobotKube
approach as a whole as well as design principles specific
to operator applications in RobotKube. Note that the list of
design principles is neither exhaustive nor set in stone, but
acts a a guiding foundation for the presented approach and
its individual components. We plan to continually revisit and
refine the design principles in future work.

B. Event Detector

The event detector is an integral part both of operator
applications and of recording applications. Its main purpose
is to detect and act upon developer-defined events that are
associated with patterns in the data exchanged in the cluster.
An event detector is composed of three main subcomponents:

Buffer – All incoming data in the form of ROS messages
is buffered for a configurable amount of time. It is infeasible
and also undesirable to permanently store all accruing data,
but the detection of events may require access to a history
of data. The buffer is realized as a ring buffer covering
a configurable duration of the immediate past. The buffer
and the event detector in general are agnostic to specific
data types and therefore compatible with all kinds of data
exchanged in the cluster.



TABLE I
DESIGN PRINCIPLES FOR THE ROBOTKUBE APPROACH, INCLUDING SPECIFIC DESIGN PRINCIPLES REGARDING OPERATOR APPLICATIONS

Design Principle Example

Connected agents make at least some of their compute units
available as nodes to a Kubernetes cluster.

A C-ITS cluster consists of nodes in the cloud, on edge servers, in control centers,
in sensored road side units, and in automated vehicles.

An application is a set of one or several microservices with a
particular purpose.

An environment perception application may be composed of two separate microser-
vices for object detection and object tracking.

An operator is a person or software that manages application
deployments, life cycles, cluster configurations and more.

A cloud-based operator application detects a vehicle approaching an intersection and
deploys a perception application to a road-side unit to support the vehicle.

Different applications are managed by different decentralized
application-specific operators.

In addition to the above cloud-based operator application for deploying supportive
infrastructure functions, the deployment of a recording application is handled by
another, separate vehicle-based operator application.

Each microservice is packaged into its own container. Two microservices of an environment perception application, object detection and
object tracking, are separately packaged into their own containers.

Applications are in principle node agnostic. If one node is unavailable, an application may be deployed to a different node capable
of running the application.

Application updates are conducted by updating the individual
container images of an application.

The object detection microservice of an environment perception application is updated
independently of other containers of that application.

Operator applications may deploy other operator applications
forming operator application chains.

One cloud-based operator application deploys another vehicle-based operator applica-
tion to vehicles approaching an intersection. The vehicle-based operator application
detects uncertainty in order to eventually deploy an environment perception application
on the connected intersection infrastructure.

Operator applications select adequate applications and their
components from application registries.

The application manager of an operator application for environment perception
chooses adequate object detection and object tracking services based on requirements
defined in the task description received from the event detector, and based on
guarantees associated with applications in the application registries.

Operator applications support automatic conflict resolution. If there are no compute resources left in a vehicle, an operator application is able
to cancel or postpone deployments, or resolve the conflict by other means such as
offloading to a different connected agent.

Analysis – The data available in the ring buffer is periodi-
cally analyzed in order to detect events. Events are associated
with data patterns that are identified through an application-
specific, developer-defined analysis of the buffered data. In
order to support the detection of arbitrary data patterns,
the event detector provides a generic and easily extensible
framework for accessing the data buffer and for analyzing
the data with regard to occurring events.

Action Plugin – Having detected an event, action plugins
implement the resulting consequence. An operator plugin,
e.g., is used for requesting the deployment or reconfiguration
of applications. It forwards a corresponding task description
to an application manager. An event detector in combination
with an operator plugin and an application manager forms an
operator application. Similarly, an event detector in combi-
nation with a recording plugin forms a recording application.
Through its action plugin mechanism, the event detector
is designed to also cover use cases beyond the presented
operator and recording applications.

The event detector software component is implemented as
a high-performance C++ ROS node.

C. Application Manager

The application manager is an integral part of operator
applications. It receives a task description from an event
detector‘s operator plugin and translates it to a specific

Kubernetes workload definition, which is then transmitted
to the Kubernetes control plane.

The composition of requested applications from avail-
able microservices is handled by an application manager.
The corresponding event detector only formulates high-
level requirements. The application manager then identifies
suitable containerized services, configures and links them to
form the requested applications, which are then deployed
to appropriate nodes in the cluster. Within the context of
RobotKube, application managers are the preferred way to
interact with the Kubernetes control plane in the context of
launching and managing applications.

An application manager is not only capable of launching
new applications, but also of managing existing applications
it has launched. As part of the task description, application
managers can also be requested to reconfigure existing appli-
cations, or to shut down running applications. An application
manager is also responsible for deciding whether to issue
requested Kubernetes workloads in the first place. Task
descriptions transmitted to an application manager therefore
only represent an intent or a request, not an obligation. If
a requested deployment is not possible, it is the application
manager’s responsibility to resolve the conflict.

The application manager software component is imple-
mented as a Python ROS node invoking the Kubernetes
Python API to interact with the Kubernetes control plane.



IV. EXPERIMENTAL SETUP

We apply our approach in an exemplary use case with the
goal of demonstrating its main abilities, namely employing
an application-specific event detector for the detection of an
event to trigger the deployment of an additional application
in the cluster. In particular, this involves

• detecting an event in an event detector based on data
that is exchanged in the cluster;

• transmitting a task description message containing high-
level requirements regarding desired applications from
the event detector to an application manager via the
operator plugin;

• configuring the application deployments in an applica-
tion manager based on the received task description;

• deploying the requested applications in the cluster;
• and managing the running applications over time.
In our exemplary use case, we aim at automatically

deploying a recording application in certain situations en-
countered by automated vehicles with the goal to selectively
gather data in a cloud-based database. The individual vehi-
cles have insufficient information for the decision when to
send the desired data to the cloud for storage. A cloud-based
operator application shall therefore automatically trigger the
deployment of a cloud-based recording application plus the
required communication components. The data collected that
way would enable collective learning [3] methods. A detailed
use case description follows.

• N vehicles V0, . . . , VN follow their current routes and
are part of a C-ITS.

• M ≤ N vehicles V0, . . . , VM are equipped with lidar
sensors producing point clouds.

• All vehicles send their current location/pose at a fre-
quency of fp to a cloud server C, where an event de-
tector with operator plugin receives the data. In order to
save bandwidth, no lidar point clouds are sent initially.

• The cloud-based event detector with operator plugin
continually analyzes the vehicles’ poses in order to
detect when any two of the lidar-equipped vehicles
V0, . . . , VM are within a distance of dstart to each other.

• Once any two lidar-equipped vehicles Vi, Vj , i ̸= j, i ≤
M, j ≤ M are close enough to each other, the event
detector with operator plugin issues a request to launch
a recording application for recording the two vehicles’
poses and point clouds.

• A cloud-based application manager receives the request.
To realize the requested application, it starts communi-
cation modules and a recording application in the cloud.
The added communication modules transmit the point
clouds at a frequency of fpc from Vi and Vj to C.

• The event detector with recording plugin is configured
to store poses and point clouds from Vi and Vj in a
database without further analysis.

• Once vehicles Vi and Vj have veered away from each
other by more than a distance of dstop, the deployed
recording application is shut down, including the point
cloud transmission.

The concrete configuration of experimental parameters is
found in Table II. The involved cluster components and data
flows are illustrated in Fig. 2. Individual software compo-
nents are deployed as Docker containers in Kubernetes pods,
running on Kubernetes nodes. Most software components
are ROS-based. We simulate live vehicle data by playing
back ROS bags recorded in simulation. Within the scope of
one Kubernetes node, data is exchanged in the form of ROS
messages. For the data transmission from vehicles to cloud,
a brokered communication model using MQTT is chosen.
Dedicated mqtt client ROS nodes bridge ROS messages to
MQTT and vice-versa [34]. Note that other communication
models could be employed and that the communication laten-
cies within the single-host KinD cluster do not realistically
model real-world conditions. Recording applications store
ROS message data in a MongoDB database.

In order to simulate and test the presented use case,
we set up a Kubernetes cluster using Kubernetes-in-
Docker (KinD) [35]. This setup allows to run a multi-
node Kubernetes cluster in a controlled environment on a
single machine, which also enhances reproducibility for other
researchers.

V. EVALUATION

The previously described experimental setup allows us
to test and evaluate the applicability of our approach for
complex C-ITS use cases such as the one at hand. The setup
mainly serves the purpose of demonstrating RobotKube’s
capabilities and giving an idea of how the approach translates
into practice.

Fig. 2 illustrates the quickly growing complexity of seem-
ingly simple use cases for C-ITS and large-scale CPS in gen-
eral. In a distributed microservice architecture, the number of
software components quickly outgrows the number of con-
nected hardware components. Combined with the dynamic
nature of C-ITS, an efficient and manageable orchestration
approach becomes a key enabler.

RobotKube’s core orchestration component, i.e., operator
applications, allow a Kubernetes-orchestrated cluster to dy-
namically act upon data that is currently being exchanged in
the cluster. Using event detectors and application managers
as described by RobotKube, we can successfully demonstrate
a fully-automated event-based distributed data collection use
case in a C-ITS. Since the experimental setup is made open
source as part of this work, the exemplary use case and the
accompanying cluster behavior can also be reproduced and
studied by other researchers.

TABLE II
CONFIGURATION OF EXPERIMENTAL PARAMETERS

Parameter Description Value

N Number of vehicles 15
M Number of lidar-equipped vehicles 2
fp Pose frequency 100 Hz
fpc Point cloud frequency 10 Hz

dstart Trigger distance between Vi, Vj 400 m
dstop Stopping distance between Vi, Vj 500 m



𝑉Nrosbag play𝑉M+1rosbag play
… …

𝐶

𝑉Mrosbag play

MQTT Client

Initial Deployment Deployed by App. OperatorROS Container Other ContainerKubernetes NodeKubernetes Cluster
Pose

Kubernetes

Point Cloud

Task Description

𝑉0rosbag play

Application Manager

Event Detector 

with Operator Plugin

MQTT Client

MQTT Client

MQTT Client

MQTT Client MQTT Client

Database

Event Detector 

with Recording Plugin

Kubernetes Control Plane

MQTT Broker

MQTT Client MQTT Client

MQTT Client MQTT ClientMQTT Client

MQTT Client

Fig. 2. Software components involved in experimental setup: vehicle poses (orange lines) are sent from vehicles V0, . . . , VN to the cloud C using MQTT;
an event detector with operator plugin triggers a task description (blue line), when two lidar-equipped vehicles are close to each other; the task description,
asking to record pose and point cloud data of the two involved vehicles V0, VM , is received and processed by an application manager; the application
manager transmits a workload request to the Kubernetes Control Plane in order to launch new communication modules and a recording application (dashed
lines and blocks); poses and point clouds are stored in a database.

As a first quantitative evaluation of the presented approach,
we describe different involved latencies. It is important to
note that the results depend on the individual hardware setup
and use case. Therefore, their main purpose is to give a
general idea of the involved latencies, but they cannot be
generalized easily. Thus, only approximate values are given
here. Nonetheless, considering the involved latencies remains
crucial in the development of safe C-ITS.

1) Communication: Communication latencies play a large
role in all distributed systems, especially if wireless
communication is involved as required in C-ITS. Con-
crete latencies depend on various factors such as the
used communication technology, e.g., 5G or ITS-G5.
Note that communication latencies are largely ne-
glected in our experimental use case, as the distributed
cluster of nodes is only virtualized.

2) Event detection: The developer-defined data analysis
for detecting events naturally depends on the com-
plexity of the data analysis. Here, detecting that two
vehicles are close is a matter of a few milliseconds.

3) Translation to Kubernetes workload: The application
manager translates the event detector’s task descrip-
tion into a matching Kubernetes workload definition.
This step involves the composition of a requested
application from a list of available microservices, the
configuration of to-be-launched components, validity
checks, and possibly additional information requests
via the control plane. Overall, latencies in the range of
one hundred milliseconds can be expected.

4) Cluster reconciliation: Having received a workload
definition from the application manager, the Kuber-
netes control plane induces the desired cluster state
through a reconciliation process. At this point, new
applications in the form of Kubernetes pods and po-
tentially other Kubernetes components are launched,
reconfigured, or shut down. In our experimental use
case, the reconciliation phase is responsible for the
majority of the total latency: the four new MQTT
clients and the event detector with recording plugin
take approximately five seconds to assume operation.

5) Data storage: A recording application stores data to a
database – in our use case, without further analysis
or event detection. The data storage latency natu-
rally scales with the amount of data to store. Given
sufficiently large data buffers, it can also run asyn-
chronously from the other processes. In our use case,
ten seconds worth of pose and point cloud data from
the two involved vehicles are written to the database
in approximately half a second.

The largest share of latency observed between event
and data storage is attributed to the cluster reconciliation.
Launching containers in the cluster comes with an overhead
in the range of several seconds. While this latency is still
acceptable for many C-ITS use cases, it poses constraints
on the kinds of applications that can be realized in a C-
ITS operated in this way. More advanced techniques like
pre-launching idle containers are expected to open up the
approach to more use cases over time.



VI. CONCLUSION

The presented approach aims to automate the orchestration
of microservices in multi-robot CPS such as C-ITS built upon
Kubernetes and ROS. For this purpose, we describe design
principles, provide necessary new software components, and
place them in an overall C-ITS architecture connecting dy-
namically deployed applications, automated data-driven de-
velopment, and the verification and validation of applications
running in a C-ITS. Two essential types of applications are
explained in this paper: operator applications and recording
applications.

To enable these applications, the two software components
event detector and application manager are developed. With
the event detector, developer-defined events in a Kubernetes
cluster can be detected, and high-level requirements regard-
ing new applications are defined. The application manager
may then deploy or reconfigure specific applications in the
cluster based on these requirements and available resources.
The overall approach is demonstrated in an exemplary use
case. Important latencies like the startup time of an automat-
ically deployed application are examined. The results under-
line that deployments of new applications or reconfiguration
need to take orchestration latencies into account.

In general, our approach benefits from the vast capabilities
of Kubernetes and ROS that reach far beyond those tackled
in this paper. Here, we want to lay the foundation to apply the
presented approach to a wide range of use cases in robotics
in general and C-ITS in particular. For this purpose, and
to make our research reproducible, we publish the software,
data, and Kubernetes configurations used in our experiments.

VII. ACKNOWLEDGEMENTS

This research is accomplished within the research projects
”AUTOtech.agil” (FKZ 1IS22088A), ”UNICARagil”
(FKZ 16EMO0284K), and ”6GEM” (FKZ 16KISK036K).
We acknowledge the financial support by the Federal
Ministry of Education and Research of Germany (BMBF).

REFERENCES

[1] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microser-
vice architecture: Aligning principles, practices, and culture. O’Reilly
Media, 2016.

[2] Kubernetes. [Online]. Available: kubernetes.io
[3] B. Lampe, L. Reiher, T. Woopen, and L. Eckstein, “Cloud intelli-

gence and collective learning for automated and connected driving,”
ATZelectronics worldwide, 2022.

[4] B. Burns, J. Beda, and K. Hightower, Kubernetes: Up and running.
O’Reilly Media, 2019.

[5] Robot Operating System (ROS). [Online]. Available: ros.org
[6] S. P. Kane and K. Matthias, Docker - up & running. O’Reilly Media,

2023.
[7] R. Davies. (2020) Keep Enterprise ROS Robots Up-to-Date

with Snaps. [Online]. Available: ubuntu.com/blog/keep-enterprise-
ros-robots-up-to-date-with-snaps

[8] G. A. Noury. (2023) ROS Docker; 6 reasons why they are not a
good fit. [Online]. Available: ubuntu.com/blog/ros-docker

[9] G. Barbieri. (2023) Snapping out of Docker: a robotics guide for
migrating Docker to Snap. [Online]. Available: ubuntu.com/blog/
keep-enterprise-ros-robots-up-to-date-with-snaps

[10] Red Hat, Inc. What is orchestration? [Online]. Available: redhat.com/
en/topics/automation/what-is-orchestration

[11] Docker, Inc. Docker compose overview. [Online]. Available:
docs.docker.com/compose

[12] ——. Docker swarm mode overview. [Online]. Available:
docs.docker.com/engine/swarm

[13] M. Barletta, M. Cinque, L. D. Simone, and R. D. Corte, “Introducing
k4.0s: a model for mixed-criticality container orchestration in industry
4.0,” in IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, 2022.

[14] Microsoft, “Mercedes-Benz R&D creates ’container-driven
cars’ powered by Microsoft Azure,” 2020. [Online]. Avail-
able: customers.microsoft.com/en-us/story/784791-mercedes-benz-r-
and-d-creates-container-driven-cars-powered-by-microsoft-azure

[15] N. Slamnik-Kriještorac, G. M. Yilma, F. Zarrar Yousaf, M. Liebsch,
and J. M. Marquez-Barja, “Multi-domain mec orchestration platform
for enhanced back situation awareness,” in IEEE Conference on
Computer Communications Workshops, 2021.

[16] S. Aldegheri, N. Bombieri, F. Fummi, S. Girardi, R. Muradore,
and N. Piccinelli, “Late Breaking Results: Enabling Containerized
Computing and Orchestration of ROS-based Robotic SW Applications
on Cloud-Server-Edge Architectures,” ACM/IEEE Design Automation
Conference, 2020.

[17] J. Kunkel et al., “DECICE: Device-Edge-Cloud Intelligent
Collaboration Framework,” 2023. [Online]. Available: arxiv.org/
abs/2305.02697

[18] A. W. Malik, A. U. Rahman, A. Ahmad, and M. M. D. Santos, “Over-
the-air software-defined vehicle updates using federated fog environ-
ment,” IEEE Transactions on Network and Service Management, 2022.

[19] L. Klöker, A. Klöker, F. Thomsen, A. Erraji, and L. Eckstein, “Traffic
Detection Using Modular Infrastructure Sensors as a Data Basis for
Highly Automated and Connected Driving,” in Aachen Colloquium
Sustainable Mobility, 2020.

[20] X. Duan, H. Jiang, D. Tian, T. Zou, J. Zhou, and Y. Cao, “V2I based
environment perception for autonomous vehicles at intersections,”
China Communications, 2021.

[21] P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder, and A. Mouzaki-
tis, “A Taxonomy and Survey of Edge Cloud Computing for Intelligent
Transportation Systems and Connected Vehicles,” IEEE Transactions
on Intelligent Transportation Systems, 2022.

[22] J. Ichnowski et al., “Fogros2: An adaptive platform for cloud and fog
robotics using ros 2,” 2023.

[23] A. Kampmann et al., “A dynamic service-oriented software architec-
ture for highly automated vehicles,” in IEEE Intelligent Transportation
Systems Conference (ITSC), 2019.

[24] Robotology. Yarp. [Online]. Available: github.com/robotology/yarp
[25] Elektrobit. Eb assist adtf. [Online]. Available: elektrobit.com/products/

automated-driving/eb-assist/adtf
[26] A. Kampmann, A. Mokhtarian, S. Kowalewski, and B. Alrifaee,

“ASOA - A Dynamic Software Architecture for Software-defined
Vehicles,” in Aachen Colloquium Sustainable Mobility, 2022.

[27] AUTOSAR. Adaptive platform. [Online]. Available: autosar.org/
standards/adaptive-platform

[28] J. Becker, “Betriebssystem für softwaredefinierte fahrzeuge,”
ATZelektronik, vol. 17, no. 5, pp. 40–45, May 2022. [Online].
Available: doi.org/10.1007/s35658-022-0755-7

[29] S. Furst and M. Bechter, “AUTOSAR for Connected and Autonomous
Vehicles: The AUTOSAR Adaptive Platform,” in IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks Workshop,
2016.

[30] T. Woopen et al., “UNICARagil - Disruptive Modular Architectures
for Agile, Automated Vehicle Concepts,” Aachen Colloquium Auto-
mobile and Engine Technology, 2018.

[31] M. Rumez, D. Grimm, R. Kriesten, and E. Sax, “An Overview
of Automotive Service-Oriented Architectures and Implications for
Security Countermeasures,” IEEE Access, 2020.

[32] M. Pöhnl, A. Tamisier, and T. Blass, “A middleware journey from
microcontrollers to microprocessors,” 2022.

[33] Scalable Open Architecture for Embedded Edge (SOAFEE). [Online].
Available: soafee.io

[34] L. Reiher, B. Lampe, T. Woopen, R. Van Kempen, T. Beemelmanns,
and L. Eckstein, “Enabling Connectivity for Automated Mobility:
A Novel MQTT-based Interface Evaluated in a 5G Case Study on
Edge-Cloud Lidar Object Detection,” in International Conference on
Electrical, Computer, Communications and Mechatronics Engineering
(ICECCME), 2022.

[35] Kubernetes in Docker (KinD). [Online]. Available: kind.sigs.k8s.io

kubernetes.io
ros.org
ubuntu.com/blog/keep-enterprise-ros-robots-up-to-date-with-snaps
ubuntu.com/blog/keep-enterprise-ros-robots-up-to-date-with-snaps
ubuntu.com/blog/ros-docker
ubuntu.com/blog/keep-enterprise-ros-robots-up-to-date-with-snaps
ubuntu.com/blog/keep-enterprise-ros-robots-up-to-date-with-snaps
redhat.com/en/topics/automation/what-is-orchestration
redhat.com/en/topics/automation/what-is-orchestration
docs.docker.com/compose
docs.docker.com/engine/swarm
customers.microsoft.com/en-us/story/784791-mercedes-benz-r-and-d-creates-container-driven-cars-powered-by-microsoft-azure
customers.microsoft.com/en-us/story/784791-mercedes-benz-r-and-d-creates-container-driven-cars-powered-by-microsoft-azure
arxiv.org/abs/2305.02697
arxiv.org/abs/2305.02697
github.com/robotology/yarp
elektrobit.com/products/automated-driving/eb-assist/adtf
elektrobit.com/products/automated-driving/eb-assist/adtf
autosar.org/standards/adaptive-platform
autosar.org/standards/adaptive-platform
doi.org/10.1007/s35658-022-0755-7
soafee.io
kind.sigs.k8s.io

	Introduction
	Related Work
	RobotKube
	System Architecture
	Event Detector
	Application Manager

	Experimental Setup
	Evaluation
	Conclusion
	Acknowledgements
	References

