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Abstract

Pedestrian intention prediction is crucial for autonomous driving. In particular, knowing if pedestrians are going to cross in
front of the ego-vehicle is core to performing safe and comfortable maneuvers. Creating accurate and fast models that predict
such intentions from sequential images is challenging. A factor contributing to this is the lack of datasets with diverse crossing
and non-crossing (C/NC) scenarios. We address this scarceness by introducing a framework, named ARCANE, which allows
programmatically generating synthetic datasets consisting of C/NC video clip samples. As an example, we use ARCANE
to generate a large and diverse dataset named PedSynth. We will show how PedSynth complements widely used real-world
datasets such as JAAD and PIE, so enabling more accurate models for C/NC prediction. Considering the onboard deployment of
C/NC prediction models, we also propose a deep model named PedGNN, which is fast and has a very low memory footprint.
PedGNN is based on a GNN-GRU architecture that takes a sequence of pedestrian skeletons as input to predict crossing
intentions. ARCANE, PedSynth, and PedGNN will be publicly released1.

I. INTRODUCTION

As evidenced in an early Google self-driving car report [24], the 10% of their self-driving malfunctions on streets were
due to incorrect behavior predictions of other road users, including pedestrians. While there have been significant efforts
to improve the accuracy of pedestrian intention prediction [15], [3], [16], [23], [18], [36], [5], there is still ample room
for improvement. Currently, two datasets, JAAD [28] and PIE [27], are being used to benchmark such prediction models.
In these datasets, the core ground truth (GT) consists of labeling if pedestrians are crossing or are going to cross in front
of the ego vehicle. As for other onboard perception tasks (e.g., object detection and tracking [4], semantic segmentation
[39], monocular depth estimation [17]), synthetic datasets have been proposed to train C/NC prediction models [1], [2]. We
propose to go beyond these datasets by introducing a framework, named ARCANE2, where traffic scenarios of pedestrian
behavior can be programmatically defined. This opens the possibility of introducing underrepresented vehicle-to-pedestrian
traffic situations. For being aligned with the research community, ARCANE has been developed on top of the CARLA
simulator [11]. As an example, we have used ARCANE to generate PedSynth which is a large and diverse synthetic dataset
with pedestrian C/NC labels. Note that this type of labeling is not provided by the CARLA simulator, but it is generated
by ARCANE. PedSynth consists of 947 video clips of pedestrian C/NC situations. Each video clip runs ∼ 20s at 30fps,
so resulting in approximately 5 H and 26 min of labeled videos. Figure 1 shows several frames of two video clips from
PedSynth. On the other hand, users can generate their own datasets by working with ARCANE.

Focusing on the demanding hardware requirements for onboard perception, we also propose a lightweight model for C/NC
prediction, named PedGNN. This model has a 27KB GPU memory footprint and runs on ∼ 0.6ms on an NVIDIA GTX 1080
GPU. Compared to a state-of-the-art C/NC prediction model, here named PedGraph+ [5], PedGNN is one order of magnitude
smaller and one order of magnitude faster. Even though, PedGNN outperforms PedGraph+ in terms of the class-balanced
F1-score classification metric. PedGNN is based on a GNN-GRU architecture that takes a sequence of pedestrian skeletons
as input to predict crossing intentions (see Fig. 2). Note that, so far, the spatiotemporal analysis of pedestrian skeletons has
been shown as one of the most relevant sources of information to predict pedestrian crossing intentions [15], [16], [2], [5].

Using PedGNN and PedSynth to complement the training sets of both JAAD and PIE, allows us to outperform pedestrian
C/NC prediction in the respective testing sets.

II. RELATED WORK

A. Pedestrian intention prediction

Pioneering approaches cast C/NC prediction as a trajectory prediction problem, which requires the explicit estimation of
the future location, speed, and acceleration of the observed pedestrians [33], [20]. In practice, the corresponding dynamic
models were difficult to adjust and require to extract the silhouette of the pedestrians, dense depth, and dense optical flow
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Maciej acknowledges the funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant

agreement No. 801342 (Tecniospring INDUSTRY) and the Government of Catalonia’s Agency for Business Competitiveness (ACCIÓ). This allowed to
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Fig. 1: Summary of two video clips from PedSynth. Top rows: a pedestrian crosses the road perpendicularly to the ego-
vehicle moving direction. Bottom rows: a pedestrian change the intention of crossing the road at mid-lane. In both examples,
the pedestrians enter the road at locations not enabled for crossing.

with ego-motion compensation. On the other hand, Schneemann and Heinemann [32] concluded that pedestrians’ posture
and body movement are essential to take faster C/NC predictions. Accordingly, methods relying on the temporal evolution
of pedestrian skeletons gained popularity, especially due to the increasing accuracy of the deep models adjusting them in 2D
images, e.g., see [8] (becoming OpenPose [7]) and [14] (becoming AlphaPose [13]). For instance, a sequence of pedestrian
skeletons was used as input to classical lightweight and fast machine learning models such as a random forest C/NC classifier
[15] and as input to more resources-consuming but accurate deep models such as a Graph Convolutional Network (GNN)
[6]. Skeleton extraction and C/NC prediction have been also tackled as a joint multi-task problem [29].

Semantic and contextual information is also considered in different works. In [23], it is proposed a deep model based
on recurrent neural networks (RNNs) and attention modules, which takes as input the ego-vehicle speed, the bounding box
(BB), skeleton, and local context (RGB crops) of pedestrians. In [40], RNNs and attention modules are also used to train
two intermediate deep architectures whose output is fused (mid/late fusion) to provide C/NC predictions. One architecture
considers the ego-vehicle speed, the BB, and the skeleton of pedestrians. The other considers local and global (scene
semantic segmentation) contexts. Finally, [6] became a state-of-the-art model [5], here named PedGraph+, by incorporating
the ego-vehicle speed and pedestrian local context to the initial skeleton-based GNN architecture.

In this paper: As these C/NC prediction approaches, we also rely on an off-the-self model to obtain the pedestrian
skeletons that PedGNN requires as input. Since these skeletons are structured as graphs, we think that GNNs are natural
architectures to work with them, i.e., as done by PedGraph+. However, we want PedGNN to be more lightweight and faster.
Thus, we use a different GNN architecture than PedGraph+.



Fig. 2: To perform C/NC predictions PedGNN processes sequences of pedestrian skeletons. To process onboard sequences
while driving, we use a temporal sliding window of a 1-frame step. PedGNN consists of a graph convolutional gated recurrent
unit (GConvGRU), followed by a block of three (ReLU + Fully connected) layers, and a final Softmax. Synthetic datasets
with C/NC examples can be used for training PedGNN. For instance, in this paper, we use PedSynth, a synthetic dataset
that we have generated using ARCANE, a framework that we introduce in this paper too (see Fig. 3).

B. Synthetic datasets focusing on C/NC prediction

As with other vision-based tasks, C/NC prediction research started with relatively small and non-naturalistic datasets [33],
[15]. Fortunately, larger and naturalistic datasets such as JAAD [28] and PIE [27] appeared progressively, so helping to
accelerate this research. It was also a matter of time to use synthetic data to support C/NC prediction research. In fact,
onboard pedestrian detection was one of the first tasks for which a model was trained on synthetic images to perform later
in real-world images, this was done more than a decade ago [25]. Since then, there have been many works leveraging
synthetic data to support the training of perception models or performing simulations [31], [30], [39], [4], [11], [34]; being
synth-to-real domain adaptation a core ingredient to encourage the use of synthetic data [37], [10].

Focusing on pedestrians, synthetic data has been mainly generated and used for the tasks of detection and tracking either
onboard or from static infrastructure locations [19], [12], [9], [21], [35]; where the required GT for each pedestrian consists
of a 2D/3D BB, pixel-level segmentation and depth, an ID, and, eventually, a body skeleton. In addition to this kind of
GT, for collecting samples to develop C/NC prediction models we must control pedestrian behavior in the simulator, e.g.,
to force C/NC situations as we wish, and we must label each frame accordingly as in Figure 1. Recent attempts to do so
[1], [2] rely on the CARLA simulator [11]. In [1], the CP2A dataset was introduced with 220K video clips with per-frame
C/NC labels, where 25% of the clips contain crossing (c) examples. In [2], the Virtual-Pedcross-4667 dataset was introduced
with 4,667 video clips specially prepared to cover a variety of weather and lighting conditions and per-frame C/NC labels,
where 61% of the clips contain crossing (c) examples. On the other hand, these datasets lack some corner cases like the
one shown as the bottom example in Figure 1. Overall, the experiments provided in [1], [2] encourage the use of synthetic
data to train C/NC models.

In this paper: We contribute to the use of synthetic data to develop C/NC prediction models. As [1], [2] we rely on the
CARLA simulator. However, rather than only providing a specific synthetic dataset, we introduce ARCANE, a framework
prepared to programmatically generate synthetic datasets of pedestrian C/NC videos. As an example, we have used ARCANE
to generate PedSynth, which consists of 947 video clips recorded under different weather and lighting conditions over 400
locations in CARLA cities, with ∼ 398K frames with C/NC labels. Moreover, using PedGNN, we show that PedSynth is a
good complement for the training sets of both JAAD and PIE, so boosting C/NC prediction performance in the respective
testing sets.

III. METHODS

Figure 2 summarizes the role of the main contributions of this paper: ARCANE, PedSynth, and PedGNN, which we
present in the following subsections.

A. The ARCANE framework

ARCANE framework is built on the top of CARLA simulator. It enables the generation of different types of video clips
through the parameterization of the distribution of pedestrian models, pedestrian velocity, and onboard camera settings. It is



Fig. 3: Block diagram of ARCANE dataset generator.

Feature JAAD PIE PedSynth

Video clips with C/NC labels 323 55 947
Video clips length (s) ∼ 5− 15 ∼ 600 ∼ 20
Frames per second (fps) 30 30 30
Frame resolution (pix) 1920×1080 1920×1080 1600×600
Frames with C/NC labels ∼ 75K ∼ 293K ∼ 398K
Semantic segmentation no no yes
Pedestrian skeleton no no yes
Weather variability yes no yes

TABLE I: Features of the datasets used in this paper.

possible to create scenarios in a single Python file, which can establish the trajectories of pedestrians in the scene. ARCANE
also contains a series of mechanisms that allow for the filtering of not useful videos (e.g., when a pedestrian is not visible).
ARCANE is structured around five primary modules, as shown in Fig. 3.

Generator: This module manages the simultaneous execution of multiple batch generator objects. It oversees the
randomization of the data generation process and finalizes the process once completed. The module maintains a count
of the number of generated videos, ensuring the target quantity is achieved. In the event of crashes, the module has a
predefined number of retry attempts to prevent endless generations.

Batch Generator: This module spawns pedestrians in a city, positions cameras, and regulates the data generation process.
An integral part of its role involves verifying the presence of pedestrians in the generated videos. This is done via semantic
segmentation checks and skeleton existence verification. It supervises the C/NC labeling process too, e.g., marking pedestrians
as crossing (C) if they are entering a driving area. These tasks are fulfilled by interacting with Karma.

Karma: This module acts as a facade for the CARLA API. It automates the process of creating the virtual environment
in CARLA, pedestrian spawning, and other tasks, by relying on CARLA-based scenario runner functionalities.

CARLA Engine: This module serves as an instance of the CARLA simulator, which is supplemented with extra routines
to ensure its operation within a Docker container during the data generation phase. The module is equipped to restart the
container in case of any simulation crashes.

Based on these modules, ARCANE allows for both simple and advanced usage. Advanced usage refers to the possibility of
programmatically defining dynamic traffic scenarios. For instance, leveraging CARLA cities it is possible to write a Python
code to choreograph the behavior of pedestrians in these towns, so forcing situations interesting for C/NC prediction. This is
what we have done for generating the PedSynth dataset, as illustrated in Fig. 3. Given one of such user-defined Python files
to generate traffic scenarios, it is possible to generate variations by generic parameters (i.e., scenario agnostic) which allow
controlling the types of pedestrians to be included, their speed, the pedestrian density, etc. These parameters are included in
a configuration file, named config.yaml in Fig. 3. Therefore, this configuration file enables simple usage provided we
are satisfied with the traffic scenarios in place.

Overall, the development of ARCANE took approximately half a year. The code repository includes 3,267 lines of Python
code in 47 files, supplemented by a multitude of additional files of other formats.



Fig. 4: Pedestrian skeleton as expected by PedGNN. We consider 19 joints connected as an undirected graph.

B. The PedSynth dataset

We have written a Python code, named PedSynth Scenarios in Fig. 3, which is consumed in ARCANE to generate
video clips with C/NC labels according to the settings provided through the config.yaml file. With this information,
ARCANE has generated the PedSynth dataset. It covers ∼ 400 locations from different CARLA cities, thus, including
different city styles and road lanes. Varying pedestrians and environmental conditions, we have generated 947 video clips
with C/NC labels, resulting in a total of ∼ 398K frames with C/NC labels. Table I summarizes the main features of PedSynth
compared to the real-world datasets JAAD and PIE. We can see how PedSynth contains ∼ 100K more frames with C/NC
labels than PIE and more than ∼ 300K compared to JAAD. Note that, as in real-world datasets, PedSynth’s videos include
frames with no pedestrians, where C/NC prediction models should not rise false warnings. Beyond C/NC labels, we can also
leverage GT already present in the CARLA simulator itself, such as pixel-level class semantics (semantic segmentation),
pedestrian skeletons, etc. We provide more detailed information about ARCANE and PedSynth in the technical report [38].

C. PedGNN model

As we have mentioned in Section II, the temporal evolution of pedestrian pose is considered core information to determine
C/NC intentions. Today, there are robust deep models able to provide human-body skeletons from 2D images [7], [13]. Even
by using hand-crafted features and traditional machine learning models, the temporal evolution of 2D-fitted pedestrian
skeletons was shown to be effective to determine C/NC intentions [15]. Therefore, as per the state-of-the-art literature, for
our C/NC prediction model, we also assume that a sequence of 2D-fitted pedestrian skeletons is used as input to determine
C/NC intentions. Figure 4 shows the joints we consider and their connections. They cover the head, arms, trunk, and legs.
The poses of hands and feet are not considered since they cannot be clearly perceived by an onboard camera, and most
likely they are irrelevant for determining C/NC intentions. To process sequences of images in a continuous manner, we use
a temporal sliding window approach with a frame step to be adjusted experimentally according to the frame rate of the
onboard camera (e.g., we use a 1-frame step for cameras working at 30fps).

Since pedestrian skeletons can be represented as undirected graphs, natural deep architectures to process them are GNNs
(graph neural networks). In fact, since, for each pedestrian, we work with a sequence of skeletons, a graph convolutional
gated recurrent unit (GConvGRU) is a very convenient model for C/NC prediction. Therefore, we adopt it by using the
implementation in the PyTorch Geometric (PyG) library3. The output of the GConvGRU is flattened and processed by three
consecutive blocks of (ReLU + FC) layers, which feed Softmax to obtain the C/NC prediction (see Fig. 2).

As input information at a graph node, we use the (xj , yj) coordinates of the joint j associated with the node and its fitting
confidence cj as provided by the skeleton fitting model in use. As is recommended for GNNs [22] and for skeleton-based

3https://github.com/pyg-team/pytorch_geometric

https://github.com/pyg-team/pytorch_geometric


Int. JAAD PIE PedSynth
Label Train Val. Test Train Val. Test Train Val. Test

#C 39.7K 6.3K 32.8K 116.2K 18.1K 130.9K 155.1K 50.4K 50.5K
#NC 7.9K 1.5K 8.4K 110.7K 22.1K 76.8K 82.3K 29.9K 29.5K

TABLE II: Let’s a sample be a particular pedestrian completing a C/NC sequence. Thus, different samples can overlap in
the same frame. Let NS

F be the number of labeled frames of the C/NC sequence of sample S. Let NS be the number of
samples in a particular subset of videos. For each dataset and split subset, this table reports #l =

∑NS

s=1

∑Ns
F

f=1 gt(s, f, l),
where l ∈ {C, NC} is the label, and gt(s, f, l) = 1 if l matches the C/NC GT associated to the pedestrian sample s at frame
f , and gt(s, f, l) = 0 otherwise.

C/NC prediction [15], (xj , yj) are normalized at each frame to the range [0, 1]. Thus, we work with normalized 2D coordinates
(x̂j , ŷj) which add invariance to ego-vehicle to pedestrian distance variations. Overall, the input to PedGNN has dimensions
(NF ,19,3), where NF is the number of frames used to perform C/NC predictions, which is determined experimentally during
the training of PedGNN. Obviously, the 19 comes from the number of joints, and 3 from the information per joint, i.e.,
(x̂j , ŷj , cj).

Finally, we remark that we focus on having a lightweight and fast C/NC prediction model. PedGNN shows a memory
footprint of 27KB and an inference time of ∼ 0.6ms on an NVIDIA GTX 1080 GPU. As we will see in Section IV, this
is one order of magnitude of improvement over other state-of-the-art methods such as [5].

IV. EXPERIMENTAL RESULTS

A. Datasets, metrics, frameworks, pose estimation

For our experiments, as real-world datasets we use the de-facto standards for C/NC prediction, i.e., JAAD [28] and PIE
[27]. We use JAAD all version. As a synthetic dataset, we use4 our PedSynth. Table I summarizes their main features. For
JAAD and PIE datasets we also use their standard Train/Val./Test split. For PedSynth we performed a random split and
fix it for all the experiments. Specifically, ∼ 80% of PedSynth is allocated for training, ∼ 10% for validation, and another
∼ 10% for testing. Table II provides information on the corresponding splits in terms of C/NC labeling.

To report our results, we apply the metrics used in C/NC prediction literature, i.e., standard Accuracy, Precision, Recall,
and F1-score. For training models and running inferences, we use PyTorch. Since PedGNN is based on pedestrian skeletons
adjusted on 2D images, we use the state-of-the-art deep model named AlphaPose [13] as an off-the-shelf method. AlphaPose
does not return the 19 joints we use for PedGNN. Compared to Fig. 4, AlphaPose does not provide the Neck and CHip
joints. To compute the Neck coordinates we average LShoulder and RShoulder coordinates. Analogously, to compute the
CHip coordinates we average LHip and RHip.

B. Training protocol

As the training optimizer, we use AdamW with binary cross-entropy loss and default parameters except for the learning
rate, lr. We perform training runs for a maximum number of ME epochs. We also apply a 50% dropout. In this optimization
process, a training sample consists of a sequence of skeletons from the same pedestrian. In other words, for C/NC pedestrian
prediction, we consider NF consecutive frames. We use a training batch size of 500 samples. Since skeleton information
has a really low memory footprint, this batch size fits well in a single 24GB memory GPU. Since some experiments rely
on training images from different datasets, we utilized PyTorch’s ConcatDataset and WeightedRandomSampler functions to
ensure equal dataset sampling per batch.

To train a C/NC prediction model, we test different values for NF and lr. Regarding NF , we consider values in the range
[4, . . . , 32] with step=2. Since all datasets were recorded at 30fps (Table I), this is equivalent to considering a temporal
window from ∼ 133ms to ∼ 1067ms. Regarding lr, we consider values in {0.001, 0.005, 0.0002, 0.0005}. While training
a model, we assess its F1-score at the end of each epoch with the help of the validation set associated with the targeted
training set. We have set ME = 100. To apply the C/NC prediction models we use a temporal sliding window with a step
of 1 frame. Across the considered NF and lr values and epochs, we take as the final model the best-performing one.

Depending on the size of the training set, obtaining a trained model requires from ∼ 3 − 4h (single training dataset) to
∼ 6 − 9h (multiple training datasets) in a desktop PC with an NVIDIA RTX 3090 GPU. We remark that, for doing these
experiments, pedestrian skeletons are computed and recorded on the hard disk once.

User

4At the moment of elaborating our work, CP2A and Virtual-Pedcross-4667 datasets do not seem downloadable anymore.



Train Test NF Accuracy Precision Recall F1-score

JAAD JAAD 18 80.32 84.72 87.91 85.29
PedSynth JAAD 32 78.59 89.48 84.62 85.45

PIE PIE 08 68.11 66.98 68.36 69.81
PedSynth PIE 16 62.74 69.37 79.31 74.01

TABLE III: C/NC prediction performance with PedGNN.

Train Test NF Accuracy Precision Recall F1-score

J J 18 80.32 84.72 87.91 85.29
S J 32 78.59 89.48 84.62 85.45

J + P J 08 72.36 74.22 89.18 81.20
J + S J 32 86.22 77.35 96.19 85.96

J + S + P J 08 74.41 76.73 88.00 81.98

P P 08 68.11 66.98 68.36 69.81
S P 16 62.74 69.37 79.31 74.01

P + J P 32 69.26 77.03 75.26 76.13
P + S P 16 70.52 74.80 82.73 79.12

P + S + J P 08 69.34 78.24 70.20 76.35

TABLE IV: Performance when combining different datasets for training PedGNN. J: JAAD, P: PIE, S: PedSynth.

Train Test NF Accuracy Precision Recall F1-score

J S 08 72.23 77.33 83.97 80.97
P S 08 69.66 74.54 82.47 78.30

J + P S 08 71.40 73.11 85.74 82.98

J + S J 32 86.22 77.35 96.19 85.96
P + S P 16 70.52 74.80 82.73 79.12

TABLE V: PedSynth (S) as testing dataset. J: JAAD, P: PIE.

Model Train Test NF Accuracy Precision Recall F1-score

PedGNN S (GT) S (GT) 08 89.29 95.85 88.69 92.14

PedGNN J J 18 80.32 84.72 87.91 85.29
PedGraph+⋆ J J 32 83.85 53.76 59.21 56.36

PedGNN P P 08 68.11 66.98 68.36 69.81
PedGraph+⋆ P* P* 32 79.15 77.91 36.51 49.72

TABLE VI: J: JAAD, P: PIE, S: PedSynth. GT refers to using ground truth skeletons from CARLA. PedGraph+⋆ refers to
PedGraph+ [5] but only considers pedestrian skeletons (from AlphaPose) as input information (NF = 32 is used in [5]).
For PIE, PedGraph+⋆ only considers the ∼ 30% of C/NC cases, which we denote as P*.

Model Size (MB) Inference time (ms)

PCPA [23] 118.8 38.6
Global PCPA [40] 374.2 70.83
FUSSI [26] 8.4 34.92
PedGraph [6] 0.22 29.01
PedGraph+ [5] 0.28 5.47
TEP [1] 12.8 2.85
V-PedCross [2] 4.8 -
PedGNN (Ours) 0.027 0.58

TABLE VII: Memory footprint and inference time of PedGNN and different models from the state-of-the-art. All times are
computed on an NVIDIA GTX 1080 GPU. We have extracted these times from the respective papers.



C. Experiments and discussion

We start the experiments by evaluating how effective PedSynth is training our PedGNN model to perform on the JAAD
and PIE testing sets. Table III shows the results. The NF value refers to the number of input frames (per pedestrian skeletons)
that was best for each case according to the previously described training protocol. Training on PedSynth requires considering
more frames than using the respective JAAD/PIE training data. However, this does not affect the prediction latency since,
as we have mentioned before, we use a temporal sliding window of a 1-frame step. Moreover, in an NVIDIA GTX 1080
GPU, for NF = 32 PedGNN only takes ∼ 0.6ms to perform the inference. In terms of accuracy, training on the respective
real-world datasets is better than training on PedSynth. However, we can see how it is not the case for F1-score, which is
a more unbiased metric than accuracy when the testing data distribution presents a class unbalanced. Table II shows that
this is the case here since both JAAD and PIE have testing sets clearly biased toward the crossing (C) class. Thus, we think
PedSynth is an effective dataset for training C/NC prediction models.

At this point, it is worth commenting that, as shown in Table I, PedSynth provides a skeleton GT for each pedestrian
(coming from the CARLA simulator). The joints used by PedGNN are a subset of those provided by the CARLA simulator,
so the mapping is straightforward. Moreover, fitting confidences cj can be set to 1 since skeletons are perfectly fitting
pedestrians. Therefore, this raises the question of using such skeletons as GT for training with PedSynth instead of applying
AlphaPose to the synthetic pedestrians. We did the corresponding experiments, however, F1-score dropped ∼ 10 points when
testing on JAAD and ∼ 6 for PIE. In other words, a synth-to-real domain gap is induced by the use of different skeleton
sources at training (GT) and testing (Alphapose) time. We leave future work to investigate more in deep the underlying
reasons for the domain gap and keep using AlphaPose for all the training runs involving PedSynth.

Sometimes we may have real-world training data labeled for C/NC prediction, as is the case of PIE and JAAD. Then,
it is also interesting to see if the synthetic data at hand can act as a complement, giving rise to better-performing models.
Note that by using the same skeleton fitting method we avoid the synth-to-real domain gap provided this method performs
well in the real and synthetic domains. According to our experiments, AlphaPose fulfills so. Therefore, we have combined
PedSynth training data with JAAD and/or PIE training data for assessing the complementarity of these datasets. Table IV
presents the corresponding results, where we also include those in Table III for easier comparison. We can see that, when
testing in JAAD, combining JAAD and PedSynth gives better results than using JAAD or PedSynth alone and even than
combining JAAD and PIE. In fact, it seems that PIE produces negative transfer when combining the three datasets. On the
other hand, since the testing set of PIE has around 4× more C-frames than JAAD, and around 9× more NC-frames, results
on PIE are of special interest. We can see that, when testing in PIE, combining PIE and PedSynth gives rise to the best
results in terms of accuracy and F1-score. Thus, we think that PedSynth can complement real-world datasets for training
purposes.

We can also assume that we use PedSynth for testing purposes. Table V shows the results corresponding to training with
the real-world training sets and testing in the PedSynth testing set. For easier visual comparison, we also include the best
models obtained when testing in real-world testing sets. These correspond to training on the respective training set plus the
training set of PedSynth. We can see that performance metrics report comparable values when testing in real-world sets and
in our synthetic set. Thus, we think PedSynth can play the role of the testing set too; in other words, it is not easier than
their real-world counterparts.

At this point, we put the focus on the PedGNN model. On the one hand, we assess its potential by using PedSynth
and the associated pedestrian GT skeletons, so that results are not influenced by the skeleton fitting method in place (here
AlphaPose). Moreover, we compare our results with the state-of-the-art method on C/NC prediction here named PedGraph+
[5]. Table VI shows the results. For PedGraph+ we have copied the results reported in [5] when only AlphaPose-based
skeletons are considered as input. However, for the PIE dataset, only a portion of the data is considered in [5], roughly the
30%. We can observe that PedGNN has great potential of providing good performance, which can be seen when training
and testing with perfect pedestrian skeletons (GT). Note that F1-score is ∼ 92%. Of course, there is room for improvement.
Compared to PedGraph+ assuming the same input data (AlphaPose-based skeletons), we can see how PedGraph+ performs
better in terms of accuracy, but significantly worse when using the more representative F1-score metric. Moreover, we can
see in Table VII how in terms of memory footprint and inference speed PedGNN is significantly more lightweight and faster.

Finally, as an example of qualitative results, Fig. 5 illustrates the performance of PedGNN trained on JAAD+PedSynth
and tested on JAAD. In case (a), while the ego-vehicle turns to the right, the intention of a pedestrian that started to cross in
the left is properly predicted from the very beginning. In case (b), while the ego-vehicle moves straight forward, a pedestrian
standing still at the border of the road is properly predicted as a non-crossing pedestrian. In cases (c) and (d), PedGNN
requires more frames to reach the proper prediction. In case (c) the pedestrian seems to take the crossing decision later than
in case (a), so predicting the intentions required some additional time. In case (d), the pedestrian seems to start crossing in
front of the ego-vehicle in a parking area, but finally, it does not. In fact, for us it is unclear if the GT is right, after all,
it is based on human labelers and, therefore, there is subjectivity. For instance, if the initial frames have been labeled after
looking at what the pedestrian did at the final ones, this would be like using the future to predict the present/past, which
cannot be done by the temporal sliding window mechanism used to process onboard continuous image sequences.



V. CONCLUSION

In this paper, we have introduced our framework ARCANE which allows the generation of synthetic datasets labeled for
the pedestrian C/NC prediction task. It works on top of the CARLA simulator so being aligned with the autonomous driving
research community. Advanced users can programmatically design their pedestrian C/NC scenarios, the rest can adjust a
configuration file to use existing scenarios. For example, we have generated the PedSynth dataset by using ARCANE. It is
diverse and contains a large amount of pedestrian C/NC cases. We have shown its usefulness by running an extensive set
of experiments. We have seen that it can play the role of the training set alone, it can complement real-world training sets,
and it can play the role of the testing set. Most experiments are based on our model PedGNN, also introduced in this paper.
It processes sequences of pedestrian skeletons to produce C/NC predictions. Our experiments show that PedGNN produces
state-of-the-art results, despite being significantly more lightweight and faster than previous C/NC prediction models. In
future work, we plan to use PedSynth and PedGNN to address the synth-to-real unsupervised domain adaptation problem
for the pedestrian C/NC prediction task.
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and real-world SFM self-supervision. IEEE Trans. on Intelligent Transportation Systems, 23:12738–12751, 2021.
[18] Je-Seok Ham, Kangmin Bae, and Jinyoung Moon. MCIP: Multi-stream network for pedestrian crossing intention prediction. In European Conference

on Computer Vision (ECCV)–Workshops, 2022.
[19] Hironori Hattori, Vishnu N. Boddeti, Kris Kitani, and Takeo Kanade. Learning scene-specific pedestrian detectors without real data. In Int. Conf. on

Computer Vision and Pattern Recognition (CVPR), 2015.
[20] Christoph G. Keller and Dariu M. Gavrila. Will the pedestrian cross? a study on pedestrian path prediction. IEEE Trans. on Intelligent Transportation

Systems, 15:494–506, 2014.
[21] Wonhui Kim, Manikandasriram Srinivasan Ramanagopal, Charlie Barto, Ming-Yuan Yu, Karl Rosaen, Nicholas Goumas, Ram Vasudevan, and

Matthew Johnson-Roberson. PedX: Benchmark dataset for metric 3-D pose estimation of pedestrians in complex urban intersections. IEEE Robotics
and Automation Letters, 4:1940–1947, 2018.

[22] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In International Conference on Learning
Representation (ICLR), 2017.

[23] Iuliia Kotseruba, Amir Rasouli, and John K. Tsotsos. Benchmark for evaluating pedestrian action prediction. In Winter conf. on Applications of
Computer Vision (WACV), 2021.

[24] Google Auto LLC. Google self-driving car testing report on disengagements of autonomous mode, December 2015.
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Fig. 5: Performance of PedGNN trained on JAAD+PedSynth and tested on JAAD. Cases (a) and (b) are fully successful,
while in cases (c) and (d) there are C/NC prediction discrepancies with the labels provided by human labelers (GT). Time
in each sequence runs from top-left to bottom-right.
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