Abstract:
Adaptive Cruise Control (ACC) has become increasingly popular in modern vehicles, providing enhanced driving safety, comfort, and fuel efficiency. However, predefined ACC...Show MoreMetadata
Abstract:
Adaptive Cruise Control (ACC) has become increasingly popular in modern vehicles, providing enhanced driving safety, comfort, and fuel efficiency. However, predefined ACC settings may not always align with a driver's preferences, leading to discomfort and possible safety hazards. To address this issue, Personalized ACC (P-ACC) has been studied by scholars. However, existing research mostly relies on historical driving data to imitate driver styles, which ignores real-time feedback from the driver. To overcome this limitation, we propose a cloud-vehicle collaborative P-ACC framework, which integrates real-time driver feedback adaptation. This framework consists of offline and online modules. The offline module records the driver's naturalistic car-following trajectory and uses inverse reinforcement learning (IRL) to train the model on the cloud. The online module utilizes the driver's real-time feedback to update the driving gap preference in real-time using Gaussian process regression (GPR). By retraining the model on the cloud with the driver's takeover trajectories, our approach achieves incremental learning to better match the driver's preference. In human-in-the-loop (HuiL) simulation experiments, the proposed framework results in a significant reduction of driver intervention in automatic control systems, up to 70.9%.
Date of Conference: 24-28 September 2023
Date Added to IEEE Xplore: 13 February 2024
ISBN Information: