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HRFuser: A Multi-resolution Sensor Fusion Architecture
for 2D Object Detection

Tim Brodermann', Christos Sakaridis', Dengxin Dai? and Luc Van Gool'3

Abstract— Besides standard cameras, autonomous vehicles
typically include multiple additional sensors, such as lidars and
radars, which help acquire richer information for perceiving
the content of the driving scene. While several recent works
focus on fusing certain pairs of sensors—such as camera with
lidar or radar—by using architectural components specific to
the examined setting, a generic and modular sensor fusion
architecture is missing from the literature. In this work, we
propose HRFuser, a modular architecture for multi-modal
2D object detection. It fuses multiple sensors in a multi-
resolution fashion and scales to an arbitrary number of input
modalities. The design of HRFuser is based on state-of-the-
art high-resolution networks for image-only dense prediction
and incorporates a novel multi-window cross-attention block
as the means to perform fusion of multiple modalities at
multiple resolutions. We demonstrate via extensive experiments
on nuScenes and the adverse conditions DENSE datasets that
our model effectively leverages complementary features from
additional modalities, substantially improving upon camera-
only performance and consistently outperforming state-of-the-
art 3D and 2D fusion methods evaluated on 2D object detection
metrics. The source code is publicly available at https:
//github.com/timbroed/HRFuser

I. INTRODUCTION

High-level visual perception is vital for the deployment
of autonomous vehicles and robots. The primary sensors for
such agents to perceive the surrounding scene are cameras,
as they provide rich texture information at very high spatial
resolution. This enables perception algorithms to achieve
high accuracy in central tasks, such as object detection and
semantic segmentation.

However, to attain full autonomy, systems require per-
ception algorithms that perform robustly in all encountered
conditions, but the quality of images degrades severely
in adverse visual conditions, such as night-time, rainfall,
snowfall, or fog. Moreover, camera readings do not explicitly
capture depth or other geometric attributes of the scene.
Complementary characteristics to cameras are provided by
other sensors: lidars and radars provide explicit range mea-
surements, while radars and gated cameras feature robustness
to adverse weather [1]. Thanks to developments in sensor
technology, these types of sensors are becoming cheaper
and thus more commonly used in automated driving. Thus,
exploiting all measurements from the sensor suite of an
autonomous system via sensor fusion is of utmost importance
for accurate perception under all possible conditions.
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Besides cameras, adverse weather conditions can also
severely affect the measurements of lidars [2], [3], [4]. This
in turn results in lidar-based 3D object annotations being
incomplete in such conditions. Fig. 1 displays both 2D and
3D labels from the DENSE dataset [1] and exemplifies why
a significant amount of objects (41.91% for the “dense fog”
split of DENSE) can receive only a 2D annotation when
correct lidar measurements are missing due to environmental
factors such as fog or precipitation. As these measurements
do not provide a complete and reliable signal for creating
3D annotations. However, in difficult driving conditions, it
is of utmost importance to detect all safety-relevant objects
even if their precise localization in 3D is not possible.

We thus focus on 2D object detection, which allows to
train and evaluate detection models not only on standard
data, such as nuScenes [5], but also on extremely challenging
data where 3D annotations are missing due to the factors
mentioned above, such as DENSE [1]. We pursue this goal
by building a modular architecture that treats the camera
as the primary modality and adaptively fuses features from
an arbitrary number of additional, secondary modalities in a
modular and scalable manner.

Our network, named HRFuser, consists of a multi-
resolution multi-sensor fusion architecture for 2D detec-
tion. The structure of HRFuser is based on the paradigm
of preserving high-resolution representations throughout all
layers of the backbone [6], [7]. We extend this architectural
paradigm to multiple modalities and propose an efficient
fusion design for our HRFuser, which scales well with the
number of sensors. In particular, HRFuser includes parallel
lightweight branches for each of the secondary input modal-
ities. Solely the primary camera branch constructs additional
high-dimensional lower-resolution features.

We repeatable fuse the sensors at multiple levels and
at all resolutions of the camera branch. To facilitate this,
we propose a novel multi-window cross-attention (MWCA)
block. This block efficiently performs an attention-based
fusion of the camera with each additional sensor in parallel,
reducing the quadratic complexity of attention via multiple
non-overlapping spatial windows. MWCA efficiently attends
to the useful features of each sensor while ignoring noise,
resulting in improved performance from all added sensors,
even from radar, which is highly noisy.

Our architecture is generic and modular, as it handles all
additional sensors in the same way, except for basic pre-
processing. This allows leveraging multiple sensors, such
as lidar, radar, and gated cameras, without the need to
create specialized architectural components dedicated to each
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Fig. 1.
3D object annotations. Multiple safety-relevant objects are missing in the
(middle) point cloud due to weather deterioration and thus receive only 2D
and not 3D annotations.

An example scene from DENSE [1] with (left) 2D and (right)

individual sensor. Thus, HRFuser is directly applicable to
an arbitrary number of sensors. Our novel MWCA fusion
and our architecture design with light-weight branches for
secondary modalities minimize the computational overhead
to only +9.7% flops and +1.9% parameters for a single added
modality, as detailed in Sec. [V-C. HRFuser also inherits the
benefits associated to processing camera features at multiple
resolutions while preserving a high-resolution representation,
allowing aggregation of global context without loss of fine
spatial details.

We conduct a thorough experimental evaluation of our
network for 2D detection on two major autonomous driving
datasets, the adverse-condition-oriented DENSE [1] and the
large-scale nuScenes [5]. HRFuser substantially outperforms
all state-of-the-art 2D sensor fusion and camera-only net-
works which are heavily engineered for dense prediction
tasks. As well as state-of-the-art 3D object detection ap-
proaches evaluated in 2D. Detailed ablation studies evidence
the benefit of our carefully designed network architecture
and the novel MWCA fusion block compared to other fusion
strategies.

II. RELATED WORK

Object detection methods output bounding boxes for a
given input scene. A popular line of work on 2D detection
consists in the region-based CNN (R-CNN) framework [8],
[9], which employs a two-stage pipeline that first generates
object proposals and then predicts the final boxes from
the proposals. An alternative approach is single-stage detec-
tion [10], which is typically faster but less accurate. Recent
approaches improve the efficiency of the detectors [11],
and adapt networks to adverse conditions such as fog [12].
HRNet [6] constitutes a CNN backbone for detection that
preserves a high resolution for intermediate representations,
while aggregating global context via parallel lower-resolution
branches. Recently, HRFormer [7] has extended this idea
by replacing most convolutional blocks of HRNet with
transformer blocks, which facilitate context aggregation via
attending to features from any location of the input. HRFuser
follows the architecture of HRNet and HRFormer with
parallel streams of different resolutions, but it extends it
to a multi-modal setting, by adding sensor-specific branches
and a novel transformer-based fusion block, which allows us
to simultaneously fuse information from multiple additional
modalities in an adaptive manner.

Sensor fusion for object detection is the primary appli-
cation of sensor fusion in visual perception, although other
tasks [13], [14] have also been studied. For a comprehensive
overview of related work, we refer the reader to [15].
The KITTI dataset [16] has catalyzed research in this area
by providing recordings of driving scenes with multiple
sensors, notably a lidar and a camera, along with object
annotations. Successors of KITTI include nuScenes [5] and
Argoverse [17]. Notably, nuScenes also includes radar read-
ings, which are important in adverse-weather scenarios. Such
scenarios are explicitly covered in [1], [18], [19]. Based on
these sets, several sensor fusion works have been presented
that focus on improving lidar-based 3D detection by fusing
information from the camera. This category of works ranges
from early (low-level) fusion [20], which directly combines
the raw lidar data with raw image data or image features,
and mid-level fusion [21], which combines lidar features
with image-space features, to late fusion [22], which fuses
the detection results from lidar and camera, asymmetric
fusion [23], which fuses the object-level representations from
one modality with data-level or feature-level representations
from the other, to bird’s-eye-view (BEV) based fusion [24],
which lifts mid-level camera features to a common BEV
space. Other sensor fusion methods address multi-modal 2D
detection; many focus on radar and camera sensors [25], [26].
Methods that improve image-based 2D detection by fusing
information only from lidar include [27]. Fewer previous
works [1], [28], [29] fuse all three modalities, i.e. camera,
lidar, and radar, for detection. We argue that using all
three modalities is relevant, as they provide complementary
characteristics which are essential for detection. While most
recent works focus on fusing sensors with architectural com-
ponents specific to individual sensors, we propose a modular
fusion architecture for 2D object detection that easily scales
to an arbitrary number of input modalities. Another feature of
our network is the fusion at multiple levels and resolutions,
which has also been applied in previous works [30], [1].
Different from these methods, our approach keeps high-
resolution representations for each modality throughout the
network in parallel with lower-resolution representations,
which allows to better preserve details while also exploiting
global context for classification.

Transformers [31] gained popularity in computer vision
with the vision transformer [32]. More recent methods use
local windows [7] and the Pyramid Vision Transformer
(PVT) [33] introduces a spatial reduction attention to reduce
the memory footprint. PVTv2 [34] improves upon PVT by
using a linear-complexity attention module. To adaptively
fuse two modalities with each other, cross-attention [35]
was introduced. Different from these works, our transformer-
based network handles several modalities instead of only
two and fuses them at multiple resolutions, combining both
global and local features of the input scene more effectively.
Moreover, we combine local-window attention with cross-
attention, thereby reducing the memory footprint and en-
abling repeated attention-based fusion at high resolutions.
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Fig. 2. An instantiation of the overall architecture of our HRFuser backbone for the case where two additional sensors besides the camera are available.
Feature maps are colored according to the sensor branch to which they belong. For brevity, we only show the backbone of the network and not the detection
head. Transf.: transformer, Conv.: convolution, MWCA: multi-window cross-attention.

III. HRFUSER

With HRFuser, we extend the paradigm of preserving
high-resolution representations throughout all layers of the
backbone [6], [7] to multiple modalities. To this end, we
extend the HRFormer [7] backbone with one additional high-
resolution, but low-dimensional, branch for each added input
modality besides the camera. These additional, or secondary,
modalities are fused repeatedly at multiple resolutions into
the branch of the primary modality.

Fig. 2 illustrates the general architecture of the multi-
sensor fusion backbone of HRFuser. The design of the
primary branch (camera) follows HRFormer, but is extended
with a novel MWCA fusion block, which is further illustrated
in Fig. 3. The MWCA fusion block is inserted between the
multi-resolution fusion module and the subsequent trans-
former block, allowing the features from the secondary
modalities to be fused into the camera branch. All secondary
branches continue for three stages and are fused with the
primary branch at three levels and four different resolutions.
They include feature maps at a single, high resolution, while
in the camera branch we introduce lower resolutions as we
proceed to later stages, progressively aggregating context.
Before applying our MWCA fusion blocks, we add 3x3
strided convolutions to match the high-resolution secondary
modalities to the lower-resolution streams of the primary
modality. This down-sampling causes the same 7x7 local
window to progressively cover a larger area of the secondary
modalities feature map. Our design, therefore, allows to keep
detail in all modalities with the high-resolution stream, while
efficiently fusing via local windows and still taking local and
more global relationships into account.

Fusing multiple modalities in such an asymmetric way
provides scalability to our method, as the complexity in-
creases linearly with the number of added sensors. We can
include an arbitrary number of modalities by simply adding
an extra secondary branch for each new modality and fusing
it in parallel into the camera branch. We demonstrate this
possibility in Sec. IV by applying HRFuser to the DENSE

dataset [1] and utilizing a gated camera as the fourth sensor,
besides the more common lidar and radar sensors.

The HRFuser backbone illustrated in Fig. 2 is followed
by a neck which forms a feature pyramid by concatenating
the upsampled outputs of all streams [6]. This neck is in
turn followed by a Cascade R-CNN head [9], following the
widely used two-stage detector architecture. Cascade R-CNN
introduces a sequence of detectors trained with increasing
Intersection over Union (IoU) thresholds, setting a strong
baseline for any given backbone.

Multi-window cross-attention. We propose a novel multi-
window cross-attention (MWCA) block to fuse all modalities
in parallel by applying multi-head cross-attention (CA) on
multiple small non-overlapping local windows. In particu-
lar, MWCA limits the spatial extent of the cross-attention
to small windows, addressing the quadratic complexity of
attention and reducing the computational cost of each atten-
tion operation and allows to apply this operation to high-
resolution feature maps. For each window, this results in
K? tokens with dimensionality D, depending on the number
of channels of the stream we fuse into. Compared to self-
attention, CA fuses two modalities by applying attention with
queries from the primary modality o and keys and values
from the secondary modality .

More formally, we partition the input feature map X of
the primary modality « into a grid of P non-overlapping
spatial windows: X® Selt, {X¢, X9, ..., X%}. Exactly
the same partition is applied to the feature maps Yﬁ
of all secondary modalities 8 € {1,..., M}: Y# ﬂ)
Y’ ys . Yg}. All input feature maps are vectorized
across the spatial dimensions and have the same shape
X,Y € RV*P where N denotes the total number of spatial
positions and D denotes the number of channels, and each
window is of size K x K.

A local transformer applies parallel CA to each corre-
sponding set of windows independently. Parallel CA on the
set of p-th windows is formulated as follows:
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Our multi-window cross-attention (MWCA) fusion block, consisting of (a) our MWCA and a subsequent feed-forward network. Inputs to the

parallel cross-attention blocks are colored according to the sensor they come from. DW conv.: depth-wise convolution.

MultiHead(X%,Y/) = Concat[head(X2, Y5),,
head (X, Y]B,)H}
c RKZXD’ (1)
(XpWiS) (YW )T
D/H

YW e REXE ()

head (X7, Yg)h = Softmax

X, = Xg+ Y40, [Y8 + MultiHead (X3, Y5 )W

c RK2><D (3)
where W/ € RP*P and W5, Wil Whi e RPX 5
for h € {1, ..., H} are weight matrices implemented by

trainable linear projections. H denotes the number of heads
and X, denotes the output of the parallel CA for the set of
p-th windows.

We arrange the outputs from all P sets of windows back

into a single feature map to get the final output of MWCA,
XMWCA:

{Xl, Xo, ..., Xp} Merge, yMWCA @)

Fig. 3 illustrates how we split up the input maps for each
modality into non-overlapping windows and apply parallel
CA across modalities within each window independently,
before merging the resulting outputs back into a single
feature map. Fig. 4 illustrates parallel CA in more detail.
To allow information exchange between the non-overlapping

D
Cross- Cross-
Attention Attention
Ao A B Ao \ B

Fig. 4. Our parallel cross-attention block for the case where two additional
sensors besides the camera are used. « denotes the primary modality
(camera) and 3 denotes the secondary modalities.

windows, we add a feed-forward network including 3x3
depth-wise convolution.

Other architectural features. Before feeding inputs to
HRFuser, we project all secondary modalities onto the image
plane of the camera, using perspective projection as pro-
posed in [36]. This yields an exact spatial correspondence
between the input feature maps of different modalities,
ensuring consistency among corresponding windows from
different modalities in MWCA. All branches start with a
CNN reducing the resolution by a factor of 4, followed
by 4 stages consisting of multiple identical blocks. For all
branches, we use basic bottleneck blocks to build the first
stage [6] and transformer blocks to build all subsequent
stages and streams [7]. We choose the parameters of each
MWCA transformer (1, D) to be equal to the parameters of



TABLE I
COMPARISON OF 2D DETECTION METHODS ON NUSCENES EVALUATED
ON 6 CLASSES FOLLOWING [26]. THE FIRST GROUP OF ROWS USES THE
STANDARD NUSCENES SET, WHILE THE SECOND GROUP USES THE
SPLITS FROM [25]. C: CAMERA, R: RADAR, L: LIDAR, (*): RESULTS
TAKEN DIRECTLY FROM THE RESPECTIVE PAPER.

Method Modalities AP APgs APo75 AP, AP, AR
HRNetV2p-w18 [6] C 324 56.6 335 21.0 437 434
HRFormer-T [7] C 343 59.6 356 232 455 439
HRFormer-B [7] C 33.8 594 346 224 45.1 43.1
Radar-Camera Fusion[26]* CR 356 60.5 374 - - 421
HRFuser-T CRL 38.3 653 40.1 26.8 499 483
HRFuser-S CRL 38.5 65.6 402 27.2 499 48.1
HRFuser-B CRL 388 660 41.0 269 50.7 48.6
CRF-Net [25] CR 27.0 427 29.0 227 356 313
HRFuser-T CRL 346 620 347 26.0 48.5 45.8

the subsequent transformer blocks of the respective stream.
We include additional implementation details on different
versions of HRFuser in the supplement'.

IV. EXPERIMENTS

We organize this section as follows. We first present our
implementation details and experimental setup for multi-
sensor 2D object detection on the two examined datasets,
DENSE [1] and nuScenes [5]. We then compare the 2D
performance of our method to the state-of-the-art in 2D and
3D multi-sensor fusion and conduct detailed ablation studies
on the utility of including additional sensors and the fusion
mechanism.

A. Experimental Setup

In all our experiments, we use a two-stage HRFuser
network for 2D detection. The backbone of the network is
structured as per Sec. III and its outputs are used to feed
a Cascade R-CNN [9] head which serves as the second
stage of the network. We test a tiny (T), small (S) and
base (B) version of HRFuser and implement them using the
mmdetection framework [37].

HRFuser is trained on DENSE for 60 epochs on batches
of size 12 using AdamW with a base learning rate (LR)
of 0.001. We apply a 500-step LR warm-up and reduce the
LR by a factor of 10 at epochs 40 and 50. The training
settings are the same for nuScenes, except that we use 12
epochs, a LR of 0.0001 and LR reductions at epochs 8 and
11. To accelerate learning of features from the less rich
modalities such as radar, we randomly set inputs to zero
during training [25], [1] with a chance of 50% for DENSE
and 20% for nuScenes.

DENSE [1] is a multi-modal driving dataset with 106k 2D
and 68k 3D bounding boxes. The dataset provides camera
images, lidar and radar points, and gated camera images,
captured under a variety of normal and adverse weather
conditions. The gated camera in DENSE captures images

Ihttps://github.com/timbroed/HRFuser/blob/master/
Supplementary_Material_ HRFuser.pdf

in the NIR band at 808nm with a time-synchronized flood-
lit flash laser source. Following the standard dataset splits
in [1], we train only on clear-weather data and use adverse-
condition data only for evaluation. We follow [1] for ba-
sic sensor pre-processing, obtaining 1248x 360 images with
depth, intensity and height for lidar, and depth and velocity
over ground for radar. Note that radar is missing the RCS
channel, since this is not published with the rest of DENSE.
We train on the common KITTTI classes car, pedestrian, and
cyclist, and evaluate only on car using the KITTI evaluation
framework [16], similar to [1].

NuScenes [5] is a large-scale dataset (1.4M images) provid-
ing 3D data and annotations of a full autonomous vehicle
sensor suite including 6 cameras, 1 lidar and 5 radars. We
follow [25] for basic sensor pre-processing, creating radar
images with range, radar cross-section (RCS) and velocity
over ground, and lidar images with range, intensity and
height. Compared to [25], we do not accumulate radar data
across time or filter them in any way. Unless otherwise stated,
we use a subset of 10 nuScenes object classes following the
mmdet3d [38] framework: car, truck, trailer, bus, construc-
tion vehicle, bicycle, motorcycle, pedestrian, traffic cone,
and barrier. To create 2D ground truth and to evaluate 3D
approaches in 2D, we project the 3D bounding boxes onto
each image plane by computing a rectangle convex hull of the
projected corners, similar to [25], [26]. Whereby, we discard
annotations that are labeled with the lowest visibility bin,
thereby filtering out occluded boxes. We train on the official
training set and evaluate on the validation set, due to the lack
of a public benchmark for 2D detection. Evaluation uses the
2D COCO evaluation metrics [39].

B. Comparison to the State of the Art

We compare multiple versions of HRFuser to state-of-
the-art camera-only and multi-modal methods on nuScenes
in Tab. 1. All versions of HRFuser outperform substan-
tially all camera-only models. In particular, the fully-fledged
HRFuser-B improves AP by 5.0% compared to HRFormer-
B and demonstrates analogous improvements in all other
metrics. Moreover, all versions of HRFuser beat the radar-
camera fusion method of [26] by a large margin on the stan-
dard nuScenes split, showcasing the advantage of leveraging
multiple complementary sensors—including lidar—with a
single, modular architecture as ours over just using radar
and camera. A substantial performance gain of +7.6 AP is
also observed over CRF-Net [25] on the nuScenes split that
is employed by [25] and using only the front camera for
evaluation.

In Tab. II, we compare our HRFuser-T to the fusion
method of [1] on DENSE. Our model clearly outperforms
[1] across all weather conditions, showing in particular
significant improvements in the cases of light fog and dense
fog, in which it beats [1] by 1.6% and 1.5% on the “hard”
setting, respectively. This finding showcases the ability of
our model to generalize well to previously unseen, adverse
conditions, which degrade the quality of the readings for
some of the sensors, such as the camera and the lidar, by
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TABLE I
COMPARISON OF 2D DETECTION METHODS ON THE DENSE TEST SETS IN AP. (*): RESULTS TAKEN DIRECTLY FROM THE RESPECTIVE PAPER.

Weather clear light fog dense fog snow/rain

Difficulty easy mod. hard easy mod. hard easy mod. hard easy  mod. hard

Deep Entropy Fusion [1]* 89.84 8557 7946 9054 8799 8490 87.68 8149 76.69 8899 83.71 77.85

HRFuser-T 90.15 87.10 7948 90.60 89.34 86.50 87.93 80.27 7821 90.05 8535 78.09
TABLE III

COMPARISON FOR 2D DETECTION ON NUSCENES. (’): 3D—2D
PROJECTION IS USED TO OBTAIN 2D PREDICTIONS.

Method AP APO,5 APO,75 Apm APl AR

CenterPoint [40]” 17.9 409 13.1 81 282 29.8

BEVFusion [24]" 26.0 52.6 22.2 13.6 379 37.1

HRFuser-B 329 589 33.0 238 44.1 435
TABLE IV

ABLATIONS OF INPUT MODALITIES ON NUSCENES. RESULTS ARE IN AP.
EF: EARLY FUSION, C: CAMERA, R: RADAR, L: LIDAR.

Modalities C CR CL CRL
HRFormer-T (EF) 26.5 25.7 28.2 27.7
HRFuser-T (ours) 26.5 27.9 31.2 31.5

properly attending to the features from the sensors that are
more robust to these conditions, such as the radar and the
gated camera.

In Tab. III, we compare our 2D HRFuser to 3D ob-
ject detection approaches on nuScenes by projecting their
3D results to 2D, as indicated in Sec. IV-A. HRFuser
substantially outperforms the state-of-the-art 3D detection
method BEVFusion [24] on all 2D metrics, demonstrating its
effectiveness for 2D detection against 3D-based approaches.
Note that this comparison is reasonably fair as correct 3D
predictions will still be correct when evaluated against the
projected 2D ground truth.

C. Ablation Studies

Modalities. Tab. IV investigates the contribution of each
sensor on nuScenes, by training HRFuser and a naive
early fusion baseline with different subsets of input modal-
ities. HRFormer-T (Early Fusion)—which naively utilizes
a concatenated input without any additional changes to
HRFormer—performs 1.7% better when adding lidar to the
camera-only baseline. Note that the performance drops both
times when we add the noisy radar to the input modalities.
In contrast, adding radar to HRFuser yields an improvement
of 1.4% over the camera-only baseline. The improvement
is larger (4.7%) when adding lidar, and is maximized
(5.0%) when combining all 3 sensors, showing the ability
of our MWCA fusion to attend to the useful part of extra
modalities—notably radar—while ignoring noisy content in
them. HRFuser not only avoids a performance drop when
adding radar but even gains additional performance. This
result implies that the proposed method successfully pays

attention to the relevant features.

We examine the effect of different modalities on DENSE
in Tab. V. A combination of all four modalities yields the
overall best performance, except for the case of dense fog,
where a combination of camera, radar and gated camera
performs best. This is in line with the findings of [1] and
is due to the severe impact of fog on the lidar, as the laser
pulse has to travel to the object and back, which squares the
attenuation due to the presence of fog. By contrast, radar
and gated cameras are more robust to fog. Note that the
used standard splits of DENSE investigate the generalization
capabilities rather than the robustness of a model since
training includes only clear-weather data. Thus, the effect
of fog on lidar is unseen during training, and the network
cannot learn how to deal with the introduced noise, as
it does with the radar noise on nuScenes in the previous
paragraph. Another finding is that adding the gated camera
on top of lidar and radar provides a consistent improvement
across conditions, evidencing the informativeness of the
high-resolution features from this sensor, which is generally
robust to adverse conditions. Furthermore, we experimented
with different sensors as primary modalities and found that
choosing the information-dense RGB or gated cameras per-
formed better than the sparse lidar and radar sensors. The
higher spatial resolution may aid in guiding the fusion and
attending to smaller details. For further details on the choice
of primary modality, we refer the reader to the supplement.

Fusion mechanism. Tab. VI presents an ablation study on
nuScenes regarding the fusion mechanism which is used in
HRFuser, in order to verify the benefit of our MWCA fusion
block. The reference is the camera-only HRFormer baseline.
Early fusion achieves only a slight 1.2% improvement in
AP over the camera-only HRFormer. Using our proposed
HRFuser with its multi-resolution fusion design, but with a
simplified addition-based fusion block instead of MWCA,
already yields a large 4.3% improvement in AP over the
camera-only baseline. Replacing addition with our proposed
MWCA further improves performance consistently across all
metrics, showcasing the utility of attention-based fusion for
detection. Limiting the fusion to only the high-resolution
stream of the camera branch yields a 1.0% reduction in AP,
highlighting the importance of multi-resolution fusion. We
compare our MWCA to an alternative attention mechanism
via the state-of-the-art transformer PVTv2 [34], adapted for
cross-attention (PVTv2-CA). For implementation details, we
refer the reader to the supplement. Our MWCA fusion out-
performs PVTv2-CA and the linear version PVTv2-Li-CA
by 1.7% and 2.0% respectively, demonstrating the advantage



TABLE V
ABLATIONS OF INPUT MODALITIES FOR HRFUSER-T ON THE DENSE TEST SETS IN AP. C: RGB CAMERA, R: RADAR, L: LIDAR, G: GATED CAMERA.

(@]
=
=
Q

clear
mod.

light fog
hard | easy mod. hard | easy

dense fog
easy

mod. hard | easy mod. hard | [GFLOPsS]

Inference
[ms]

Parameters
[M]

snow/rain Flops
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78.36 | 90.56 88.04 80.47 | 88.67
78.64 1 90.46 87.87 80.51 | 88.10
79.44190.62 89.17 80.95 | 88.56
78.55190.64 88.37 80.52|88.97
79.48 | 90.60 89.34 86.50 | 87.93

78.32
79.72
80.64
80.11
80.33
80.86
80.27

AN N NN N
AX NAX X N X
NAX AX SAX | X
NANAX AX X [ X

71.13
71.87
72.25
72.01
72.21
78.64
78.21

89.21
88.13
89.62
89.40
90.09
89.85
90.05

79.88
78.85
80.14
80.02
85.32
80.33
85.35

76.19
70.27
76.58
76.11
78.09
76.54
78.09

114.1 (+9.7%) 48.8 (+1.9%)
114.0 (+9.6%) 48.8 (+1.9%)
114.0 (49.6%) 48.8 (+1.9%)
123.3 (+18.6%) 49.4 (+3.1%)
123.2 (+18.5%) 49.4 (+3.1%)
123.2 (+18.5%) 49.4 (+3.1%)
132.4 (+27.3%) 49.9 (+4.2%)

103.3 (+27.4%)
103.2 (+27.3%)
103.0 (+27.0%)
120.8 (+49.0%)
121.0 (+49.2%)
121.3 (+49.6%)
141.0 (+73.9%)

TABLE VI
ABLATIONS OF FUSION STRATEGIES ON NUSCENES.

Method (Fusion Type)

HRFormer-T

HRFormer-T (Early)
HRFuser-T (Addition)
HRFuser-T (MWCA oniyHighRes)
HRFuser-T (MWCA) 315 574 311

HRFuser-T (PVTv2-CA [34]) 29.8 543 294
HRFuser-T (PVTv2-Li-CA [34]) 29.5 542 28.6

AP APo5 APo.75

26.5 499 253
27.7 51.6 265
308 56.4 305
305 56.1 297

AP,

18.2
18.4
22.0
21.8
22.7

20.1
19.9

AP,

37.0
38.8
419
414
42.5

413
41.0

AR

26.8
389
42.0
415
42.3

40.9
40.6

MWCA.

Efficiency. We further investigate the number of param-
eters/flops and the inference speed on an Nvidia Quadro
RTX 6000 GPU in Tab. V. Our fusion method adds only
a minor computational overhead. Even when using all three
additional modalities besides the camera, the flops increase
by only 27.3% and the parameter count by a marginal
4.2%. The inference time increases by 27.4% for one added
modality and the full multi-modal network predicts in much
less than double the time of the camera-only network.

D. Qualitative Results

The qualitative results on DENSE in Fig. 5 demonstrate
that our proposed method is significantly more resilient to
adverse conditions than a strong camera-only model. Note
e.g. the second example, where HRFuser correctly detects
obscured cars in the fog, while HRFormer misses them. Even
though HRFuser misses a few distant objects in the other
example, it still performs significantly better than HRFormer.
HRFormer struggles particularly in detecting objects at a
large distance. This can be attributed to the cumulative effect
of atmospheric phenomena such as fog and snow on the
appearance of objects as their distance from the camera
increases. The good performance of HRFuser demonstrates
its greater generalization capability thanks to learning robust
features from multiple modalities.

Fig. 6 presents detection results on nuScenes of
HRFormer, BEVFusion and HRFuser. HRFuser detects the
partially occluded pedestrian in the first example, which is
missed by HRFormer. The last example includes minimal
queues from the camera. However, in contrast to the camera-
only HRFormer and the lidar- and camera-based BEVFusion,
HRFuser correctly detects both cars of the scene, showcasing

its ability to effectively leverage complementary sensors for
object detection.

V. CONCLUSION

We have proposed HRFuser, a multi-modal, multi-
resolution and multi-level fusion architecture. In particular,
we have extended the high-resolution paradigm for dense
semantic prediction to multiple modalities by introducing
additional high-resolution branches for the extra modalities
besides the camera. HRFuser repeatedly fuses the extra
modalities into the multi-resolution camera branch with a
novel transformer block that applies cross attention in local
windows and enables efficient learning of robust multi-
modal features. Our proposed MWCA fusion module attends
to discriminative information from additional sensors while
ignoring their noisy parts. We have evaluated HRFuser on
DENSE and nuScenes and demonstrated its state-of-the-art
performance in 2D object detection across a wide range of
scenes and conditions. Our architecture is generic and scales
straightforwardly to an arbitrary number of sensors, thus
being of particular relevance for practical multi-modal set-
tings in autonomous cars and robots, which usually involve
a diverse set of sensors.
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