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Abstract— We address the problem of unsupervised semantic
segmentation of outdoor LiDAR point clouds in diverse traffic
scenarios. The key idea is to leverage the spatiotemporal nature
of a dynamic point cloud sequence and introduce drastically
stronger augmentation by establishing spatiotemporal corre-
spondences across multiple frames. We dovetail clustering and
pseudo-label learning in this work. Essentially, we alternate
between clustering points into semantic groups and optimizing
models using point-wise pseudo-spatiotemporal labels with a
simple learning objective. Therefore, our method can learn
discriminative features in an unsupervised learning fashion. We
show promising segmentation performance on Semantic-KITTI,
SemanticPOSS, and FLORIDA benchmark datasets covering
scenarios in autonomous vehicle and intersection infrastructure,
which is competitive when compared against many existing fully
supervised learning methods. This general framework can lead
to a unified representation learning approach for LiDAR point
clouds incorporating domain knowledge.

I. INTRODUCTION

Semantic LiDAR segmentation is a fundamental problem
in computer vision which supports downstream application
areas such as autonomous vehicles, robotics, augmented
reality, and human-computer interaction. To achieve good
performance, one popular approach is to use deep neural
networks for extracting discriminative features via super-
vised learning provided we have sufficiently massive data
and labels. However, compared to labeling semantic labels
for pixels from images, it is much more time-consuming,
challenging, and expensive to annotate pointwise semantic
labels for each point cloud that is non-intuitive and sparse,
which explains why large-scale 3D datasets for semantic
segmentation are scarce. For example, it takes roughly 4.5
hours to label a point cloud covering a small residential area
of 100m by 100m [1].

Early research works [2], [3] aim to reduce the annotation
cost and effort via semi-supervised learning. They leverage
easy-to-acquire unlabeled data for scalable LiDAR segmen-
tation but require considerable pointwise labeled LiDAR
data for sufficient learning under supervision. Developing
efficient and effective unsupervised approaches remains a
challenging problem and may require combining object and
group discovery with exhaustive and dense labeling over data
elements such as pixels or points following classic Gestalt
Principles [4].

In this work, we aim to eliminate the need for any
pointwise ground truth annotations for LiDAR data. Specif-
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ically, we seek to learn pointwise representations or feature
embeddings by integrating self-supervised and deep-learning
models. We have recently witnessed significant progress
in self-supervised and unsupervised learning [5]–[7], where
most learning systems have focused on generating a single
feature vector for a given sample, e.g., image-level classi-
fication or 3D shape classification. However, such systems
could rely on only a few salient, distinct, and stable features
partially taken from the original data and potentially ignore
the remaining features. Ideally, segmenting the LiDAR point
cloud must examine every point in terms of whether it comes
from the background, stationary objects, dynamic objects, or
are noisy, outlier points. Furthermore, significant intraclass
variations (e.g., pedestrians at different distances) and inter-
class similarities (e.g., scooter riders and pedestrians) further
prevent accurate segmentation.

In this paper, we develop a practical unsupervised LiDAR
segmentation method by switching between clustering the
points into semantic groups based on their feature em-
beddings and optimizing models using pointwise pseudo-
semantic labels generated from clustering. Inspired by [8],
we learn point embeddings by enforcing equivariance for
geometric transformations. It is worth noting that such a
framework relies on data augmentation carefully designed
to capture the underlying equivariance and preserve the
instance or semantic identities between augmented samples.
The significant impact of data augmentation strategies has
been explored in various methods such as InfoMin [9] for
learning better feature representations. In our work, we
observe that the spatiotemporal nature of a dynamic point
cloud sequence introduces drastically stronger augmentation
because their points are constantly changing over time due to
object motion, occlusion, and observer movement. Therefore,
we propose leveraging spatiotemporal patterns to create
stronger augmented views across different frames. To do so,
we introduce a straightforward objective that considers the
spatiotemporal correspondence as the additional constraint.

Despite the simplicity of our developed approach, it is
competitive with some well-known prior work with fully
supervised learning having ground truth labels. A systematic
pipeline of LiDAR alignment, multiple dynamic object seg-
mentation and tracking, and correspondence labeling is de-
veloped to establish spatiotemporal correspondence in mul-
tiple datasets with different types of dataset characteristics.
To summarize, we make the following contributions:

• We demonstrate that spatiotemporal correspondence can
largely help improve the performance of unsupervised
LiDAR semantic segmentation.
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• We develop an unsupervised segmentation framework
for LiDAR data from dynamic scenes.

• To the best of our knowledge, we are the first to
conduct unsupervised LiDAR semantic segmentation in
autonomous driving and infrastructure datasets.

• We show promising segmentation performance on
Semantic-KITTI, SemanticPOSS, and FLORIDA
benchmark datasets.

The rest of the paper is structured as follows. Section II
presents the related work. The methodology developed for
unsupervised segmentation is described in Section III. Sec-
tion IV outlines the conducted experiments. Conclusions are
described in Section V.

II. RELATED WORK

Point Cloud Models. Point clouds are unordered and chal-
lenging to process with standard convolutional neural net-
works. PointNet [10] was the first network that operated on
raw point clouds by addressing point cloud data’s unordered
format and invariance. PointNet++ [11] follows the idea of
PointNet and proposes to utilize both global information and
local details with the farthest sampling layer and a grouping
layer. Instead of consuming point cloud data directly, the
pioneering SqueezeSeg [12] projects the data onto a 2D
image using spherical range projection and processes the
projected 2D image with an encoder-decoder architecture.
Extensions of these works include SqueezeSegV2 [13],
Rangenet++ [14], SalsaNet [15], and SalsaNext [6]. We
adopted SalsaNext as the backbone as it provides a good
trade-off between speed and accuracy.
Self-supervised Feature Learning. Self-supervised feature
learning aims to extract meaningful visual features with-
out ground truth labels. Substantial research has focused
on optimizing specific surrogate tasks such as denoising
[16], inpainting [17], rotation [18], or contrastive learning
over multiple augmentations [19]. Contrastive learning ap-
proaches seek to learn feature representations by contrasting
similar and dissimilar pairs of samples via data augmenta-
tions. They minimize the distances between positive pairs
(i.e., one image and its augmented image) and maximize
the distances between negative pairs (i.e., one image and
another randomly sampled image). Recently, noncontrastive
self-supervised learning (NC-SSL) methods learn meaningful
feature representations using only positive pairs, different
from the contrastive approaches using both positive and
negative pairs. Despite the lack of negative pairs, NC-
SSL approaches use techniques such as extra predictors,
stop gradient, batch normalization, decorrelation, whitening,
and centering to avoid model collapse and have achieved
comparable or better performance. In addition, there are
attempts to provide theoretical studies for NC-SSL [20], [21].
Unsupervised Semantic Segmentation. Deep learning-
based semantic segmentation has been widely studied [22].
Most studies focus on supervised learning, while unsuper-
vised semantic segmentation has not been fully explored.
The pioneering IIC [23] extends mutual information-based
clustering to pixel-level clustering by outputting a probability

map over image pixels. Contrastive Clustering [24] and
SCAN [25] have further improved IIC’s results by incorpo-
rating negative samples and nearest neighbors as supervision.
However, it should be noted that these methods focus on
image clustering and do not address the task of semantic
segmentation. PiCIE [8] proposes incorporating geometric
consistency as an inductive bias to learn invariance and
equivariance for photometric and geometric variations. Our
work builds a baseline approach by adapting PiCIE for
unsupervised LiDAR point cloud segmentation and intro-
duces stronger supervision signals by finding spatiotemporal
correspondences from sequences.
Dynamic Object Segmentation. The dynamic object seg-
mentation approaches can be divided into two categories,
namely map-based and map-free approaches. In map-based
approaches, they segment dynamic objects from LiDAR
point clouds by exploiting prior information from the scene,
such as a prebuilt 3D environmental map, to detect and
track moving objects by comparing the current LiDAR data
against the map [26]. In contrast, map-free approaches rely
solely on raw point clouds to perform segmentation. One
typical map-free approach is clustering-based segmentation
to group points in the point cloud belonging to the same
object based on their point or feature similarity. One popu-
lar clustering-based algorithm is DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) [27], which
partitions data points that are densely packed into the same
group while marking data points that lie in sparser regions
as noise. Other clustering-based approaches includ DBSCAN
[28] and K-means clustering.

III. METHODOLOGY

We aim to segment a point cloud into semantic objects or
regions without providing ground-truth semantic or instance
labels. Formally, given a 3D point cloud (e.g., obtained
from a LiDAR sensor) denoted as 𝑷 = { 𝒑1, 𝒑2, ..., 𝒑𝑛},
where each point 𝒑𝑖 is represented by its 3D coordinates
(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and its associated feature (e.g., intensity), the goal
of unsupervised segmentation is to find a partition of 𝑷 into
𝑚 segments 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑚}, such that: (i) Each segment
𝑆 𝑗 (1 ≤ 𝑗 ≤ 𝑚) represents a coherent region of points that
belongs to the same semantic class or the same instance; (ii)
The segments are mutually exclusive and exhaustive such
that every point in 𝑃 belongs to exactly one segment, and
the segments cover all points in 𝑷.

A. Baseline Approach

Input Representation: Inspired by [6], [12], we prefer the
compact and efficient Range View (RV)-based representation
for LiDARs that projects a 3D LiDAR point cloud onto a
spherical surface. Formally, each point 𝒑𝑖 is projected to an
image coordinate (𝑢𝑖 , 𝑣𝑖) as follows:(

𝑢𝑖
𝑣𝑖

)
=

( 1
2
[
1 − arctan(𝑦𝑖 , 𝑥𝑖)𝜋−1]𝑊[

1 − (arcsin(𝒛𝑖/𝑟𝑖)) + 𝑓down) 𝑓 −1] 𝐻)
(1)

where 𝑟𝑖 =
√︃
𝑥2
𝑖
+ 𝑦2

𝑖
+ 𝑧2

𝑖
is the range value of each point 𝒑𝑘 .

𝐻 and 𝑊 denote the height and the width of the projected



Fig. 1: Method overview: Finding correspondences for static objects and dynamic objects (top). Feature clustering and model
training (bottom)

2D RV image, respectively. 𝑓 = | 𝑓down | + | 𝑓up | defines the
sensor vertical field of view. During projection, the 3D point
coordinate (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), its intensity value 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖 , and the
range value 𝑟𝑖 are stored in separate channels, generating a
[𝐻 ×𝑊 × 5] RV image.

Backbone Network: The backbone network is the pop-
ular SalsaNext [6], an upgraded version of SalsaNet [15],
featuring an encoder-decoder architecture. With its model
parameters 𝒘, we project the RV image representation of
size 𝐻 ×𝑊 × 5 to a feature map 𝑭𝒘 of size 𝐻 ×𝑊 × 𝐶.

Unsupervised Segmentation: Assume we have a set of
unlabeled point clouds 𝑷 𝑗 , 𝑗 = 1, ..., 𝑛, and their correspond-
ing feature representations 𝑭 𝑗𝒘 , 𝑗 = 1, ..., 𝑛, after deploying
the SalsaNext network. We denote 𝒇 𝑗𝒘 (𝑢𝑖 , 𝑣𝑖) ∈ 𝑭 𝑗𝒘 as the
feature map of the 𝑗-th point cloud at the image coordinate
(𝑢𝑖 , 𝑣𝑖). The baseline approach follows PiCIE [8] and alter-
nates between two key steps:

1) Apply K-means to cluster current feature embeddings:

min
𝝁,𝒍

∑︁
𝑖, 𝑗

 𝒇 𝑗𝒘 (𝑢𝑖 , 𝑣𝑖) − 𝝁𝒍 𝑗,𝑖

2

2
(2)

where 𝒍 𝑗 ,𝑖 denotes the cluster label of the pixel at the
location (𝑢𝑖 , 𝑣𝑖) in the RV feature map of the 𝑗-th point
cloud, and 𝝁𝑘 is the 𝑘-th cluster centroid.

2) Use the assigned cluster labels to update the model
parameters based on the following loss:

min
𝒘

∑︁
𝑖, 𝑗

ℓ𝐶𝐸 ( 𝒇 𝑗𝒘 (𝑢𝑖 , 𝑣𝑖), 𝒍 𝑗 ,𝑖 , 𝝁), where (3)

ℓ𝐶𝐸 ( 𝒇 𝑗𝒘 (𝑢𝑖 , 𝑣𝑖), 𝒍 𝑗 ,𝑖 , 𝝁) = − log
𝑒
−𝑑 ( 𝒇 𝑗𝒘 (𝑢𝑖 ,𝑣𝑖 ) ,𝝁𝒍 𝑗,𝑖 )∑
𝑘 𝑒

−𝑑 ( 𝒇 𝑗𝒘 (𝑢𝑖 ,𝑣𝑖 ) ,𝝁𝑘 )

(4)

and 𝑑 (·, ·) denotes the cosine distance. Equation (4)
defines a nonparametric prototype-based classifier to
label pixels based on their distances from the centroids.

We adapt these two key steps for learning equivalence with
respect to geometric transformations on point clouds. We

apply several augmentations to point clouds before projecting
them to RV images. Then, we create two views of the same
point cloud 𝑷 𝑗 via two geometric transformations, 𝐺1 and
𝐺2, and generate two feature maps for 𝒑𝑖 in 𝑷 𝑗 :

𝒛 (1)
𝑗 ,𝑖

= 𝒇 𝑗𝒘 (𝑢𝑖 , 𝑣𝑖 , 𝐺1), (5)

𝒛 (2)
𝑗 ,𝑖

= 𝒇 𝑗𝒘 (𝑢𝑖 , 𝑣𝑖 , 𝐺2). (6)

We then separately perform clustering on the two views to
obtain two separate sets of pseudo-labels and centroids:

𝒍 (1) , 𝝁 (1) = arg min
𝝁,𝒍

∑︁
𝑖, 𝑗

𝒛 (1)𝑗 ,𝑖 − 𝝁𝒍 𝑗,𝑖

2

2
(7)

𝒍 (2) , 𝝁 (2) = arg min
𝝁,𝒍

∑︁
𝑖, 𝑗

𝒛 (2)𝑗 ,𝑖 − 𝝁𝒍 𝑗,𝑖

2

2
(8)

Following PiCIE [8], we use two loss functions to ensure
the consistency of embeddings within each view and across
two views:

𝐸within (𝒘) =
∑︁
𝑖, 𝑗

ℓ𝐶𝐸 ( 𝒇 𝑗𝒘 (𝑢𝑖 , 𝑣𝑖 , 𝐺1), 𝒍 (1)𝑗 ,𝑖 , 𝝁
(1) )+∑︁

𝑖, 𝑗

ℓ𝐶𝐸 ( 𝒇 𝑗𝒘 (𝑢𝑖 , 𝑣𝑖 , 𝐺2), 𝒍 (2)𝑗 ,𝑖 , 𝝁
(2) ), (9)

𝐸cross (𝒘) =
∑︁
𝑖, 𝑗

ℓ𝐶𝐸 ( 𝒇 𝑗𝒘 (𝑢𝑖 , 𝑣𝑖 , 𝐺1), 𝒍 (2)𝑗 ,𝑖 , 𝝁
(2) )+∑︁

𝑖, 𝑗

ℓ𝐶𝐸 ( 𝒇 𝑗𝒘 (𝑢𝑖 , 𝑣𝑖 , 𝐺2), 𝒍 (1)𝑗 ,𝑖 , 𝝁
(1) ), (10)

𝐸total (𝒘) =𝐸within (𝒘) + 𝐸cross (𝒘), (11)

which encourages feature equivariance to geometric transfor-
mations.

B. Spatiotemporal Learning via Auto Labeling

LiDAR Alignment: Although we may have ground-truth
pose for LiDAR sequences, we prefer a flexible approach
wherein we use raw sequential LiDAR sequences as the input
and estimate relative pose between two LiDAR scans on-
the-fly via popular registration algorithms such as Iterative



Closest Point (ICP) [29]. Specifically, given a LiDAR point
cloud sequence 𝑷1:𝑇 of length 𝑇 , we apply the following data
processing pipeline to obtain the estimated poses. First, for
each point cloud 𝑷 (𝑡 ) ∈ 𝑷1:𝑇 , we remove its ground points
using a fast ground segmentation algorithm [30]. Second,
we use the Statistical Outlier Removal (SOR) Filter [31] to
remove the outliers. Finally, we align all point clouds w.r.t.
the first point cloud 𝑷𝑡=1 using ICP [29], which provides the
estimated ego-motion matrix. We now obtain a LiDAR point
cloud sequence aligned to 𝑷𝑡=1 denoted as 𝑷1:𝑇

aligned.
Dynamic Object Segmentation: In a real-world environ-

ment, static objects and background points only have ego-
motion; therefore, identifying static objects and background
regions and finding the correspondences between them is
relatively easy via simple nearest neighbor searches between
two aligned LiDAR point clouds. For example, suppose the
distances of one point to its nearest neighbor points in the
other aligned point clouds are small. In that case, it tends to
be a stationary point from static objects or the background.
However, dynamic objects have extra object motion, which
means points on them cannot easily establish correspon-
dences using nearest neighbor searches due to potentially
significant motion or occlusion.

We identify potentially dynamic objects based on the
observation that a dynamic object will not appear in the
same location in all aligned LiDARs due to object motion.
Therefore, the distances for each point in the dynamic object
in one point cloud 𝑷𝑖aligned to its nearest neighbor points in
other reference point clouds are likely to be higher than those
points in static objects or the background. Formally, given the
timestep set 𝑇ref = {𝑖−𝑀 : 𝑖−1}∪{𝑖+1 : 𝑖+𝑀}, we denote all
reference point clouds w.r.t. 𝑷𝑖aligned as 𝑷ref = {𝑷𝑡aligned}𝑡∈𝑇ref

and define the following rule to compute the dynamic score
of each point and identify the dynamic object points.

score𝑖 = 1 − 𝑒
−𝜆 max

𝑡∈𝑇ref
∥𝒑𝑖−𝒑𝑖,𝑡 ∥2

(12)

𝒑𝑖 ∈
{

dynamic, if score𝑖 ≥ 𝜖
non-dynamic, otherwise

(13)

where 𝒑𝑖,𝑡 denotes the closest point to 𝒑𝑖 on the aligned
point cloud 𝑷𝑡aligned. The number of frames we take into
consideration to compute the dynamic score is 2𝑀 , and 𝜆

is a hyperparameter for controlling sensitivity. The function
in Equation (13) ensures that its output values are between
[0, 1). A higher output value means a higher chance of being
the points from a dynamic object. We introduce a threshold
𝜖 such that the point whose output value is greater than 𝜖

belongs to a dynamic object.
Multiple Dynamic Object Clustering: We choose DB-

SCAN [28] to group these dynamic points into instances.
For each point cloud in the aligned point cloud set 𝑷1:𝑇

aligned,
we first remove all the non-dynamic points. We then augment
each remaining point with the score𝑖 and use DBSCAN to
generate a set of dynamic object clustering:

𝑺dynamic =
⋃

𝑘∈{1, · · · ,𝐾 }
𝒔𝑘 (14)

where 𝒔𝑘 denotes the 𝑘-th clustering step.
Based on the clustering results, we generate a bounding

box 𝒃𝑘 = (𝑐𝑘 , 𝛾, 𝑙, 𝑤, ℎ, 𝑣) for each cluster 𝑺𝑘 where 𝑐𝑘 ∈ R3

is the center coordinates; 𝑙, 𝑤, ℎ denote the length, width, and
height of the bounding box, respectively. 𝑣 is the volume of
a bounding box where 𝑣 = 𝑙𝑤ℎ, 𝛾 is the heading angle.
We remove a bounding box that is either too small or too
large to consider outlier segments. For example, a bounding
box containing less than 𝑁𝑚𝑖𝑛 points or having a side length
greater than a size threshold. Finally, we can obtain a set of
bounding box instances 𝑩 = {𝒃𝑚}𝐾𝑏

𝑚=1 with 𝐾𝑏 ≤ 𝐾 .
Multiple Dynamic Object Tracking: Our next step is to

track instance bounding boxes such that we can associate all
dynamic object instances across multiple frames to establish
the correspondence. To do so, we construct a cost matrix
𝑪 ∈ R𝐾 𝑡

𝑏
×𝐾 𝑡−1

𝑏 between all box instances 𝑩𝑡 at time 𝑡 and all
previous tracked box instances 𝑩𝑡−1 at time 𝑡 − 1. We then
formulate the association problem of instances as a bipartite
graph-based linear assignment problem, which can be solved
with Jonker-Volgenant algorithm [32]. Following [33], we
construct the cost matrix based on instance similarity w.r.t.
three geometric features, namely the center distance, the
overlapping volume between bounding boxes, and the change
of volume between each pair of instances. Using this simple
tracking approach, we obtain the box-level correspondence
between dynamic object instances in different frames.

Auto Correspondence Labeling: Our final auto correspon-
dence strategy for static, dynamic objects, and background
is therefore formulated as follows:

1) For points from static objects and background, we
directly find each point’s correspondence in other point
clouds by finding the closest point in the aligned point
clouds (if their distance is smaller than a threshold).

2) For points from dynamic objects, we find each point’s
correspondence by finding its associated bounding box
and bounding boxes in other point clouds with the
same instance ID. We then apply ICP between all
points within the point’s bounding box and other boxes
to establish the point-to-point correspondences based
on a simple rigid motion assumption.

Spatiotemporal Learning: After establishing the corre-
spondences, we follow the PiCIE learning pipeline for un-
supervised feature learning. The critical difference is that
we conduct the feature learning in a spatiotemporal fashion,
which is considered a stronger augmentation strategy than
the two-view augmentation. Formally, given two point clouds
𝑷𝑡 , 𝑷𝑡−𝑘 at different timestamps 𝑡 and 𝑡 − 𝑘 , we generate the
feature maps for each point 𝒑𝑖 in the point cloud 𝑷𝑡 and
each point 𝒑 𝑗 in the point cloud 𝑷𝑡−𝑘 :

𝒛𝑡 ,𝑖 = 𝒇 𝑡𝒘 (𝑢𝑖 , 𝑣𝑖 , 𝐺1) (15)

𝒛𝑡−𝑘, 𝑗 = 𝒇 𝑡−𝑘𝒘 (𝑢 𝑗 , 𝑣 𝑗 , 𝐺2). (16)

Similar to Equations (7) and (8), we obtain two separate
sets of pseudo-labels and centroids for 𝑷𝑡 , 𝑷𝑡−𝑘 , which are
denoted as 𝒍 (1) , 𝝁 (1) and 𝒍 (2) , 𝝁 (2) , respectively. For each
point 𝒑𝑖 in the point cloud 𝑷𝑡 , we denote its corresponding



TABLE I: Comparison of different methods on Semantic-KITTI dataset.
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Pointnet [10] 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7 14.6
Pointnet++ [11] 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9 20.1
SqueezeSeg [12] 68.8 16.0 4.1 3.3 3.6 12.9 13.1 0.9 85.4 26.9 54.3 4.5 57.4 29.0 60.0 24.3 53.7 17.5 24.5 29.5
SalsaNet [15] 87.5 26.2 24.6 24.0 17.5 33.2 31.1 8.4 89.7 51.7 70.7 19.7 82.8 48.0 73.0 40.0 61.7 31.3 41.9 45.4
SalsaNext [6] 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1 59.5

Baseline (Ours) 25.3 0.3 0.1 0.1 0.2 0.1 0.0 0.0 53.8 0.9 28.0 0.1 11.8 4.3 10.7 1.2 24.8 0.8 0.3 8.6
Baseline + Ego (Ours) 47.0 0.2 0.0 0.3 0.4 0.3 0.1 0.0 65.1 3.7 27.3 1.3 20.1 8.9 15.2 0.6 22.0 0.4 2.5 11.3 (+2.7)
Baseline + ST (Ours) 61.7 0.0 0.0 0.9 0.6 0.2 0.0 0.0 71.7 4.1 19.4 1.4 25.7 10.6 14.9 2.2 32.8 0.5 0.0 13.0 (+4.4)
Baseline + ST + DLoss (Ours) 63.7 0.4 0.2 0.0 0.7 0.1 0.0 0.0 67.4 6.5 23.1 1.0 26.4 10.4 19.1 1.8 32.4 0.4 0.0 13.4 (+4.8)

point in the point cloud 𝑷𝑡−𝑘 as the point 𝒑𝑖→ 𝑗 . We then
introduce additional spatiotemporal consistency of embed-
dings between them to encourage the feature vector of 𝒑𝑖
to match the cluster labels and centroids of 𝒑𝑖→ 𝑗 . Using
the point-wise correspondences, we map the pseudo-label of
one view to another, obtaining another two sets of pseudo-
labels 𝒍 (2→1) and 𝒍 (1→2) . Formally, the spatiotemporal loss
is defined as

𝐸𝑆𝑇 (𝒘) =
∑︁
𝑖,𝑡

ℓ𝐶𝐸 ( 𝒇 𝑡𝒘 (𝑢𝑖 , 𝑣𝑖 , 𝐺1), 𝒍 (2→1)
𝑡−𝑘,𝑖 , 𝝁

(2) )+∑︁
𝑗 ,𝑡

ℓ𝐶𝐸 ( 𝒇 𝑡−𝑘𝒘 (𝑢 𝑗 , 𝑣 𝑗 , 𝐺2), 𝒍 (1→2)
𝑡 , 𝑗

, 𝝁 (1) ) (17)

where 𝐸𝑆𝑇 denotes a spatiotemporal loss. We randomly
select two frames with an interval of 𝑛 uniformly picked
from the set 𝐹 = {5, 10, 15, 20, 25, 30}.

Discriminative Push-Pull Loss Function: In this work,
we customize another discriminative loss function that was
proposed in [7] as a regularization. The key idea of the
original loss function is to pull features that belong to the
same group (e.g., same class) together and push features that
belong to different groups away from each other for learning
discriminative feature representations. As we cluster a point
cloud into a set of clusters using DBSCAN, we customize the
original design by defining the same group based on the size
of their bounding box, observing that point cloud clusters
that belong to the same semantic class tend to have a similar
bounding box size. Hence, we define three semantic groups,
namely small dynamic group, large static group, and ground
group. The integrated loss function is

𝐸final (𝒘) = 𝛼𝐸within (𝒘) + 𝛽𝐸𝑆𝑇 (𝒘) + 𝛾𝐸dloss (𝒘) (18)

where 𝐸within ensures the consistency of embeddings within
each view, 𝐸𝑆𝑇 is the proposed spatiotemporal loss for
ensuring additional spatiotemporal consistency cross frames,
and 𝐸dloss is the customized discriminative loss for feature
regularization.

IV. EXPERIMENTAL RESULTS

We now provide detailed experimental results on a variety
of public domain and our own datasets and conduct a suitable
ablation study.

A. Experimental Setup

We trained and evaluated our model on the following
data sets: Semantic-KITTI [1], Semantic-POSS [34], and
FLORIDA [3], which cover scenarios in autonomous driving
and infrastructure, i.e., traffic intersections. We implemented
our model in PyTorch and trained the model for 100 epochs
with a batch size of 12, using an Adam optimizer with a
learning rate of 0.05. At the 40th epoch, we reduced the
learning rate by a factor of 10. We consider recent state-
of-the-art point-based supervised approaches (PointNet [10]
and PointNet++ [11]) as competitive baselines. Besides, we
compare against RV-based supervised approaches, including
SqueezeSeg [12], SalsaNet [15], SalsaNext [6], Squeeze-
SegV2 [13], RangeNet++ [14], UnpNet [35], and MINet
[36]. We adopt the mean Jaccard Index or intersection-over-
union (mIoU) to evaluate the performance of our method.
mIoU can be expressed as

mIoU =
1
𝐶

𝐶∑︁
𝑖=1

TP𝑖
TP𝑖 + FP𝑖 + FN𝑖

, (19)

where TP𝑖 , FP𝑖 , FN𝑖 denote the number of true positive, false
positive, and false negative predictions for class 𝑖 and 𝐶 is
the number of classes.

B. Experimental Results

As shown in Table I, we reported the performance of
our developed models on the Semantic-KITTI dataset. The
‘baseline’ is the model trained on two-view augmentation of
the single frame described in Section III-A. Both ‘Ego’ and
‘ST’ use the spatiotemporal loss described in Section III-
B. The difference is that we only use static point corre-
spondences for the ‘Ego’ method, while we use both static
point correspondences and dynamic point correspondences
for the ‘ST’ method. ‘DLoss’ denotes the discriminative
loss function. As can be seen, the results demonstrate that
each component of our method has significantly improved
prediction results. On Semantic-KITTI, our method leads to
a performance boost of an absolute value of 4.8% in mIoU,
compared to the baseline’s mIoU of 8.6%.

We evaluated methods on the SemanticPOSS dataset in
Table II and demonstrated that our method significantly
enhances the mIoU. Our method has an absolute 9.1%



TABLE II: Comparison of different methods on SemanticPOSS dataset.

Method people rider car traffic sign truck plants pole fence building bike road mIoU

PointNet++ [11] 20.8 0.1 8.9 21.8 4.0 51.2 3.2 6.0 42.7 0.1 62.2 20.1
SequeezeSegV2 [13] 18.4 11.2 34.9 11.0 15.8 56.3 4.5 25.5 47.0 32.4 71.3 29.8

RangeNet++ [14] 14.2 8.2 35.4 6.8 9.2 58.1 2.8 28.8 55.5 32.2 66.3 28.9
UnpNet [35] 17.7 17.2 39.2 9.5 13.8 67.0 5.8 31.1 66.9 40.5 68.4 34.3
MINet [36] 20.1 15.1 36.0 15.5 23.4 67.4 5.1 28.2 61.6 40.2 72.9 35.1

Baseline (Ours) 5.4 0.8 5.7 0.4 1.0 35.9 0.5 2.6 18.9 3.9 44.7 10.9
Baseline + Ego (Ours) 0.7 0.2 19.3 0.7 4.5 21.5 0.7 0.0 27.6 19.8 66.1 14.7 (+3.8)
Baseline + ST (Ours) 2.8 2.2 27.1 0.6 3.7 25.1 0.2 2.9 39.6 19.4 63.3 17.0 (+6.1)

Baseline + ST + DLoss (Ours) 14.6 0.4 23.8 0.9 0.0 34.7 0.1 7.1 21.0 36.6 80.8 20.0 (+9.1)
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Fig. 2: Ground truth and model prediction on SemanticPOSS
dataset, Semantic-KITTI dataset, and FLORIDA dataset

improvement when compared with the baseline’s mIoU of
10.9%. Figure 2 provides qualitative results—our developed
models efficiently segment roads, vegetation, cars, and other
objects.

C. Ablation Study

Impact of Different Data Augmentations Approaches:
Data augmentation plays a crucial role in model learning:
stronger augmentations could further improve the model
performance. Therefore, we explored several effective point
cloud augmentations including random translation, point flip
along x-axis, random point down-sampling, and random ro-
tation along the z-axis. For random rotation, we only rotated
the point cloud by 180 degrees. The reason is that we found a
180-degree rotation gives better evaluation performance than
arbitrary rotations. As shown in Table III, the results confirm
the effectiveness of each data augmentation strategy. We use
all data augmentation approaches for our developed models.

TABLE III: Ablation study of point cloud augmentations.

translation point flip rotation downsampling mIoU

✓ - - - 6.83
✓ ✓ - - 8.58
✓ ✓ ✓ - 9.82
✓ ✓ ✓ ✓ 10.50

TABLE IV: Ablation study of frame interval for creating
contrastive samples.

Frame Interval 5 10 15 20 25 30 Random

mIoU 13.8 15.2 14.3 14.0 13.8 10.2 15.1

Impact of Frame Interval for Spatiotemporal Contrastive
Learning: Our approach creates spatiotemporal samples by
selecting two adjacent frames with an frame interval. We set
the interval to no larger than 30 frames (equivalent to a 3-
second interval based on the LiDAR frame rate) to ensure
that the two frames share sufficiently overlapped areas. To
derive the best interval, we tested different interval values
from the set 𝐹. As shown in Table IV, for the ‘random’
interval, we randomly selected a interval from 𝑇 for each
pair. The interval 10 and the random interval perform better
compared to other intervals. Our study suggests that the
frame interval is an important hyperparameter and that a
random interval may be a better strategy.

Generalization Capabilities: We present the general-
ization capabilities on various LiDAR datasets collected
from different environments. We tested our method on the
FLORIDA dataset collected from a traffic intersection [3].
Unlike the Semantic-KITTI dataset, collected from an on-
board LiDAR mounted on a moving vehicle, the stationary
LiDAR of the FLORIDA dataset provides an opportunity
to analyze a complex, crowded, and safety-critical intersec-
tion containing a large number of pedestrians. As most of
the dataset’s background is static, we only considered the
segmentation performance of foreground objects, including
static and dynamic objects. To support the training and eval-
uation, we bootstrapped the 3D bounding box-based tracking
annotations of the dataset into point-wise semantic labels. We
group all objects into three classes: Vehicles (consisting of
cars, buses, and trucks), Pedestrians or People Class (con-
sisting of pedestrians and cyclists) and Background Class
(consisting of non-movable objects like roads and buildings).



Fig. 3: Foreground-background segmentation: ground truth (left), heuristic method (middle), and simple threshold (right)

TABLE V: Foreground-background segmentation on
FLORIDA dataset.

Background Foreground mIoU

Training Set Simple Threshold 95.6 54.4 75.0
Heuristic 97.0 68.7 82.8

Test Set Simple Threshold 96.5 44.3 70.4
Heuristic 97.9 63.7 80.8

TABLE VI: Unsupervised semantic segmentation on Florida
testing set using a single shot method and cascaded methods

Vehicle People Background mIOU

Single Shot 60.5 7.4 96.3 54.7
Dynamic-based Cascade 47.0 24.3 96.4 55.9
Heuristic-based Cascade 69.1 38.0 98.1 68.4

We address this segmentation task by decomposing it
into two sub-problems: segmenting foreground and back-
ground points and classifying foreground points into se-
mantic classes. The key motivation is to leverage the prior
information—most background regions remain the same. We
seek to separate foreground and background points without
ground truth labels by generating pseudo-labels for a binary
segmentation model. We explored two method variants. The
first one (‘Simple Threshold’) creates a pseudo-label using
a simple dynamic score in Equation (12): a point belongs to
the foreground if it has a high dynamic score, otherwise it
is in the background. However, the major drawback is that
such an approach cannot distinguish the points of parked cars
as they are static but belong to the foreground. Therefore,
we proposed the second method (‘Heuristic’) of classifying
points into foreground, background, and uncertain groups.

We adopted the same approach as in Section III-B to
identify dynamic and static points. The main modification is
for the static points: we try to identify those points belonging
to parked cars and classify them into the uncertain group. To
do so, we run the DBSCAN algorithm on the static points
and estimate the minimal bounding box of each clustering.
For bounding boxes of a similar size to a car and close to
the ground plane, we set their points as uncertain.

We use the pseudo-label of foreground and background
points for model training and ignore uncertain points. The
backbone network used is SalsaNext with a minor modifi-
cation to change the output size of the last layer to one.

A sigmoid function is adopted to output (0, 1) values. The
root mean square error (RMSE) loss is adopted as the
objective function. We reported the FLORIDA results in
Table V. Compared to ‘Simple Threshold’, i.e., requiring
multiple frames to determine the dynamic score, ‘Heuristic’
is advantageous because it only needs a single frame fed
to a model to obtain a better foreground-background seg-
mentation. ‘Heuristic’ leads to a performance boost of an
absolute 14.3% and 19.4% on the FLORIDA training set and
test set respectively. Figure 3 demonstrates the classification
results. Cars within the blue rectangle are parked cars.
‘Simple Threshold’ wrongly classifies all parked cars as
background objects. In contrast, ‘Heuristic’ based approach
can effectively classify parked cars as foreground objects.

After foreground-background segmentation, we run the
auto correspondence labeling algorithm proposed in Sec-
tion III-B on foreground points, obtaining point-wise corre-
spondences. We use a training strategy similar to training
a semantic segmentation model for FLORIDA dataset as
used for Semantic-KITTI dataset and SemanticPOSS dataset.
One difference is that we only feed foreground points to
network and keep dynamic object correspondences. We label
this method ‘Heuristic-based Cascade’. For comparison, we
also design two other experiments. For the first, we use
the same training strategy as Semantic-KITTI and Semantic-
POSS datasets, marked as ‘Single Shot’. The second one is
similar to the ‘Heuristic-based Cascade’ method except that
the foreground-background segmentation results are gener-
ated by a simple threshold method, marked as ‘Dynamic-
based Cascade’. The ‘Single Shot’ method outperforms the
‘Dynamic-based Cascade’ with regard to IoU of ‘Vehicle’
but shows poor performance on the ‘People’ class, which
indicates that a cascade approach is beneficial for tiny
classes, i.e., people. The results (cf. Table VI) show that
the ‘Heuristic-based Cascade’ method outperforms the other
two methods on all three categories, which demonstrates
that a good foreground-background segmentation model can
largely benefit the cascade approaches.

V. CONCLUSIONS

We have introduced a novel framework for addressing un-
supervised segmentation in outdoor LIDAR sequences. A key
contribution of our work is in learning the equivariance of
point clouds by establishing spatiotemporal correspondences
between point cloud pairs. To enhance the generalization



capabilities of our method, we have further demonstrated
a cascaded approach to tackle the unsupervised segmenta-
tion for traffic intersection scenarios. To the best of our
knowledge, we are the first to perform unsupervised LiDAR
semantic segmentation in both autonomous driving and in-
frastructure contexts. The experimental results demonstrate
that our approach achieves competitive performance even
when compared to some state-of-the-art supervised methods.
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