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Abstract— This paper investigates the prediction of vessels’
arrival time to the pilotage area using multi-data fusion and
deep learning approaches. Firstly, the vessel arrival contour
is extracted based on Multivariate Kernel Density Estimation
(MKDE) and clustering. Secondly, multiple data sources, in-
cluding Automatic Identification System (AIS), pilotage booking
information, and meteorological data, are fused before latent
feature extraction. Thirdly, a Temporal Convolutional Network
(TCN) framework that incorporates a residual mechanism is
constructed to learn the hidden arrival patterns of the vessels.
Extensive tests on two real-world data sets from Singapore have
been conducted and the following promising results have been
obtained: 1) fusion of pilotage booking information and mete-
orological data improves the prediction accuracy, with pilotage
booking information having a more significant impact; 2) using
discrete embedding for the meteorological data performs better
than using continuous embedding; 3) the TCN outperforms the
state-of-the-art baseline methods in regression tasks, exhibiting
Mean Absolute Error (MAE) ranging from 4.58 min to 4.86
min; and 4) approximately 89.41% to 90.61% of the absolute
prediction residuals fall within a time frame of 10 min.

I. INTRODUCTION

Pilotage is a mandatory requirement for many vessels
entering and exiting ports worldwide and is an essential
component of safe and efficient navigation [1]. Pilots are
highly trained professionals aimed to guide vessel captains,
ensuring vessels’ safe passage in and out of a port. The
pilotage area is a fixed water zone the pilot embarks on the
vessel to commence pilotage service. The efficient operation
of ports relies on a delicate balance of timing and coordi-
nation, and the Just-In-Time (JIT) arrival of vessels to pilot
boarding areas is a critical component of this process. In
order to facilitate JIT operations between pilotage service and
arriving vessels, it is essential for the pilot operation center to
accurately monitor vessel arrival times and adjust schedules
accordingly. This not only has the potential to improve the
overall efficiency of operations, but it also mitigates the
risks associated with vessels waiting at pilot boarding areas
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as a result of arriving too early. Given the diverse arrival
behaviors that vessels exhibit [2], accurately predicting their
arrival patterns becomes challenging due to the increased
uncertainty. This uncertainty, such as movement behaviors
and pilotage operation behaviors, makes it difficult to obtain
robust predictions that can withstand potential disruptions or
variations in the vessels’ schedules.

In this study, we present an approach for predicting vessel
arrival time to pilotage areas using multi-data fusion and
deep learning. This method has the potential to enhance the
efficiency of port operations by enabling Just-in-Time (JIT)
operations at pilot boarding areas. The following are the key
contributions to highlight:

∙ To the best of our knowledge, this is the first study to
explore the forecasting of the arrival time of vessels to
pilotage areas;

∙ We propose a hybrid approach based on statistical
learning and machine learning to identify vessel arrival
patterns by extracting vessel arrival contour using his-
torical trajectory data;

∙ We first develop a Temporal Convolutional Network
(TCN) framework that integrates residual blocks to
model the problem of vessel arrival time prediction;

∙ We evaluate the performance of our proposed method on
data sets obtained from Singapore and compare it with
other advanced deep learning algorithms to validate its
effectiveness and superiority.

The subsequent parts of this article are organized as
follows. Section II presents a summary of previous studies
on predicting ship arrival time. In Section III, we explain the
proposed method in detail, including vessel arrival contour
extraction and TCN-based model using multi-data fusion.
Section IV details the results of the experiments and analy-
ses. Finally, in Section V, we conclude this study.

II. RELATED WORK
The existing approaches for modelling vessel arrival time

prediction can be categorized into two types: statistical mod-
els and machine learning models. The authors in [3] formu-
lated a data-driven path-finding algorithm for vessel arrival
time prediction. The algorithm involves a set of parameters
conveniently optimized for the area under investigation. The
authors in [4] introduced a path-finding algorithm to find
possible vessel trajectories using Automatic Identification
System (AIS) data. Then the Markov Chain property and
Bayesian Sampling were introduced to estimate the Speed
Over Ground (SOG) of a vessel. Finally, the Estimated Time
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of Arrival (ETA) was estimated from the derived SOG values
for the predicted trajectory. Bodunov et al. [5] constructed
a feed-forward neural network to forecast the arrival time
of vessels. Ogura et al. [6] extracted the route and used
Bayesian learning to calculate the speed along the voyage
by considering the impact of weather. In the publication
referenced as [7], the authors employed a Fuzzy Rule-Based
Bayesian Network (FRBBN) to evaluate and forecast the on-
time arrival of a liner container vessel at ports of call, even
when faced with uncertain circumstances. In [8], the authors
concluded that Gated Recurrent Unit (GRU) outperforms
Gradient Boosting Decision Trees (GBDT) and Multi-Layer
Perceptron (MLP) based on AIS data. Yu et al. [9] addressed
the problem of ship arrival prediction (delay or advance
arrival prediction) by using three methods, i.e., BPNN,
Classification And Regression Tree (CART), and Random
Forecast (RF). The prediction results show that the RF model
outperforms BP and CART models. In [10], the authors
provided a supervised learning approach for ETA prediction
for intermodal freight transport networks involving multiple
modes of transportation. Mekkaoui et al. [11] showed a Long
Short-Term Memory (LSTM)-based model for vessel arrival
time prediction using different data sources, including vessel
characteristics, AIS data, and weather data. Valero et al. [12]
conducted a practical analysis of prior studies on predicting
ETA for container vessels and determined that RF achieved
the best performance. Meanwhile, Cammin et al. [13] utilized
the name and shipping line type of vessels as features to
forecast arrival delays using the Support Vector Regression.

III. METHOD

The vessel’s arrival time is determined as the moment
when the vessel reaches the designated pilot boarding areas
of the port. Fig. 1 illustrates the framework for predicting the
arrival time of vessels to the pilotage area. This framework
consists of five modules: 1) AIS data, 2) arrival contour, 3)
multi-data fusion and feature, 4) modelling, and 5) evalu-
ation. The subsequent sections of this document delve into
the specifics of each module. The first two modules, i.e., AIS
data and arrival contour, are further explained in Section III-
A, while the subsequent two modules, i.e., multi-data fusion
and feature, and modelling, are elaborated in Section III-B.
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Fig. 1. The framework of prediction of the vessel arrival time to pilotage
area.

A. Vessel Arrival Contour Extraction
Assume that there are a total of 𝑛 historical trajectories

that lead to a Pilot Boarding Ground (PBG), for each AIS

trajectory 𝑖, we can determine its nearest point to the PBG
and denote it as 𝑋𝑖, as shown by

𝑋 =
(

𝑋1, 𝑋2,⋯ , 𝑋𝑛
)

, (1)

and
𝑋𝑖 =

(

𝑥𝑖1, 𝑥𝑖2
)T ∈ ℝ2, (2)

where 𝑥𝑖1 and 𝑥𝑖2 are the longitude and latitude, respectively.
The following objective is to estimate the probability density
function, represented by 𝑓

(

𝑥1, 𝑥2
)

, of these points 𝑋. We
propose to use the Multivariate Kernel Density Estimation
(MKDE) method to derive an estimate of 𝑓

(

𝑥1, 𝑥2
)

. The
formulation of MKDE is expressed as

𝑓ℎ
(

𝑥1,⋯ , 𝑥𝑑
)

= 1
𝑛

𝑛
∑

𝑖=1

1
ℎ1⋯ℎ𝑑

𝐾
(

𝑥1 − 𝑥𝑖1
ℎ1

,⋯ ,
𝑥𝑑 − 𝑥𝑖𝑑

ℎ𝑑

)

,

(3)
where 𝑑 is the dimension of the variables, 𝐾 is the kernel
function, and ℎ is the bandwidth vector. In this study, 𝑑 = 2,
and the Gaussian kernel is chosen as the kernel.

Following that, those points with high probability density
values, e.g., greater than a threshold, are selected for the
follow-up step to extract arrival contour and to define the
arrival of vessels to the pilot boarding ground, as shown by

𝑋̂ =
{

𝑋𝑖, if 𝑓ℎ
(

𝑥1,⋯ , 𝑥𝑛
)

> 𝑘th percentile
}

. (4)

In this study, we established the threshold by considering
the density values of all the points and selecting the value
corresponding to the 𝑘th percentile.

Next, we utilize the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm, which is a
density-based spatial clustering method, to detect the main
cluster and eliminate outlier clusters. DBSCAN is able to
find clusters with arbitrary shapes and clusters that contain
noise, which is appropriate for processing the spatial data
in this study. The bounding polygon of the main cluster is
then extracted to form a contour. When a vessel enters this
contour, it is recognized as arriving at the PBG.

Algorithm 1 Vessel arrival contour extraction
Input: vessels’ historical trajectories to a PBG
Output: vessel arrival contour

1: Scan histrical trajectories and get 𝑋 based on Eq. (1);
2: Apply MKDE to estimate the probability density func-

tion 𝑓
(

𝑥1, 𝑥2
)

with Eq. (3);
3: Get points 𝑋̂ with high density using Eq. (4);
4: Apply DBSCAN to detect the main cluster and eliminate

outlier clusters;
5: Extract contour based on the main cluster.

B. TCN-Based Model Using Multi-Data Fusion
TCN is being used in this context due to its specific

attributes. The notable components of TCN consist primarily
of causal convolution, dilated convolution, and residual block
[14]. Causal convolution is a specific type of convolution
that is utilized in modelling temporal data to ensure that
the temporal ordering is preserved. This means that when
considering the output at time 𝑡, the convolution process can



only involve elements from time 𝑡 or earlier in the previous
layer. It cannot take into account any future time points
beyond 𝑡. The purpose of using causal convolution in TCN
is to prevent any leakage of information from the future to
the past [15], as shown by Fig. 2.

Fig. 2. Illustration of the dilated casual convolution.

Dilated convolution is a type of convolution where the
kernel is expanded by creating holes between its elements.
This expansion allows for a significant increase in the recep-
tive field without sacrificing coverage [16]. The filters for
dilated convolution can be represented by a function 𝐹 with
a size of 𝑓 , while 𝑋 represents the input time-series data.
The convolved value at timestamp 𝑡 is computed using the
following equation:

v(𝑡) = (𝑋 ∗𝑑 𝐹 )(𝑡) =
𝑓−1
∑

𝑖=0
𝐹 (𝑖) ⋅𝑋𝑡−𝑑⋅𝑖, (5)

where 𝑑 is the dilation rate and 𝑓 is the filter size. This
equation essentially means that the value at time 𝑡 is obtained
by multiplying the filter elements with the input data at time
points 𝑡−𝑑 ⋅ 𝑖 for 𝑖 = 0, 1,⋯ , 𝑓 −1 and summing the results.

The architecture of the residual block, which is a crucial
component, is shown in Fig. 3. In a single residual block, the
input is processed through two stacked dilated causal convo-
lutional layers and two Rectified Linear Unit (ReLU) activa-
tion layers. Additionally, two layers of batch normalization
are used to speed up the network convergence and prevent
overfitting. The output of the combined transformations is
denoted by 𝜏(𝑋,𝑊 ), where 𝑋 is the input and 𝑊 represents
the weights. If the dimensions of the input and output are the
same, the final output (𝑦) of the residual block is obtained
by adding the output of the transformation 𝜏(𝑋,𝑊 ) to the
input 𝑋, as shown by

𝑦 = 𝜏(𝑋,𝑊 ) +𝑋. (6)

However, if the dimensions are different, a 1×1 convolution
is first applied to the input 𝑋 before the addition operation.

Assuming that we have the historical features of a vessel
at timestamps (𝑡+1, 𝑡+2,⋯ , 𝑡+𝑚), the objective is to predict
when the vessel will arrive at the pilotage area. The input 𝑋
of the model is represented by

𝐱𝑗 = ((𝜑𝑗1, 𝜆𝑗1, 𝑣𝑗1, 𝑐𝑗1, 𝑡𝑗1, 𝑟𝑗1, 𝑤
𝑠
𝑗1, 𝑤

𝑑
𝑗1),⋯ ,

(𝜑𝑗𝑚, 𝜆𝑗𝑚, 𝑣𝑗𝑚, 𝑐𝑗𝑚, 𝑡𝑗𝑚, 𝑟𝑗𝑚, 𝑤
𝑠
𝑗𝑚, 𝑤

𝑑
𝑗𝑚))

𝑇 ,
(7)
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Fig. 3. The overall architecture of TCN for vessel arrival time prediction,
where 𝑑 represents the dilation rate, 𝑘𝑠 is the kernel size, 𝑓 stands for the
filter size, and 𝐿 denotes the number of layers.

and
𝐗 =

(

𝐱1, 𝐱2, ⋅ ⋅ ⋅, 𝐱𝑁−1, 𝐱𝑁
)

∈ ℝ𝑁×𝑚×9, (8)

where 𝜑, 𝜆, 𝑣, 𝑐, 𝑡, 𝑟, 𝑤𝑠 and 𝑤𝑑 stands for the latitude,
longitude, speed, course, time left until the Confirmed Ser-
vice Time (CST), rainfall, wind speed and wind direction.
CST is defined as the confirmed service start time for the
provision of pilotage service [17]. The sequence length is
denoted by 𝑚, and the number of observations is denoted
by 𝑁 . The rainfall and wind speed features are transformed
into discrete binary features using an embedding process, as
demonstrated by

𝑟𝑗𝑖 =
{ 1 𝑟𝑗𝑖 ⩾ 𝜀𝑟

0 𝑟𝑗𝑖 < 𝜀𝑟,
(9)

and

𝑤𝑠
𝑗𝑖 =

{

1 𝑤𝑠
𝑗𝑖 ⩾ 𝜀𝑤𝑠

0 𝑤𝑠
𝑗𝑖 < 𝜀𝑤𝑠 ,

(10)

where 𝜀𝑟 and 𝜀𝑤𝑠 are the thresholds for rainfall and wind
speed, respectively. Furthermore, the wind direction is em-
bedded using the Canonical Encoding Rules, as formulated
by

𝑤𝑑
𝑗𝑖 =

(

sin
(

𝜃𝑗𝑖
)

+ 1
2

,
cos

(

𝜃𝑗𝑖
)

+ 1
2

)

. (11)

The ultimate output of the entire network can be obtained
using Eq. (6), and a Fully-Connected (FC) layer and a
sigmoid activation layer are attached to generate the output
within the range of [0, 1], as indicated by

𝑦 = FC(𝑦), (12)



and
𝑦 = sigmoid(𝑦). (13)

The groundtruth arrival time is denoted by 𝑦̂𝑖, and the
output from TCN is denoted by 𝑦𝑖. Therefore, the loss can
be computed as follows:

(𝑊 , 𝑏) = 1
𝑁

𝑁
∑

𝑖=1

(

𝑦𝑖 − 𝑦̂𝑖
)2 , (14)

where 𝑁 means the sample size, and 𝑊 and 𝑏 stand for the
neural network’s weights and biases, respectively.

During network training, the objective is to minimize the
overall loss function by adjusting the weights and biases
using the training data. This allows the network to learn and
improve its predictions over time, as shown by

(𝑊 ∗, 𝑏∗) = argmin
𝑊 ,𝑏

(𝑊 , 𝑏), (15)

where (𝑊 , 𝑏) is the overall loss function of Eq. (14). To
find the optimal parameters (𝑊 ∗, 𝑏∗), the widely-used back-
propagation algorithm is employed in a similar way to train
a basic deep neural network. An Adam optimizer is used
during the back-propagation process.

IV. EXPERIMENTS AND EVALUATION
A. Data Sets

TABLE I
DATASET DESCRIPTION

PBG Trajectory Training
Sample

Test
Sample

Pred. Start
Time (h)

PEBGA 3,658 171,798 42,950 1.14
PEBGC 8,901 334,716 83,680 1.30
Notes: “Pred. Start Time“ refers to the average time it takes for vessels
to travel from the area where the predictions begin to the PBG.

Two real-world data sets, including AIS, pilotage booking
data, and local meteorological data, from the Singapore Strait
are used as experimental data in this study. The data spans 1
year, from January 1, 2018 to December 31, 2018. These data
sets collect the trajectories of vessels heading to two PBGs
in the Port of Singapore: the Eastern Boarding Ground “A”
(PEBGA) and the Eastern Boarding Ground “C” (PEBGC).
More details about the PBGs can be found at the PSA
Marine’s website1. The trajectories of vessels heading to
these PBGs are extracted to construct the training and test
data, with a preprocessing interpolation time interval of 1
minute. The earlier 80% data are used for model training,
and the later 20% are used for tests. This division is made
because the data follows a time-series pattern, and it is
necessary to use only the preceding data for training [18].
The predictions are consistently generated at intervals of
1 minute. Consequently, a single trajectory can produce
multiple samples for both training and testing purposes. It
takes approximately 1.14-1.30 hours of travel time to reach
the PBG from the prediction starting point. More information
about the data sets can be referred to Table I.

1https://www.psamarine.com/wp-content/uploads/
2017/08/Information-for-Merchant-Ships.pdf

B. Experimental Settings

Table II shows the specific values used for each parameter.
For the extraction of the arrival contour, the value for 𝑘 (Eq.
(4)) was set to 75. In the case of the TCN framework, we
set the values of 𝑚 (Eq. (7)), 𝑘𝑠 (Fig. 3), 𝑓 (Eq. (5)) and
𝐿 (Fig. 3) to be 10, 15, 5, and 6 respectively. For feature
embedding, we used values of 7.6 mm and 22 knots for 𝜀𝑟
(Eq. (9)) and 𝜀𝑤𝑠 (Eq. (10)) respectively, which were scaled
to represent heavy rain and strong breeze. The performance
of the models was assessed using the Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and Coefficient
of Determination (R2). Python and TensorFlow were used to
develop the models in this study.

TABLE II
PARAMETER SETTING

Parameter 𝑘 ℎ 𝑚 𝜀𝑟 (mm)
Value 75 0.001 10 7.6

Parameter 𝜀𝑤𝑠 (knot) 𝑘𝑠 𝑓 𝐿
Value 22 15 5 6

(a) (b) (c)

Fig. 4. Vessel arrival contour extraction for PEBGA. (a) heatmap of the
closest points to PEBGA. (b) refined area after clustering and removing
outlier clusters. (c) extracted contour (bounding polygon).

(a) (b) (c)

Fig. 5. Vessel arrival contour extraction for PEBGC. (a) heatmap of the
closest points to PEBGC. (b) refined area after clustering and removing
outlier clusters. (c) extracted contour (bounding polygon).

C. Results and Analyses

Fig. 4 and Fig. 5 depict the processes involved in obtaining
the arrival contours for PEBGA and PEBGC. Fig. 4(a) and
Fig. 5(a) show a heatmap that displays the closest points to
the pilot boarding ground. Fig. 4(c) and Fig. 5(c) depict the
refined area after applying MKDE and DBSCAN clustering.
The final arrival contours for PEBGA and PEBGC are shown
in Fig. 4(b) and Fig. 5(b), respectively. These contours are
utilized to define the arrival of the vessel and to determine
the groundtruth arrival time for each trajectory.

https://www.psamarine.com/wp-content/uploads/2017/08/Information-for-Merchant-Ships.pdf
https://www.psamarine.com/wp-content/uploads/2017/08/Information-for-Merchant-Ships.pdf


TABLE III
PREDICTION PERFORMANCE FOR PEBGA

Model MAE (min) RMSE (min) R2

w/o rainfall & wind 4.66 7.99 0.8790
w/o CST 6.37 9.87 0.8154

wth rainfall & wind
(continuous) 4.75 7.41 0.8960

wth rainfall & wind
(discrete) 4.58 6.82 0.9117

Notes: "w/o" and "wth" are short for "without" and "with", respectively.

TABLE IV
PREDICTION PERFORMANCE FOR PEBGC

Model MAE (min) RMSE (min) R2

w/o rainfall & wind 4.97 6.83 0.8813
w/o CST 6.08 8.96 0.7981

wth rainfall & wind
(continuous) 5.03 6.79 0.8828

wth rainfall & wind
(discrete) 4.86 6.61 0.8890

Notes: "w/o" and "wth" are short for "without" and "with", respectively.

The prediction results of our method for PEBGA and
PEBGC are presented in Table III and Table IV, respec-
tively. Incorporating meteorological data improves the R2

from 0.8790 to 0.9117 for PEBGA and from 0.8813 to
0.8890 for PEBGC. However, pilotage information (i.e.,
CST) contributes more to the improvement of R2, enhancing
it by 9.63% (0.9117 vs. 0.8154) for PEBGA and by 9.09%
(0.8890 vs. 0.7981) for PEBGC. Additionally, using discrete
vectors to embed the wind and rainfall features improves
the prediction performance for both data sets. Specifically,
compared to using continuous features, it reduces the MAE
from 4.75 min to 4.58 min for PEBGA and from 5.03 min
to 4.86 min for PEBGC.

(a) PEBGA (b) PEBGC

Fig. 6. Histogram of MAE on the test data.

The proposed TCN framework is benchmarked with eight
commonly used baseline models for time-series regres-
sion, including LSTM [11], GRU, Bidirectional LSTM (Bi-
LSTM), Bidirectional GRU (Bi-GRU), Convolutional Neural
Network (CNN) [19], LSTM_BiLSTM [20], LSTM Seq2Seq
[21], and Stacked Bi-GRU (SBi-GRU) [22]. The prediction
results of TCN as well as the baseline models for PEBGA
and PEBGC have been presented in Tables V and VI, re-
spectively. Our TCN model shows superior accuracy, with an
MAE of only 4.58 min for PEBGA and 4.86 min for PEBGC,
outperforming the best baseline model by at least 0.96%

(0.9117 vs. 0.9021 for PEBGA) in terms of R2. LSTM, GRU,
Bi-LSTM, and Bi-GRU are popular RNN-based frameworks
for sequential data modelling because of their strong capabil-
ity of learning long-term interdependencies [23]. Bi-LSTM
and Bi-GRU can learn the sequential input data in both
forward and backward directions, enabling a higher learning
capability on sequential data. Fig. 6(a) and Fig. 6(b) show the
histograms of MAE for PEBGA and PEBGC, respectively.
For PEBGA, 90.61% of the predictions’ MAEs are within
[0, 10 min], and 68.09% are within [0, 5 min]. For PEBGC,
89.41% of the predictions’ MAEs are within [0, 10 min], and
63.65% are within [0, 5 min].

TABLE V
BANCHMARKING OF PREDICTION PERFORMANCE FOR PEBGA

Model MAE (min) RMSE (min) R2

LSTM 4.74 7.34 0.8978
GRU 4.76 7.37 0.8971

Bi-LSTM 4.79 7.35 0.8976
Bi-GRU 4.67 7.18 0.9021

CNN 5.16 7.70 0.8876
LSTM_BiLSTM 4.92 7.50 0.8934
LSTM seq2seq 5.60 8.21 0.8723

SBi-GRU 5.05 7.62 0.8898
TCN 4.58 6.82 0.9117

TABLE VI
BANCHMARKING OF PREDICTION PERFORMANCE FOR PEBGC

Model MAE (min) RMSE (min) R2

LSTM 5.07 7.04 0.8739
GRU 5.13 7.16 0.8698

Bi-LSTM 5.08 7.08 0.8724
Bi-GRU 5.08 6.98 0.8760

CNN 5.64 7.98 0.8383
LSTM_BiLSTM 5.09 7.11 0.8714
LSTM seq2seq 5.55 7.74 0.8478

SBi-GRU 5.13 7.14 0.8703
TCN 4.86 6.61 0.8890

V. CONCLUSIONS
This paper proposes a method to predict vessel arrival

time to pilot boarding grounds based on multi-data fusion
and deep learning. Initially, vessel arrival is defined using
MKDE and DBSCAN clustering, which helps in extracting
the vessel arrival contour. Subsequently, deep learning is
applied using multi-data fusion, which incorporates AIS data,
pilotage booking information, and meteorological data as
inputs. A multi-layer TCN framework is utilized to recognize
the vessel arrival pattern and predict the arrival time. The
experiments carried out in Singapore, using two real-world
data sets, demonstrate that the TCN framework for arrival
time prediction is highly effective, achieving a high R2
value of 91.17% and 88.90%, with about 89.41%-90.61%
of the absolute prediction residuals located within 10 min-
utes. Additionally, the proposed method outperforms other
models such as LSTM, GRU, Bi-LSTM, Bi-GRU, CNN,
LSTM_BiLSTM, LSTM seq2seq, and SBi-GRU. The inclu-
sion of pilotage booking information and meteorological data



has been found to enhance prediction accuracy, with pilotage
booking information being the more significant contributor.
The use of discrete embedding for meteorological data is
more effective than using continuous embedding.
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