arXiv:2308.02197v1 [cs.NI] 4 Aug 2023

Edge Dynamic Map architecture for C-ITS applications

Mikel Garcia'2, Gorka Vélez!, Josu Pérez', Angel Martin', Zaloa Fernindez! and Naiara Aginako?

Abstract— Cooperative Intelligent Transport Systems (C-
ITS) create, share and process massive amounts of data which
needs to be real-time managed to enable new cooperative and
autonomous driving applications. Vehicle-to-Everything (V2X)
communications facilitate information exchange among vehicles
and infrastructures using various protocols. By providing com-
puter power, data storage, and low latency capabilities, Multi-
access Edge Computing (MEC) has become a key enabling
technology in the transport industry. The Local Dynamic Map
(LDM) concept has consequently been extended to its utilisation
in MECs, into an efficient, collaborative, and centralised Edge
Dynamic Map (EDM) for C-ITS applications. This research
presents an EDM architecture for V2X communications and
implements a real-time proof-of-concept using a Time-Series
Database (TSDB) engine to store vehicular message informa-
tion. The performance evaluation includes data insertion and
querying, assessing the system’s capacity and scale for low-
latency Cooperative Awareness Message (CAM) applications.
Traffic simulations using SUMO have been employed to gener-
ate virtual routes for thousands of vehicles, demonstrating the
transmission of virtual CAM messages to the EDM.

I. INTRODUCTION

Recent developments in the automotive and telecommu-
nications industries have garnered significant interest in
implementing Vehicle-to-Everything (V2X) standards and
Cooperative Intelligent Transport Systems (C-ITS). These
technologies facilitate communication between vehicles, sur-
rounding infrastructure, and among vehicles themselves. This
enables the development of new cooperative driving and
information services that would not be possible without
V2X and C-ITS, thereby enhancing the efficiency, safety,
and sustainability of transportation systems. Thanks to V2X
technologies, road users can share messages using standards
such as ETSI Cooperative Awareness Message [1] (CAM)
to send information about each other’s dynamics, position
and attributes or ETSI Collective Perception Messages [2]
(CPMs) adding information about road users or obstacles
detected by an on-board perception system. The standards
establish the format and set of rules for the generation
frequency of messages, which vary according to factors such
as road user dynamics, manoeuvres, or other considerations.

On Board Units (OBU) can generate, send and receive
these standardised messages using 5G networks or IEEE
802.11p, the basis of the DSRC (Dedicated Short Range
Communications) and ITS-G5 [3]. However, there are no
standardised ways to manage (fuse, align, and integrate)

Funded by the European Union, under Horizon 2020 research and
innovation programme (project SGMETA, grant agreement 957360).

1 Vicomtech Foundation, Basque Research and Technology Alliance
(BRTA), Mikeletegi 57, 20009, Donostia-San Sebastidn (Spain).

2 University of the Basque Country (UPV/EHU), Donostia-San Sebastidn
(Spain).

vehicular messages between different traffic participants. A
Local Dynamic Map (LDM) serves as a local and centralised
data structure generated from heterogeneous data sources,
including onboard sensors and V2X messages. The LDM
concept was originally introduced in the SAFESPOT project,
proposing a four-layer structure based on the level of dy-
namicity of the stored objects [4]. Several models extending
base static maps have been proposed for the categorisation
of the environment, including a five-layer structure used by
Lyft [5], and a six-layer structure proposed in [6]. In any
case, there is no established method for implementing an
LDM data structure. Some authors, including the seminal
SAFESPOT project, proposed the use of a SQL database
[71, [8], for instance, using PostgreSQL and PostGIS as a
library for spatial operation extending PostgreSQL [7]. In
the LDM approach proposed in [9], the data received from
V2X messages is added either to the static database or to
the stream database implemented by PipelineDB. In [10],
a relational Local Dynamic Map (R-LDM) embodied as an
interconnected graph of nodes is used for risk estimation.
A similar approach is used in [11], implementing a graph
database with a focus on interoperability with OpenLABEL
as a common data format. Inspired by the concept of LDMs,
a vehicular video streaming solution that keeps a history log
of all data collected by the cameras is proposed in [12], [13].

In this work, we propose to extend the concept of LDM to
Edge Dynamic Map (EDM), to fuse V2X communications,
exploiting the ultra-low latency of 5G networks, and the
capabilities of Multi-access Edge Computing (MEC) com-
puting. MEC brings data storage and computing power ca-
pabilities closer to the edge network, allowing lower latency
and faster processing in applications that require real-time
communication and decision-making. These features make
MEC technology suitable for several vehicular applications
[14]. The traditional V2X approach on ad-hoc networks
is based on broadcast messages: vehicles send the same
message to the rest of the vehicles, which are all listening.
So each vehicle needs to construct its own LDM based on
its own perception and the messages that it receives from
surrounding vehicles. In this paper, we propose a centralised
server deployed in a MEC, that collects C-ITS messages from
connected vehicles and builds up an EDM. This EDM can
be accessed by any connected vehicle or by an application
or service deployed in the MEC.

The proposed EDM follows the structure of the original
four-layer implementation; however, this work will focus on
the static and dynamic layer using a Time-Series Database
(TSDB). The TSDB contains the dynamic information cap-
tured by the connected vehicles and received through C-

ITS messages. We propose using a TSDB as it is more
suited to the time-dependent nature of the dynamic objects.
In a TSDB, old data can efficiently be removed from the
database, and data can be queried for a specific time span.
This work builds upon the work presented in [15], extending
and improving several aspects: 1) adding the static layer and
creating the EDM concept; 2) making the proposed method
suitable for a variety of ITS use cases instead of being
dedicated only to a vehicle discovery service; 3) adapting
the architecture to address the challenge of node mobility
[16]; 4), adding geolocation-based vehicle filtering using a
geospatial indexing library; 5) improving the insertion of
data to the database using data buffering and batch insertion;
and 6) studying the performance and scalability of the new
solution. The rest of the paper is organised as follows:
Section [[I| describes the architecture of the proposed EDM,
Section describes the implementation of the architecture,
Section [[V|shows the results obtained in the experimentation,
and Section |V| concludes the paper.

II. ARCHITECTURE

The proposed EDM architecture is presented in Fig. [I]
The system uses message brokers to facilitate communication
by implementing a publish-subscribe protocol. This protocol
uses messaging topics, which are hierarchical in nature, and
allow the dissemination of messages from a publisher to
multiple subscribers. Our architecture is defined by three
main components: the MEC registry, the MEC server and
the client side. In addition, the messaging broker and the
MEC interconnection strategy are also detailed.

A. MEC Server

The MEC server comprises three main components: a mes-
sage broker, an EDM, and ITS applications. All the messages
sent by the vehicles are received in the message broker.
The EDM, composed of a database and a static map of its
operational area, consumes the information received in the
message broker and inserts it into its local database. A tem-
poral threshold can be applied to delete or store old data from
the database, depending on the ITS application’s temporal
window needs. ITS applications can be built to interact with
the information stored in the EDM directly. Each MEC server
is defined by attributes that provide relevant information to
clients and other MEC servers. These attributes include the
MEC server’s position in WGS-84 coordinates, an MEC ID,
its operational and optimal coverage areas, and messaging
clients connected to the MEC registry and neighbouring
MEC servers. In our architecture, the MEC servers’ coverage
areas can overlap with respect to other MEC servers. MEC
servers need to be aware of their neighbour MEC servers
to obtain relevant vehicle information in border areas and
provide handover information to clients if they need to switch
connection to a neighbour MEC.

B. MEC Registry

The MEC registry is responsible for maintaining an up-
dated copy of the state of all the MEC servers in a given area.

%,,?,,Qv
MEC Registry
1 MECA={.} i
ey message V) Neighbour
2 MECB=L.} Broker MECs

3

/

ITS Applications I

Dashboards and
visualization

Message
Broker

A

e] [cam]
Gy oy ol
Fig. 1. High-level representation of the proposed architecture.

A reference MEC registry address must be provided every
time a new MEC server is deployed. When connecting for
the first time, the MEC registry will store the information of
the MEC server and forward the information of neighbour
MEC servers based on its geolocation while updating the
new neighbour to the other existing MEC servers. If any of
the MEC server attributes changes (position, disconnection,
coverage areas), the MEC registry is notified of the change
and will update the values of that MEC server and forward
the information to its neighbour MEC servers. The MEC reg-
istry is also the reference point for a new client connection;
every time a new client is connected, it will send information
about its position to the MEC registry. The MEC registry will
assign the client a unique ID and calculate the most suitable
MEC server in its area based on its geoposition. The MEC
registry is, therefore, a key element of MEC discovery.

C. Clients

Clients will use the standard ETSI CAM to communicate
with the message broker. CAMs provide relevant information
about a vehicle status including position, heading, speed,
acceleration, etc., which allows the system to insert relevant
vehicle information into the EDM. The first time a vehicle
client is connected, it must connect to the MEC registry and
send a CAM message through a login topic of the message

broker. Once this is done, the MEC registry will send the
client the address of the most suitable MEC server in its
area. As defined in [1], CAM messages shall be sent at
a minimum rate of 1 Hz and maximum of 10 Hz. In this
work, we consider that client vehicles send CAMs at their
maximum send rate of 10 Hz. Clients can directly query
the MEC server ITS applications to get relevant information
about vehicles in their surroundings. If clients are located in
a border area of the coverage of their MEC server, they may
receive a handover message from the server with the address
information of a neighbouring MEC server that has better
network coverage in the area, allowing the client to connect
to the new server before a service interruption occurs.

D. Messaging Broker Topic Architecture

A proposal for the necessary messaging topics to allow
communication between each element in our architecture is
summarised in Table I. Some topics will be unique, while
others will have subtopics based on geolocation indexes or
client IDs to share the information only with the necessary
participants in that communication process. Each of the
proposed messaging topics serves a specific objective. The
CAM feed will include subtopics composed of geo-position
indexes from the received vehicle messages. The EDM will
decode and insert CAM messages received in this topic.
In the ITS query topic, a given ITS application can be
queried, and it will publish its results to its reference ITS
query response topic. On startup, vehicles must send a CAM
message to the vehicle login topic of the MEC registry, which
will forward the most suitable MEC server address using the
vehicle login response topic.

Based on the optimal and operating ranges defined for
each MEC server and its neighbours, some areas will be
identified as handover areas. If a vehicle approaches one of
these areas, the MEC server will forward a handover message
with the address of the most suitable neighbour MEC server.
This handover is triggered following a hysteresis loop to
avoid a ping-pong effect. The MEC login and update topics
will be the main communication channel between MEC
servers and the MEC registry to deploy new MEC servers or
update existing ones. When a new MEC server is deployed
or updated, the MEC registry will forward its information
only to the involved neighbour MEC servers through the
neighbour update topic. These are the main necessary topics
for our architecture; new topics to allow new features can be
easily added, allowing an easy implementation for other use
cases.

E. MEC Interconnection

Sharing relevant information between MEC servers is
essential to maintain an updated EDM in border regions
of their coverage areas. Given the optimal and operating
range of each MEC server, we could constantly calculate
if each CAM message is inside a neighbour MEC coverage
area and forward this information, but this quickly becomes
inefficient as the number of vehicles connected to the MEC
server grows. To avoid this scalability problem, we propose

to organise the broker feed topics into geospatial areas with
unique indexes. As the MEC registry shares information
about neighbour MEC servers, each MEC server can connect
to its neighbour MQTT broker and subscribe only to the
relevant CAM feed topic names in their border regions.

III. IMPLEMENTATION

Communication across different levels of the proposed
architecture is handled using the MQTT [17] messaging
protocol designed for the Internet of Things (IoT). MQTT
is an extremely lightweight publish-subscribe messaging
system also used in automotive applications. The MEC server
and the MEC Registry were implemented using Docker
and Python3. This section is organised as follows. First,
we present our geoindexing approach used to efficiently
index and retrieve data from the EDM. Second, we describe
the EDM implementation details, including the selected
database, message buffering approach and message process-
ing time considerations. Finally, we discuss the visualisation
and data monitoring capabilities of our solution.

A. Geoindexing

In our MQTT topic architecture, each vehicle needs to
publish into the CAM feed using a unique geo-position
index based on its location. For this purpose, we are using
Uber’s hexagonal hierarchical geospatial indexing library H3.
H3 facilitates the indexing of geospatial coordinates within
hexagons of diverse resolutions. Resolutions greatly modify
hexagon sizes, with the biggest hexagon area resolution being
4,250, 546km? and 0.9m? being the smallest. In this study,
we selected a resolution with an average hexagon area of
~ 15,000m? (see Fig. , corresponding to a maximum
distance of ~ 130m between edges of the hexagon, this
resolution can be easily modified to match other use case
requirements.

Fig. 2.
represent indexes within the operating range, while blue hexagons represent
those within the optimal range.

H3 hexagon size for the selected resolution. Yellow hexagons

B. EDM

The EDM of the MEC Server has been implemented with
InfluxDB, a TSDB, as our database engine to enable CAM
data storage and ITS applications querying functions in the
EDM. A TSDB efficiently filters data retrieved from queries

TABLE I
MESSAGE BROKER TOPIC ARCHITECTURE PROPOSAL. M = MEC, V = VEHICLES, N = NEIGHBOUR MEC, R = REGISTRY.

Topic name Broker Publishers Subscribers Triggers Topic name
CAM Feed M v M, N No mec_id/edm_feed/geo_index
ITS Query M \Y M Topic Query Response mec._id/its_app_id/query/vehicle_id
ITS Query Response M M \ No mec_id/its_app_id/response/vehicle_id
Vehicle Login R \Y R Topic Login Response mec._registry_id/vehicle/login
Vehicle Login response R R \ No mec_registry_id/login_response/vehicle_id
Vehicle Handover M M \ Vehicle changes MEC mec_id/handover/vehicle_id
MEC Login R M R Topic Neighbour Update ~ mec_registry_id/mec/login
MEC Update R M, R M, R Topic Neighbour Update mec_registry/update/mec_id
Neighbour Update R R M No mec._registry/neighbours/mec_id

by selecting a time window threshold. This is essential for
real-time applications that only need to access the most
recent stored information. The EDM is enhanced with road
information of their coverage areas using public and open-
source information obtained from Open Street Map files.

For each vehicle publishing CAM messages into the
MQTT Broker, the following fields are being stored into
the TSDB: id, timestamp, latitude, longitude, type, heading,
speed, acceleration, h3index. InfluxDB allows to insert data
into the database individually or in batches. Performing batch
insertions provides better performance than writing data
into the TSDB individually. To take advantage of this, we
implemented a message buffering system to perform batch
write operations in the TSDB and performed an analysis
of data insertion times in Section The purpose of this
analysis is to check the number of vehicles that can be
handled depending on the buffering time window size set
in our solution.

1) EDM message buffering: Messages received in the
MQTT Broker are constantly stored into a buffer. As the
maximum frequency that a vehicle should be sending V2X
messaging is 10 Hz, messages should be available in the
database in less than 100ms from the message generation
time. We have taken into account the following processing
or latency times when measuring an end-to-end latency from
a client to the database.

)]

Where t4.,q is the sending latency from the client to
the MEC server, tpurfer is the buffering time window
set for the MEC, tg4ccoqe the time it takes to decode the
CAM message and t;nsertion 1S the insertion time of the
messages into the TSDB. Considering a real-time use case,
the following condition should be fulfilled t,,,, < 100ms.
In our approach, when the buffering time is completed, a
thread is launched to decode and insert the messages into the
database. So the following condition should be fulfilled as
well Ly frer > tdecode 1 tinsertion, Otherwise, the processing
thread would not be able to handle the number of messages
received.

tm,sg = tsend + tbuffe'r‘ + tdecode T tinsertion

C. Data monitoring and visualisation

Thanks to the usage of InfluxDB, Grafana can be easily
connected to the EDM in order to monitor the real-time
and historical status of the vehicles connected to the MEC.

Grafana allows the creation of dashboards for metrics visu-
alisation and resource management. By applying periodical
queries directly from Grafana to the TSDB, data from the
EDM can be easily visualised and monitored, as we can see
in Fig. 3

8 Genersl / Mismon MECH Dashbose % W D & Olmimme- @ D w- 8

; [yv .—((o~ SO : / F
1
. ‘ 2000 m ~ Aty
Fig. 3. Grafana dashboard visualisation of the data stored in the EDM.

By applying a set of rules and querying the EDM, alerts
can be configured using Grafana to notify users or traffic
agents of traffic jams, accidents, road works, etc.

IV. RESULTS

To evaluate the performance of the proposed architec-
ture, we tested the system’s insertion capabilities using a
set of virtual CAM messages obtained from traffic route
simulations conducted with the SUMO [18] simulator. We
tested the database performance for insertion of batches of
different sizes and querying performance time. The tests have
been performed in a server with an Intel Core 15-9400F
@2.9GHz processor and 8GB DDR4 RAM in Ubuntu 20.04.
This can be seen as a modest computing resource, but it is
important to note that the EDM is designed to be deployed
in a MEC. In the Edge/Cloud paradigm, it is assumed that
the latency-critical computing applications are deployed in
the decentralised MEC, while compute-intensive and delay-
tolerant applications are deployed in the conventional remote
cloud [19]. So computing resources in the MEC are much
more limited than in the Cloud. All the tests have been
performed selecting a cache size of 1MB for the TSDB.

A. Data insertion

Data insertion into the database has been analysed for
CAM batches of 100, 1000, 2500, 5000 and 10000 messages

generated from the SUMO simulations. When measuring
this, we have measured both CAM message decoding time
(including string formatting to Influx line protocol) and
database insertion times. For each batch size, we performed
1000 insertions into the database. Results can be seen in Fig.
[and Table

Cumulative distribution function by batch size
100.0% . N

/ ~
90.0% 2
/ /
80.0% / /
70.0% /"
/
60.0% /
L /
0O 50.0%
(@] /
40.0% 100 Messages
30.0% ‘f‘ 1000 Messages

——2500 Messages
——5000 Messages
——10000 Messages

20.0%
10.0%

0.0%

0 25 50 75 100 125 150 175 200 225 250 275 300
Time in miliseconds

Fig. 4. Total decoding and insertion time CDF plot per batch size.

TABLE II
MEAN (STANDARD DEVIATION) DECODING AND INSERTION TIME IN
MILLISECONDS FOR THE SELECTED BATCH SIZES.

Decode Insertion
Batch 100 1.98 (0.61) 5.44 (1.06)
Batch 1000 12.46 (5.02) 13.92 (3.29)
Batch 2500 28.25 (7.00) 26.02 (4.25)
Batch 5000 54.67 (7.31) 50.94 (7.75)
Batch 10000 | 105.71 (6.61) | 107.74 (14.10)

For real-time ITS applications, the requirement is to store
sent messages in the databases in less than 100 ms. Taking
into account that our message buffering approach needs that
tbuffer > ldecode T tinsertions then tdecode + linsertion <
50ms in order to be able to achieve that t,,5, < 100ms.
As we can see in Table [l 2500 messages are decoded and
inserted into the database in ~ 54ms (~ 21us per message),
making the batch sizes of 2500, 5000 and 10000 not suitable
for real-time use cases, but still being a good alternative for
road traffic analysis use cases or other less latency dependant
applications. The ETSI standard for CAM messages supports
a message period of up to 1 s. So batch sizes larger than 2500
messages can be acceptable for some use cases. However, as
explained previously, this work is targeting applications that
require a data update frequency of 10 Hz.

Considering a time window of 50ms for our ¢4, fer and
as our solution can insert 1000 messages into the database
in ~ 26ms (~ 26pus per message), as long as tsepg < 24ms,
which is a reasonable latency for an OBU-MEC communica-
tion in a 5G network or over IEEE 802.11p communications
[16], [20], we can consider that the messages are stored and
available into the database in less than 100ms. By selecting a
time window of 50ms and considering a normal distribution
in the reception of the messages, the EDM is able to handle
2000 vehicles sending messages at 10 Hz. This time window
can be easily configured to a different time span, offering less

processing latency depending on the use case or expected
quantity of vehicles connected to the MEC server.

B. Data querying

As it would be infeasible to assess the performance of
querying the EDM in a real-world setting (requiring the
deployment of thousands of vehicles), we instead conducted
batch insertions to the database using a virtual testing set-
up and queried the database after each insertion to measure
performance. The following queries were analysed:

e Query 1: Group vehicles by ID and select the last
message received from each vehicle in a given latitude
and longitude region.

e Query 2: Group vehicles by ID and select the last
message received from each vehicle in a given H3 index.

e Query 3: Select all messages received in the last 100ms.

o Query 4: Select all messages received in the last 100ms
in a given latitude and longitude region.

e Query 5: Select all messages received in the last 100ms
in a given H3 index.

To facilitate an equal comparison between queries involv-
ing geoposition filters (Query 1, 2, 4 and 5), the original
latitude and longitude values of the messages obtained
from the SUMO simulations were modified, separating the
vehicles into 20 different h3 index areas. Through these
modifications, we can ensure that the number of vehicles
retrieved from the queries will match the expected quantity
in both geoposition filters. Regarding queries involving filters
by timestamp (Query 3, 4, 5), the time window has been
increased in the cases where the insertion time is longer than
100 ms to match the insertion time for that batch size. The
average time obtained from performing 1000 queries for each
batch size can be seen in Table

The usage of aggregation functions to group elements
within the database based on ID (Query 1 and 2) exhibits
inferior performance compared to the other queries pre-
sented, even when utilising geoposition filters. However,
taking advantage of the temporal filtering offered by the
TSDB in combination with geoposition filters (Query 4 and
5) significantly improves querying time, resulting in the most
efficient performance among the presented queries, with a
reduction of querying time by over 10 times in certain scenar-
ios. Even among the geoposition queries, those utilising H3
indexing (Query 2 and 5) demonstrate superior performance
compared to those that compare the latitude and longitude
of the inserted values against predefined geographic regions
(Query 1 and 4).

For the proposed batch size of 1000 messages, the pro-
cessing time for each query can be seen in Fig. 5] We can
see how queries not using aggregation functions (Query 3, 4
and 5) show better performance. Specifically, for the chosen
batch size, these queries achieve query results of under 20ms
in 90% of the cases. However 10% of the queries execution
time shows inferior performance, even reaching 40ms in
the worst cases. We attribute these performance outliers to
the low cache size of 1IMB in the TSDB, which results in
frequent cache clearing and increased processing times.

TABLE III
MEAN (STANDARD DEVIATION) QUERYING TIME IN MILLISECONDS FOR DIFFERENT BATCH SIZES.

Query 1 Query 2 Query 3 Query 4 Query 5
Batch 100 17.86 (6.66) 17.7 (6.04) 9.06 (1.92) 7.26 (2.45) 7.36 (2.21)
Batch 1000 62.51 (16.0) 55.16 (13.53) 17.61 (8.0) 15.13 (6.61) 10.01 (5.16)
Batch 2500 172.51 (33.16) 138.3 (27.84) 31.52 (8.77) 24.69 (9.51) 15.92 (8.06)
Batch 5000 686.36 (127.06) | 548.96 (115.52) 82.44 (17.02) 86.28 (12.86) | 54.15 (12.38)
Batch 10000 | 838.65 (183.57) | 728.56 (164.15) | 160.77 (39.18) | 116.36 (19.21) | 74.05 (16.44)

Querying Time Cumulative Distribution Function with Batch Size 1000
100.0%

80.0%

60.0%

w
o
(&}
40.0%
20.0%
0.0%
0 20 40 60 80 100
Time in miliseconds
Fig. 5. Querying time CDF for the proposed queries with batch size 1000.

V. CONCLUSIONS

The advent of advanced cellular networks (5G and beyond)
brings the possibility of generating a dynamic map in the
MEC that collects and stores the dynamic information of
connected vehicles. Our proposed EDM can be used in low-
latency use cases by applications deployed in the MEC to,
for instance, detect risk situations, assist drivers, or identify
relevant traffic participants for a specific road user. Using a
modest computer and the proposed architecture, each MEC
can support around 2000 vehicles sending messages at 10
Hz to the MEC server. Using geoindexing approaches to
filter data improves query performance significantly, enabling
real-time querying to the EDM even in automotive scenarios
where data querying involves 2500 vehicles. Demonstrating
that the bottleneck is in the insertion rather than in querying
the database. Even larger scales can be reached either by
decreasing OBU-MEC communication latency (24 ms were
considered in the study which is a conservative value),
increasing MEC computation capability, reducing the C-ITS
messaging frequency (the standard supports a range of 1-10
Hz) or testing different cache sizes for the database.

REFERENCES

[1] E. . 637-2:2019, “Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; Part 2: Specification of
Cooperative Awareness Basic Service,” ETSI, Tech. Rep. CAM, 2019.

[2] E. T. . 562:2019, “Intelligent Transport Systems (ITS);Vehicular
Communications;Basic Set of Applications; Analysis of the Collective
Perception Service (CPS);,” ETSI, Tech. Rep. CPM, 2019.

[3] R. Molina-Masegosa, J. Gozalvez, and M. Sepulcre, “Comparison of
ieee 802.11p and lte-v2x: An evaluation with periodic and aperiodic
messages of constant and variable size,” IEEE Access, vol. 8, pp.
121526-121 548, 2020.

[4] L. Andreone, R. Brignolo, S. Damiani, F. Sommariva, G. Vivo, and
S. Marco, “D8.1.1 - SAFESPOT Final Report,” SAFESPOT Final
Report — Public version, no. July, 2010.

[5]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Muioz Sanchez, D. Pogosov, E. Silvas, D. C. Mocanu, J. Elfring,
and R. van de Molengraft, “Situation-aware drivable space estimation
for automated driving,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 23, no. 7, pp. 9615-9629, 2022.

M. Scholtes, L. Westhofen, L. R. Turner, K. Lotto, M. Schuldes,
H. Weber, N. Wagener, C. Neurohr, M. H. Bollmann, F. Kortke,
J. Hiller, M. Hoss, J. Bock, and L. Eckstein, “6-layer model for a
structured description and categorization of urban traffic and environ-
ment,” IEEE Access, vol. 9, pp. 59 131-59 147, 2021.

H. Shimada, A. Yamaguchi, H. Takada, and K. Sato, “Implementation
and evaluation of local dynamic map in safety driving systems,”
Journal of Transportation Technologies, vol. 5, pp. 110-112, 2015.
R. Vilalta, R. Casellas, R. Sedar, F. Vazquez-Gallego, R. Martinez,
S. K. Datta, M. Lefebvre, F. Gardes, J.-M. Odinot, J. Hirri, J. Alonso-
Zarate, and R. Muiioz, “Vehicular message exchange in cross-border
scenarios using public cloud infrastructure,” in 2020 IEEE 3rd 5G
World Forum (SGWF), 2020, pp. 251-256.

T. Eiter, H. Fiireder, F. Kasslatter, J. X. Parreira, and P. Schneider,
“Towards a semantically enriched local dynamic map,” International
Journal of Intelligent Transportation Systems Research, vol. 17, no. 1,
pp. 32-48, 2019.

T. Puphal, B. Flade, M. Probst, V. Willert, J. Adamy, and J. Eggert,
“Online and predictive warning system for forced lane changes using
risk maps,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 3,
pp. 616-626, 2022.

M. Garcia, 1. Urbieta, M. Nieto, J. Gonzilez de Mendibil, and
O. Otaegui, “ildm: An interoperable graph-based local dynamic
map,” Vehicles, vol. 4, no. 1, pp. 42-59, 2022. [Online]. Available:
https://www.mdpi.com/2624-8921/4/1/3

M. Maiouak and T. Taleb, “A dynamic map-based framework for
real-time mapping of vehicles and their surroundings,” in 2019 IEEE
Wireless Communications and Networking Conference (WCNC), 2019,
pp. 1-6.

——, “Dynamic maps for automated driving and uav geofencing,”
IEEE Wireless Communications, vol. 26, no. 4, pp. 54-59, 2019.

L. Hou, M. A. Gregory, and S. Li, “A survey of multi-access edge
computing and vehicular networking,” IEEE Access, vol. 10, pp.
123436-123 451, 2022.

G. Velez, J. Perez, and A. Martin, “5g mec-enabled vehicle discovery
service for streaming-based cam applications,” Multimedia Tools and
Applications, vol. 81, no. 9, pp. 12349-12370, Apr 2022. [Online].
Available: https://doi.org/10.1007/s11042-021-11421-x,

Z. Fernandez, A. Martin, J. Pérez, M. Garcia, G. Velez, F. Murciano,
and S. Peters, “Challenges and solutions for service continuity in inter-
plmn handover for vehicular applications,” IEEE Access, vol. 11, pp.
8904-8919, 2023.

R. A. Light, “Mosquitto: server and client implementation of the
mqtt protocol,” Journal of Open Source Software, vol. 2, no. 13, p.
265, 2017. [Online]. Available: https://doi.org/10.21105/j0ss.00265

P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flotterod,
R. Hilbrich, L. Liicken, J. Rummel, P. Wagner, and E. WieBner,
“Microscopic traffic simulation using sumo,” in The 21st IEEE ITSC.
IEEE, 2018. [Online]. Available: https://elib.dlr.de/124092/

L. A. Haibeh, M. C. E. Yagoub, and A. Jarray, “A survey on mobile
edge computing infrastructure: Design, resource management, and
optimization approaches,” IEEE Access, vol. 10, pp. 27591-27610,
2022.

V. Charpentier, N. Slamnik-Krijestorac, and J. Marquez-Barja,
“Latency-aware c-its application for improving the road safety with
cam messages on the smart highway testbed,” in IEEE INFOCOM
2022 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2022, pp. 1-6.

https://www.mdpi.com/2624-8921/4/1/3
https://doi.org/10.1007/s11042-021-11421-x
https://doi.org/10.21105/joss.00265
https://elib.dlr.de/124092/

	Introduction
	Architecture
	MEC Server
	MEC Registry
	Clients
	Messaging Broker Topic Architecture
	MEC Interconnection

	Implementation
	Geoindexing
	EDM
	EDM message buffering

	Data monitoring and visualisation

	Results
	Data insertion
	Data querying

	Conclusions
	References

