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Abstract— The ability to perceive and comprehend a traffic
situation and to estimate the state of the vehicles and road-users
in the surrounding of the ego-vehicle is known as situational
awareness. Situational awareness for a heavy-duty autonomous
vehicle is a critical part of the automation platform and
depends on the ego-vehicle’s field-of-view. But when it comes
to the urban scenario, the field-of-view of the ego-vehicle is
likely to be affected by occlusion and blind spots caused by
infrastructure, moving vehicles, and parked vehicles. This paper
proposes a framework to improve situational awareness using
set-membership estimation and Vehicle-to-Everything (V2X)
communication. This framework provides safety guarantees
and can adapt to dynamically changing scenarios, and is
integrated into an existing complex autonomous platform. A
detailed description of the framework implementation and real-
time results are illustrated in this paper.

I. INTRODUCTION

Many industries break the Connected Automated Vehicle
(CAV) framework functionality into sensing, localization,
perception, situational awareness, planning, and control.
When CAV is located in an urban scenario, the field-of-
view (FOV) of the CAV is severely affected by occlusions
which leads to limited information about the surroundings
and affects situational awareness of the CAV. To be able
to overcome the challenge of limited information in an
urban setting, the plan is to use Vehicle-to-Everything (V2X)
communication to share perception data between road-users.

V2X communication is synonymous with Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) commu-
nications. These communications use the ad-hoc wireless
technology ITS-G5 (a.k.a. Dedicated Short-Range wireless
Communication (DSRC) or IEEE 802.11p in the US). There
are three different types of V2X communication today: ad-
hoc (the focus of the present article), cloud-based, i.e.,
cloud-to-cloud communication, and cellular-assisted. The
main strength of ad-hoc communication is the possibility to
communicate everywhere and anytime without base station
coverage, e.g., on rural roads and missing network coverage.
In this paper, we propose a framework that can provide
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Fig. 1: This is a drone shot of the scenario with four vehicles
and a pedestrian. The pedestrian is in the occluded area of
the ego-vehicle. This picture is taken at the Scania test track.

safety guarantees and increase situational awareness using
set-membership estimation and ad-hoc V2X communication.
A. Literature Review

Situational awareness of the Ego-Vehicle (EV) depends on
the perception module, which primarily relies on numerous
onboard sensors, such as LiDAR, cameras, and millimeter-
wave radar, but still lacks accuracy and complete informa-
tion [1]. One way to overcome this problem is by using
V2X communication. In [2], the authors provided a detailed
review of cooperative driving by introducing current coopera-
tive perception information fusion methods and information-
sharing strategies. In [3], authors have provided a generalized
cooperative perception framework based on decentralized
V2V vehicular communication and presented evaluations of
the framework based on randomized traffic simulations for
multi-lane highway and roundabout intersection scenarios,
considering both communication losses and sensor FOV
resolution issues. Another related work in [4] introduces
information entropy, which quantifies uncertain information
in the blind area, into the motion planning module of
autonomous vehicles. Then, the authors propose to plan
collision-free trajectories using model predictive control.

In [5], a framework of vehicle-infrastructure cooperative
perception and data fusion method is proposed along with
an improved Kalman filter when there is a roadside unit
failure. In [6], authors presented an architecture for coor-
dinating an autonomous team of heterogeneous aerial and
land robots that work together on collaborative mapping.
Based on the presented concept, they proposed an IoE
(Internet-of-Everything) architecture having heterogeneous
support units for enhancing the situational awareness of
autonomous vehicles in an unknown environment. A set-
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membership state estimator for autonomous surface vehi-
cles along with dynamical decomposition that decouples
the estimation problem for the rotational and positional
dynamics is proposed in [7]. In [8], authors have proposed
a novel data fusion algorithm by implementing the latest
deep learning techniques and aggregating object (road-user)
detection information from multiple viewpoints to improve
detection performance. The objective of [9] is to provide a
preliminary study of edge-assisted collaborative perception
in autonomous driving from a V2X communication design
perspective.
B. Contributions

Situational awareness is the ability to perceive and com-
prehend a traffic situation and estimate the state of road-users
in the surrounding of the EV. The traditional way of the
situational awareness module is to rely entirely on onboard
sensor perception, also known as local perception. This
work aims to use V2X communication to receive external
perception, i.e., perception from other CAV or Road-Side
Units (RSUs), to create shared situational awareness, which
helps improve the understanding of one’s surroundings and
guarantee safety. Inclusion of perception obtained via V2X
communication, helps in widening EV’s FOV and creating
line-of-sight in occluded areas. But external perception can
induce varying unknown uncertainties.

One of the main challenging parts is integrating the new
functionality, i.e. shared situational awareness that relies
on local and external perception into the existing CAV
system architecture of the EV. This paper focuses on the
fusion of local and external perceptions, which have varying
uncertainties and involves different coordinate frames, to
create a shared situational awareness for the EV using
set-membership estimation. Set-membership estimation es-
timates a set that contains the state with set containment
guarantees. In this paper, we have considered a scenario in
which the pedestrian is occluded by the parked vehicle in the
EV’s FOV, as presented in Fig. 1. This is an extended work
along with real implementation on Scania test track, from
our paper that highlighted the concept of shared situational
awareness using V2X communication [10].
C. Outline

The paper is organized as follows: In Section II, the prob-
lem formulation is described. The necessary preliminaries are
provided in Section III. The proposed framework is described
in Section IV. Then, the evaluation section is provided in
Section V, followed by Section VI to conclude the paper.

II. PROBLEM FORMULATION

In this paper, the problem of occlusion and blind spots
caused by infrastructure, moving vehicles, and parked vehi-
cles to the EV is considered. A specific scenario is considered
for the experiment, which is shown in Fig. 1. All the vehicles
present in Fig. 1 are equipped with a V2X communication
module, which allows us to share perception information
between all the road-users in the scenario except the parked
vehicle and the pedestrian. It is also considered to have a

distributed system, where the communication is set up as a
peer to peer network and does not rely upon communication
infrastructure such as access points or base stations. The
objective is to improve situational awareness of the EV.
The following research questions are formulated to solve the
problem in this paper:

1) How to obtain and fuse data from local and external
sensors to improve the situational awareness of the
EV?

2) How to provide safety guarantees of the fused data
under varying measurement uncertainties?

III. PRELIMINARY

This section gives a detailed description of the system
state and measurement models for each road-user. Then,
we introduce zonotopes, which are used to represent the
reachable set mathematically and followed by the system
architecture of a CAV.
A. System State and Measurement Model

This paper uses a discrete-time linear system to describe
the state model for the road-user observed in the given sce-
nario. The state vector consists of the position and velocity
of the road-user as described in (1). All the road-users state
vectors are calculated with respect to the EV coordinate
system. For k = 1,2, . . . ,T , where T is the time horizon, the
state model can be described as follows.

x j
k+1 = F j

k x j
k +q j

k, (1)

with
x j

k =
[
xx xy xs

] j
k

⊤
, (2)

where x j
k ∈Rn with n = 3; is the state vector of the jth road-

user with x j
0 as the initial state and j = 1, . . . ,nr, nr is the

number of road-users, xx, xy, and xs are the x coordinate, y
coordinate, and the velocity of the jth road-user respectively,
q j

k is the process noise, and F j
k ∈Rn×n is the state matrix at

time k which is defined as follows:

F j
k =

1 0 α
j

k
0 1 γ

j
k

0 0 1


where α

j
k = ∆t cosθ

j
k , γ

j
k = ∆t sinθ

j
k . Here θ

j
k is the heading

of the road-user at time k and ∆t is the time step.
The observable discrete-time linear system is assumed to

generate the sensor measurements. The measurement model
for the sensor is described as the following:

y j
k = H jx j

k + v j
k, (3)

with
y j

k =
[
yx yy ys

] j
k

⊤
, (4)

where y j
k ∈Rp with p = 3; is the measurement vector, which

consists of yx, yy and ys i.e. x coordinate, y coordinate and
velocity of the jth road-user at time step k with respect to
the EV coordinate system and v j

k the measurement noise.
The measurement matrix is give by H j ∈ Rp×n and in this



Fig. 2: Existing system architecture of a CAV.

case it is an identity matrix. Since the processing of all
the measurements will be done with respect to the local
coordinate system of the EV, all the measurements obtained
externally are converted to the local coordinate frame of the
EV, which are denoted by xE and yE , where E subscript
refers to the EV.
B. Zonotopes

There are various types of set representations, such as el-
lipsoids [11], polytopes [12], zonotopes [13], orthotopes [14]
and intervals [15]. In this paper, we use zonotopes to
represent the set mathematically due to its special compu-
tational efficient properties. The definition and properties of
zonotopes are stated next.

Definition 1 (Zonotope [16]): A zonotope Z = ⟨c,G⟩
consists of a center c ∈Rn and a generator matrix G ∈ Rn×e.
The generator matrix G is composed of e generators gi ∈Rn,
i = 1, ..,e, where G = [g1, ...,ge] and βi is a scaling factor.
Hence,

Z =
{

c+
e

∑
i=1

βigi

∣∣∣−1 ≤ βi ≤ 1
}
. (5)

Zonotope can be interpreted as the Minkowski sum of a
set of line segments. Given two zonotopes Z1 = ⟨c1,G1⟩ and
Z2 = ⟨c2,G2⟩ and a scalar L, the following operations can
be computed exactly [16]:

• Minkowski sum:

Z1 ⊕Z2 =
〈

c1 + c2, [G1,G2]
〉
. (6)

• Scaling:
LZ1 =

〈
Lc1,LG1

〉
. (7)

C. CAV System Architecture

A CAV has a complex system architecture consisting
of multiple sub-systems handling various tasks that enable
the CAV to drive with less human interaction. The term
connected states that the vehicle is capable of communicating
with roadside units or other CAVs. An overview of an
existing system architecture of a CAV is presented in Fig. 2.
The system architecture is divided into four sub-systems:
input layer, perception and localization layer, situational
awareness layer, and decision-making layer.

The input layer consists High-Definition (HD) map, GPS,
lidars, radars, cameras, and a V2X module that enables the
communication between other agents. This input layer is es-
sential and supports the functionality between different appli-
cations in the system. The perception module is responsible

for detecting, identifying, classifying, and tracking different
road-users in the environment surrounding the vehicle. This
module is divided into two parts: static occupancy grid and
dynamic objects. The static occupancy grid provides the FOV
of the EV, and the dynamic objects provide the perception
data, i.e., a list of objects detected in the FOV of the EV.
The vehicle localization module is responsible for estimating
the state of the vehicle (e.g., position, speed, orientation, and
acceleration), both with respect to its surroundings (locally)
and with respect to a map (globally). This module is essential
for safe, comfortable, and precise vehicle motion.

The objective of the situation awareness module is to
determine the predictions of the surrounding road-user’s ac-
tions and provide scene understanding. The motion planning
module’s responsibility is to compute a trajectory while
respecting vehicle dynamical constraints, being safe and
smooth, and making the motion comfortable for passengers.
The motion control module’s responsibility is to stabilize and
guide the vehicle toward a given reference path or trajectory.
The vehicle controller has to handle disturbances to the
vehicle, correcting its states (e.g., position, yaw, and velocity)
back to the desired reference while maintaining the actuation
limits and achieving a smooth and comfortable ride.

IV. METHODOLOGY

In this section, the architecture of the proposed framework
is discussed, and each module of the framework is explained
in detail. The proposed framework extends the conventional
control architecture of an automated vehicle [17] by using
the set-membership method instead of statistical estimation
for sensor fusion in order to have set containment guarantees
which paves the way for safety guarantees.

A. Scenario Description

The animated version of the considered scenario is pre-
sented in Fig. 3. This scenario consists of five road-users,
which are an EV, a Side Vehicle (SV), a Parked Vehicle
(PV), a pedestrian, and an RSU. The FOVs for EV, SV,
and RSU are presented in blue, yellow, and green circle
segments, respectively. The PV is located in the scenario
in such a way that it creates an occlusion in the FOV of the
EV. The pedestrian, also called the unprotected agent, is in
the occluded region. In this case, the understanding of the
surrounding environment is limited to the road elements that

Fig. 3: Scenario with four road-users and their coordinate
frames.



Fig. 4: Shared situational awareness internal architecture.

are observable within the FOV of the EV. Behavior learning
and prediction in this setting are limited by the time interval
for which such elements are locally observable. Hence, the
risk assessment tasks for a short decision-making horizon
can only be made through a proactive manner by lowering
speed to be able to handle any road-user that might appear in
the occluded area. The perception information is shared using
Collaborative Perception Message (CPM) service. A detailed
description of the CPM service is given in Section IV-C.

In Fig. 3, it can be seen that various coordinate frames
are involved when it comes to real-time implementation. A
global coordinate system is the earth-fixed coordinate frame,
which is represented in meters in north and east directions
from an agreed reference point, which is represented by xG
and yG, respectively. Each agent has a local coordinate frame
with respect to the reference point. These reference points
are their global positions in the global coordinate frame.
The EV has its local coordinate frame with axes xE and
yE . The SV has its local coordinate frame with axes x1

L and
y1

L. Similarly, for RSU, x2
L and y2

L are its local coordinate
frame axes. These different types of coordinates frames are
presented in Fig. 3. The PV in the EV’s FOV is detected as a
static obstacle, creating an occlusion in EV’s FOV as shown
in Fig. 3. The pedestrian is in the occluded region of the
EV’s FOV. Therefore the EV can not detect the pedestrian.
But whereas, SV and RSU can detect it in their FOVs.
B. Proposed Architecture

The proposed architecture consists of (i) Local and ex-
tended sensor networks, (ii) Algorithms for shared situational
awareness, and (iii) Decision-making, as presented in Fig. 4.
In the local and extended sensor network part, the blocks EV,
SV, and RSU represent the road-users capable of providing
perception data with respect to their local coordinate frame.
We fuse the data on two levels: (i) measurement data and (ii)
estimated sets. This two-level data fusion method helps us
build a modular system, which means that if there is another
SV or RSU in the scenario capable of sharing estimated sets,
then these estimated sets can be fused directly with other
estimated sets in the fusion module. Based on these fused
sets, decisions can be made, and actions can be planned.
In this paper, the main focus is on the sensor network and
shared situational awareness.
C. Local and External Perception Data

The external perception data is obtained by using the
CPM service. This service is implemented by using standards

Fig. 5: General structure of CPM.

published by The European Telecommunications Standards
Institute (ETSI) [18]. The general message structure for
a CPM is as specified in the standards, which is shown
in Fig. 5. In this work, we use Management Container
(MC), Station Data Container (SDC), and Perceived Object
Container (POC). The MC provides basic information about
the originating ITS-S (Intelligent Transport System-Station),
which includes the station type and reference position in
the global coordinates. The SDC provides more specific
information about the originating ITS-S in addition to the
common information provided by the MC. The data received
from the perception module of SV or RSU is populated into
the POC of the CPM. The POC enables a detailed description
of the dynamic state and properties of a detected object.

The perception data from the SV or RSU in the scenario
has different coordinate frames depending on their position
and orientation with respect to global coordinates. For in-
stance, when a road-user is detected in the FOV of SV,
the perception data is denoted by m j

i,k as shown in Fig. 3,
denoting that it is jth road-user detected by ith V2X unit.
This data is obtain from the respective perception layer of
the V2X unit and information obtain from m j

i,k ∈ R1×b with
b = 6 as shown below:

m j
i,k =

[
mx my ms θ l w

] j
i,k , (8)

where mx and my are the relative distance from ith V2X unit
at a given time stamp indicated by k and the location of ith

V2X unit is given in terms of global coordinates. The ms and
θ are the velocity and heading of the detected jth road-user
at kth time step. The size of the of road-user is indicated by
length and width, i.e., l and w. This perception data, m j

i,k

is converted to y j
k with respect to the EV coordinate system

with the help of the global coordinate of originating V2X
unit and the global coordination of the EV.

In this work, it is considered to have all the local and
external perception data with respect to the local coordinate
frame of the EV to maintain uniformity. The local perception
also has the same perception data structure as explained
in (8). The local perception data is already given with respect
to the EV’s local coordinate frame, which means that it
does not require conversion of the coordinate system and
can be realized in the format of y j

k. It is considered that
the EV reference point is at the center of the vehicle, and
the reference points of SV and RSU are at the front of the
vehicles, which creates an offset between different perception
measurements as shown in Fig. 3. This offset has to be
handled systematically to be able to fuse local and external
perceptions.



D. Algorithm for Shared Situational Awareness

Our shared situational awareness algorithm consists of two
steps: (1) Set-based estimation and (2) Fusion. These steps
are explained below and summarized in Algorithms 1 and 2.
1) Set-Based Estimation

The set-based estimation approach computes a set that
contains the true state with guarantees. The prediction set is
estimated with the aid of the system state model expressed
in (1). The process and measurement noise for jth road-
user are assumed to be unknown but bounded by zonotopes:
q j

k ∈ Z j
Q,k = ⟨0,Qk⟩, and vk ∈ Z j

R,k =
〈

0,diag(r j
k)
〉

. Then,
we intersect the aforementioned predicted set with the set
that aligns with the measurement set. In short, we have the
following three sets and the aim is to compute the corrected
state set Z̄ j

k ⊂ Rn.
Definition 2 (Predicted State Set): Given the system

in (1) and (3), the initial set Z j
0 = ⟨c j

0,G
j
0⟩, and the process

noise zonotope Z j
Q,k, the predicted reachable set of states

Ẑ j
k ⊂ Rn is:

Ẑ j
k = F j

k Z̄
j

k−1 ⊕Z j
Q,k. (9)

Definition 3 (Measurement State Set): Given the system
in (1) and (3), and the measurement noise zonotope Z j

R,k =〈
0,diag(r j

k)
〉

where the measurement state set S j
k ⊂ Rp of

the jth road-user, is the set of all possible solutions x j
k which

can be reached given the measurement y j
k. Note that when

y j
k ∈ Rp is a scalar, i.e., p = 1, this measurement set is a

strip:

S j
k =

{
x j

k

∣∣∣|Hx j
k − y j

k| ≤ r j
k

}
. (10)

Definition 4 (Corrected State Set): Given the system (1)
and (3) with initial set Z j

0 = ⟨c j
0,G

j
0⟩, the reachable corrected

state set Z̄ j
k for the jth road-user is defined as:(

Ẑ j
k ∩S j

k

)
⊆ Z̄ j

k . (11)
Set-based approaches intersect the set of states consistent

with the model (predicted state set), denoted by Ẑ j
k−1, and

the sets consistent with the measurements (measurement state
set), denoted by S j

k , j = 1, . . . ,nm, to obtain the corrected
state set, denoted by Z̄ j

k , which is an over-approximation of
the resultant intersection. This corrected set is also known
as estimated set. The strips represent measurements from the
sensors and are fused together to get a corrected state set.
We use the following proposition to fuse the measurements
from the sensors and extended sensors.

Proposition 1 ( [19]): Given are zonotope Ẑ j
k−1 = ⟨ĉ j

k−1,

Ĝ j
k−1⟩, the family of nm measurement sets S j

k in (10) and the
design parameters λ

j
k ∈Rn×p, j = 1, . . . ,nm. The intersection

between the zonotope and measurement sets can be over-
approximated by the zonotope Z̄ j

k = ⟨c̄ j
k, Ḡ

j
k⟩, where

c̄ j
k = ĉ j

k−1 +
nm

∑
j=1

λ
j

k (y
j
k −H j ĉ j

k−1), (12)

Ḡ j
k =

[
(I −

nm

∑
j

λ
j

k H j)Ĝk−1,λ
1
k r1

k , . . . ,λ
nm
k rnm

k

]
. (13)

The design parameter λ
j

k can be obtained by solving an
optimization problem to minimize the volume of the resultant
zonotope [13]. After fusing the measurements from the sen-
sors, we fuse the estimated sets from multiple vehicles and
infrastructure units. Set-membership estimation is performed
on each measurement separately and the algorithm is as
shown in 1.

Algorithm 1: Set-based estimation for each road-user
Input: Initial set Z0 = ⟨c0,G0⟩, Process noise

zonotope ZQ,k = ⟨0,Qk⟩, Measurement noise
zonotope ZR,k = ⟨0,Rk⟩, Measurement y j

k,
Output: Corrected state set Z̄ j

k = ⟨c j
k,G

j
k⟩,

∀ j = 1, . . . ,nm, k = 1, . . . ,T
1 for j = 1, . . . ,nm do
2 Compute the predicted set Ẑ j

k = F j
k Z̄

j
k−1 ⊕Z j

Q,k.
3 Collect measurement set: S j

k = {H j,y j
k,r

j
k}.

4 Compute the corrected set: Z̄ j
k ⊇

(
Ẑ j

k ∩S j
k

)
.

2) Fusion
We propose to use a fusion function in order to fuse our

internal estimated sets with the received estimated sets. More
specifically, consider when a road-side unit or connected
vehicle is reporting estimated sets of the same pedestrian.
Then, we make use of the following proposition to fuse the
estimated sets Z̄ j

k , j = 1, . . . ,ne, by finding their intersections.
Proposition 2 ( [13]): The intersection between ne zono-

topes Z̄ j
k =

〈
c̄ j

k, Ḡ
j
k

〉
can be over-approximated using the

zonotope Z̀ j
k =

〈
c̀ j

k, G̀
j
k

〉
⊂ Rn as follows:

c̀ j
k =

1
ne
∑
j

w j
k

ne

∑
j

w j
kc̄ j

k, (14)

G̀ j
k =

1
ne
∑
j=1

w j
k

[w1
kḠ1

k , ...,w
ne
k Ḡne

k ], (15)

where w j
k is a weight such that

ne
∑
j

w j
k ̸= 0.

Again, the design parameter w j
k can be obtained by solv-

ing an optimization problem to minimize the size of the
resultant zonotope [13]. The algorithm for set-based fusion
is described in Algorithm 2. Estimation and fusion of the
shared situational awareness algorithm are described with
illustrations in Fig. 6. In Fig. 6, Z̄2

k can be estimated set
from another V2X unit near the EV.

V. EVALUATION

In this section, we start by describing our experimental
setup, then followed by presenting results.
A. Experimental Setup

In this section, details from the test experimental-up will
be highlighted. The experiments were carried out at the
Scania test track. For these tests, three CAVs and a parked



Algorithm 2: Shared set-based fusion for each user

Input: List of estimates : Z̄ j
k for j = 1, . . . ,ne

Output: Z̀ j
k =

〈
c̀k, G̀k

〉
1 If a road-user has multiple estimates zonotopes i.e.

j = 1,2..,ne and Z̄ j
k =

〈
c̄ j

k, Ḡ
j
k

〉
, then compute:

2 c̀k =
1

ne
∑
j

w j
k

ne
∑
j

w j
kc̄ j

k;

3 G̀k =
1

ne
∑

j=1
w j

k

[w1
kḠ1

k , ...,w
ne
k Ḡne

k ];

4 Z̀k =
〈
c̀k, G̀k

〉
;

Fig. 6: Set-based estimation and fusion.

vehicle were used. These three CAVs were equipped with
various sensors and were capable of computing their own lo-
cal perception. In Fig. 7, integration of the shared situational
awareness algorithm with the existing system architecture of
the EV is demonstrated. The EV state information and local
perception data are extracted from the localization module
and the dynamic object module. In order to receive CPM
messages with external perception from other road-users, a
V2X communication system was installed and configured.

In this project, Commsignia ITS-OB4, the fourth genera-
tion of vehicular connectivity system, enables vehicular com-
munication, presented in Fig. 8. This system communicates
to other connected agents in the scenario using Dedicated
Short-Range Communications (DSRC), which is based on
ITS-G5. ITS-G5 is a European standard for vehicular com-
munication based on IEEE 802.11 standards for its lower
layers.

For the test performed in this project, the frequency used
for communication is 5.900 GHz. The range varies a lot
depending on the operating area. On an open field, the range
is more than 1000 meters at the line of sight, but if the
receiver is hiding behind something, it is possible the sender
is not heard, even if they are close to each other. On the

Fig. 7: Shared Situational Awareness integrated to the exist-
ing system architecture.

Fig. 8: Commsignia ITS-OB4; vehicular connectivity system
used in this project.

other hand, in an urban environment with many buildings, the
signal will bounce on the buildings and therefore be available
to receivers around corners and heard while there is no line of
sight. This makes it powerful in crowded areas. The capacity
is measured to receive around 500 msgs/sec; we transmit
each message type at 10 Hz today.
B. Results

In this section, we will discuss the outcome of the test run
of the scenario presented in Fig. 1. Fig. 9 presents various
snapshots of EV’s scene map. The EV’s scene map consists
of (i) the EV’s location, which is represented by the yellow
truck, (ii) a map with lane markings, (iii) the ground truth
of SV and RSU, and (iii) estimated sets. The green arrows
represent the lane center and direction, and the arrow’s size is
the lane’s segmentation. It can also be observed that the PV
is not included in the local perception, as PV is considered a
static obstacle and is combined with the occupancy grid map,
which contains information on infrastructure and occlusion
in EV’s FOV.

In Fig. 9a, the green polygons represent the estimated set
of the detected objects by the local perception of EV. In this
scene map, it can be seen the PV occludes the pedestrian.
Two agents in the scenario are capable of sharing perception
data using V2X communication, i.e., SV and RSU. The
global truth of these agents is sent via the CPM message,
which can be further used for comparison. In Fig. 9b, the red
polygon represents the estimated set from the SV perception,
and the blue polygon represents the estimated set from RSU
perception with reference to the EV’s coordinate frame. Both
SV and RSU are able to detect all the road-users in the given
scenario from their FOV.

After collecting all estimated sets from EV, SV, and RSU
perception, these zonotopes are then grouped together if they
have an intersection that indicates that they belong to the
same road user and then fused using (2). The resulting fused
sets, along with local and external perception, are presented
in Fig. 9c. In Fig. 9d, we present the fused set along with
the ground truth of SV and RSU. This information about
the road-users in the occluded regions, along with the set



(a) Scene map with ground truth of SV and RSU
and estimated sets from local perception which are
represented by green zonotopes.

(b) Scene map with estimated sets from external per-
ception of SV and RSU which are represented by red
and blue zonotopes respectively.

(c) Scene map with estimated sets from local and
external perception and fused sets.

(d) Scene map with fused sets which are represented
by purple zonotopes.

Fig. 9: Real time results from the test run of the given scenario.

(a) Estimated sets from local and external perception
and the ground truth of SV, along with respective
centers.

(b) Estimated sets from local and external perception
and the ground truth of RSU, along with respective
centers.

(c) Estimated sets from local and external perception of
EV, along with respective centers.

(d) Estimated sets from local and external perception
of pedestrian, along with respective centers.

Fig. 10: Matlab plot of real time results of each actor.
TABLE I: Comparison of ground truth, estimated set and fused set of the SV and RSU in the given scenario.

Actor Ground truth Estimated set from Estimated set from Fused set
local perception external perception

Center (m,m) Area m2 Center (m,m) Area m2 Center (m,m) Area m2 Center (m,m) Area m2

SV (−584.24,29.85) 28.08 (−584.38,29.67) 40.80 (−584.70,29.99) 42.92 (−584.54,29.84) 42.04
RSU (−607.13,62.55) 28.08 (−607.06,62.40) 38.18 (−607.15,62.67) 43.64 (−607.10,62.53) 41.13

size, can be used in the motion planning module of EV. The
improvement in the scene map can be observed when we
compare Fig. 9a and Fig. 9d.

To be able to analyze the sets, the results have to be
plotted using the MATLAB plotting tool in Fig. 10. With
the help of another V2X communication service, i.e., the
Cooperative Awareness Message (CAM) service, we obtain

the ground truth of both SV and RSU. In Fig. 10a, the
estimated sets from local perception and RSU perception are
presented with green and blue zonotopes, respectively, along
with the fused set using purple zonotope. These estimations
are compared with the ground truth of the SV, which is
presented with a black rectangle. On the top right corner of
Fig. 10a, the centers of all estimated and fused sets, along



with the ground truth, are presented. Similarly, in Fig. 10b,
the estimated set from local perception and SV are presented
with green and red zonotopes, respectively and along with the
fused set presented using purple zonotope. These estimations
are compared with the ground truth of the RSU, which is
presented by the black rectangle. The centers of the estimated
and the fused sets are compared with the ground truth, which
is presented in the lower right corner of Fig. 10b.

In this scenario Fig. 1, the pedestrian is in the FOV’s SV
and RSU without an obstruction; therefore, they are detected
by SV and RSU. In Fig. 10c, the estimated set from the
external perception from SV and RSU are presented by red
and blue zonotopes, respectively, and the purple zonotope
represents the fused set. The intersecting area of both blue
and red zonotopes ideally will have the pedestrian, given
the uncertainties in the measurements, which is further over-
approximated to the convex zonotopes presented by the
purple zonotope. Similarly, estimated and fused sets of the
EV can be observed in Fig. 10d.

In table I, the numerical values of various zonotopes’
centers of SV and RSU are compared with their respective
ground truths. The area of each zonotope is also calculated
and compared with each other. In the case of SV, the
RMSE (Root Mean Square Error) between ground truth and
estimated sets from local perception and external perception
are 0.228 and 0.480, respectively. Similarly, in the case of
RSU, the RMSE between ground truth and estimated sets
from local perception and external perception are 0.165 and
0.122, respectively. The RMSE between ground truth and
fused set for SV and RSU are 0.300 and 0.036, respectively.

VI. CONCLUSIONS

The proposed framework was successfully implemented
on CAV’s existing system architecture. In the given scenario
with occlusion, we assumed that there are two V2X units,
i.e., a stationary and a dynamic V2X unit, close to the
crossing pedestrian. These V2X units share external per-
ceptions with EV, and this data is processed by using the
proposed framework to obtain safety guarantees. Real-time
perception data from both EV and V2X units were used to
perform test runs. During the real-time tests, the level of
uncertainty in the measurements was realized. The proposed
framework can fuse multiple measurements from both local
and external perceptions. Improvement in the scene map of
EV can be observed by comparing Fig. 9a and Fig. 9d. The
set-membership method provides state estimation along with
guarantees. These guarantees are essential for safety-critical
applications. An immediate next step is to find a way to
quantitatively present the improvement of EV’s situational
awareness while using the shared situational algorithm.
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