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Abstract— Predicting pedestrians’ trajectories is a crucial
capability for autonomous vehicles’ safe navigation, especially
in spaces shared with pedestrians. Pedestrian motion in shared
spaces is influenced by both the presence of vehicles and other
pedestrians. Therefore, effectively modelling both pedestrian-
pedestrian and pedestrian-vehicle interactions can increase
the accuracy of the pedestrian trajectory prediction models.
Despite the huge literature on ways to encode the effect of
interacting agents on a pedestrian’s predicted trajectory using
deep-learning models, limited effort has been put into the
effective selection of interacting agents. In the majority of
cases, the interaction features used are mainly based on relative
distances while paying less attention to the effect of the velocity
and approaching direction in the interaction formulation. In
this paper, we propose a heuristic-based process of selecting
the interacting agents based on collision risk calculation.
Focusing on interactions of potentially colliding agents with
a target pedestrian, we propose the use of time-to-collision
and the approach direction angle of two agents for encoding
the interaction effect. This is done by introducing a novel
polar collision grid map. Our results have shown predicted
trajectories closer to the ground truth compared to existing
methods (used as a baseline) on the HBS dataset.

I. INTRODUCTION

Autonomous vehicles (AVs) are envisioned to be part of
our everyday future transportation system. For an efficient
and safe operation of these AVs in spaces where pedestri-
ans are present, they should be able to predict the future
trajectories of nearby pedestrians.

Accurate pedestrian trajectory prediction requires the in-
tegration of different sources of information. This includes
the past trajectory history of each agent as well as the
between-agent interaction effects (e.g., how one pedestrian’s
movement may affect another pedestrian’s). Due to the com-
plexity of pedestrians’ motion in interactive settings, many
deep-learning models have been proposed in the literature
for predicting pedestrian trajectories while considering the
interaction effects (e.g.,[1], [2], [3], [4], [5], [6]). Most
of these methods have focused their training on datasets
that only include pedestrians without any vehicle present
[1], [2], [3]. Thus, these past models have only accounted
for pedestrian-pedestrian interaction effects. However, such
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models cannot directly be used for predicting a pedestrian’s
trajectory in the presence of pedestrians and vehicles.

Recent work has started considering the effect of
pedestrian-vehicle interaction in the prediction models as
a distinct influencing factor [7], [8], [9], [10], [11], [12],
[4]. Examples are using two separate pooling modules for
information aggregation of pedestrians and vehicles that are
interacting with the target pedestrian [7], or are accounting
for different edge types in a graph neural network (GNN) ar-
chitecture for distinguishing the two types of interaction apart
[11], [4]. A complete review of these pedestrian trajectory
prediction models that also account for pedestrian-vehicle
interaction effects is provided in [13].

In deep learning approaches for modelling interaction
effects, two main questions need to be answered: (1) How
interacting agents are specified, and (2) How to formulate the
effect of these interacting agents on the pedestrians’ future
trajectories. Most of the existing literature in this area has fo-
cused only on proposing different methods for answering the
second question. Simplified answers have been given to the
first question such as considering agents as interacting agents
that are closer to each other than a specified threshold [1],
[14], [6], [5], [15], [12], [16], or considering all the agents in
the scene and aggregating all their trajectory information for
formulating interaction [8], [7], [10]. While some proposed
methods have considered learning the importance of each
neighbouring agent through weightings learned in attention
layers [8], [17], still, a measure for selecting the interacting
agents in the first place is missing in the literature. For
example, in classical heuristic-based methods, pedestrians’
motions when encountering vehicles are designed to be
governed by time-dependent collision risk features such as
time to collision [18], [19] or minimum gap acceptance [20],
[21] (defined as the time left between the pedestrian and the
nearest upcoming vehicle).

Getting inspired by these methods, in this paper, we are
proposing the use of Time To Collision (TTC) for specifying
interacting agents (both pedestrians and vehicles) that can
influence a target pedestrian’s future trajectory.

Moreover, in response to the second question about formu-
lating the possible effect of the interacting agents on a target
pedestrian’s trajectory, most of the existing models rely on
relative distance features such as pooling the information
of all interacting agents in a fixed grid map around the
target pedestrian [1], [14], [3], [6], [5], or aggregating the
information of the neighbouring agents using their relative
distance to the target pedestrian [7], [2], [22], [17], [8]. In all
these distance-dependent methods of capturing interaction,
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the effects of approach directions and speed are missing
while these two factors can indeed have a high impact on
pedestrians’ motion behaviour [23], [24]. In other words, two
agents could be close, in terms of relative distance, but are
not necessarily influencing each other’s trajectory, if walking
in parallel or getting away from each other.

Few other models [17], [12], [11] have considered the raw
velocity information as an additional agent state. However,
velocity information can be used for deriving more explain-
able engineered interaction features. Therefore, in this paper,
we will take advantage of the information embedded in the
velocity vectors to calculate the collision probabilities, and
define a polar collision grid map for capturing interaction
features that can influence a pedestrian’s future trajectory.

We believe that a neural network model can learn
interaction-influenced motion patterns more effectively if
given more explainable engineered features as input.

We can summarize our contribution as follows:
1) Specifying interacting agents based on TTC as a more

effective indicator compared to the relative distance
used in the literature for studying interaction effect in
pedestrian trajectory prediction

2) Introducing a novel polar collision grid map for cap-
turing interacting effects in a deep-learning-based pre-
diction model using both TTC and approaching angle
information.

II. RELATED WORK

In deep learning-based pedestrian trajectory prediction
models, an interaction encoder is responsible for building
a feature that captures the between-agent interaction effects
on the future trajectory. Various structures have been pro-
posed for this interaction encoder in the literature which is
reviewed here from two main perspectives: 1) The selection
of interacting agents, 2) The encoded interaction features.

A. Specifying Interacting Agents

The deep learning methods used in the literature often
rely on positional distance for reasoning about the interacting
agents. In [1], [14], [6], [5] an occupancy grid map centred at
each agent’s position is used for constructing the interaction
feature of that agent. With a fixed grid size, only agents
closer than a threshold to that target agent are considered
as having an interaction and are therefore considered for
constructing that target agent’s interaction feature, thus, only
focusing on the effects caused by close-by agents.

In the GNN models proposed in [15], [12], [16], an agent’s
node is connected only to other nodes within a certain
distance and the interaction effects of only those connected
nodes are considered in the message passing process.

To overcome the limitation of these methods in capturing
possible farther-away interactions, others have included the
information of all agents in the scene for building the
interaction feature [8], [7], or considered a fully connected
graph in the GNN models used for trajectory prediction [10].

In a novel approach proposed by Li et al. (2021), the
existence of an interaction edge in a GNN model is decided

through a reinforcement learning (RL) framework on top of
the prediction model [25]. In their RL formulation, the action
is specified as making the edge between the two nodes on
or off and the reward is defined based on how close the
prediction of the selected graph connection is to the ground
truth trajectory.

Su et al. (2022), have proposed different connectivity
graphs for interaction consideration in their GNN structure
namely View graph, Direction graph and Rate graph [26]. In
the View graph only agents present in a target pedestrian’s
field of view are connected to that pedestrian’s node in the
graph and are considered to have an interaction effect on
the pedestrians. For Direction graph and Rate graph, these
edges are decided based on whether the two agents’ moving
direction has a crossover [26]. While the Direction graph
proposed in [26] can potentially account for the collision
risks, it should be pointed out that not every path crossover
necessarily yields a collision. The agents on two crossing
paths will not collide if the two agents get to that crossover
point at different times. Therefore, we propose the direct use
of collision checks for specifying the interacting agents while
also accounting for the time alignments in the trajectories for
defining a collision.

B. Interaction Features

Regardless of how the potentially interacting agents are se-
lected, the interaction features used throughout the literature
are again mainly constructed based on the relative distances
of the neighbours to the target agent.

In [1], [14], [3], [6], [5], fixed-size grid maps centred at the
target agents’ locations is defined and an interaction tensor is
built using the occupied cell of each neighbour according to
relative distances to the target agent. Both rectangular shape
grids [1], [14], [3] and circular shape (polar) grids [6], [5], [3]
have been proposed. But even in the polar grids proposed in
[6], [5], [3], only the angle of the distance vector between the
two agents is accounted for in the grid construction without
caring about the approach direction of the two agents.

In other models the relative distances between the target
agent and its neighbours are embedded and concatenated
with the hidden state of the neighbours and finally, this
concatenated feature from all the neighbours is aggregated
using a softmax [8] or a max pooling layer [7], [2], [22]
to construct the interaction feature. In the soft attention
mechanism used in [17] for aggregating the neighbours’
hidden states, the bearing angle between the two agents is
also used along with their distance in the calculation of the
attention score for each neighbour.

Cheng et al. (2018) implemented a novel approach of using
collision probability between each target agent and all its
neighbours for building the interaction feature tensor inputted
to an LSTM model [9]. But again their collision probability is
calculated as an exponential function of the relative distance,
ignoring the influence of speed.

Therefore, in our work, we are proposing a collision
probability grid that stores actual TTC, and approaching
angle information by using both velocity and position data.



III. METHOD

A. Problem Definition

Pedestrian trajectory prediction is defined as predicting
the future positions of pedestrians given a short observed
history of their own and the close-by agents’ (pedestrians
and vehicles) trajectories [1]. The position of pedestrians and
vehicles at time step t along their trajectories are denoted as
Xped

t = [X1
t , X

2
t , ..., X

np

t ] and Xveh
t = [X1

t , X
2
t , ..., X

nv
t ],

where “ped” stands for pedestrian and “veh” stands for
vehicle, and np and nv are the numbers of pedestrians and
vehicles in the scene respectively. The x-y position coordi-
nate of pedestrian or vehicle i at time t in this formulation is
defined as Xi

t = (xi
t, y

i
t). The velocity vector of each agent

denoted as V i
t = (vx

i
t, vy

i
t) can also be calculated using the

position difference between successive time steps, knowing
the timestamp between the captured frames.

Given the observed trajectories of all agents for the time
steps between 0 < t ≤ Tobs, we predict the trajectory of the
pedestrians across the future time period of Tobs < t ≤ Tpred

as Ỹt = [Ỹ 1
t , Ỹ

2
t , ..., Ỹ

np

t ]. The ground truth trajectory of
pedestrians for any time step in this prediction period is
denoted as Yt = [Y 1

t , Y
2
t , ..., Y

np

t ]. The predicted position
coordinates Ỹ i

t are derived from the predicted Gaussian
distribution output of the model Ŷ i

t , which will be described
later in Eq. 6.

B. Overall Framework of the Trajectory Prediction Model

Our overall approach for predicting pedestrians’ trajec-
tories in an environment shared with both pedestrians and
vehicles is shown in Fig. 1. The movement pattern in
the pedestrian’s trajectories is learned through an LSTM
Network. The network receives three types of input fea-
tures for each pedestrian: (1) the spatial embedded feature
of the pedestrian, (2) the embedded pedestrian-pedestrian
interaction feature, and (3) the embedded pedestrian-vehicle
interaction feature. These features are aggregated together
and used as the input to the LSTM at each timestep.

Similar to other works [1], [8], instead of predicting the ac-
tual future positions, our model will predict the parameters of
a bi-variant Gaussian distribution of possible future positions
to account for prediction uncertainty. Therefore, the output
of our LSTM goes through a linear layer to predict the means
(µx, µy), standard deviations (σx, σy) and the correlation
coefficient (ρ) of the bi-variant Gaussian distribution.

1) Spatial embedded feature: The effect of each pedes-
trian’s own trajectory history on the predicted next position
is captured through this feature where the spatial coordinate
of the pedestrian is embedded through a single layer with
ReLU non-linearity. In the following equation, this layer is
denoted as ϕe(.) with We being its embedding weights.

eit = ϕe(∆Xi
t ;We) (1)

The spatial input will be provided as displacements
∆Xi

t = (xi
t−xi

t−1, y
i
t − yit−1) which is the relative distance

between pedestrian i’s current time step t and the previous
time step t− 1.

Fig. 1. The overall framework of our proposed pedestrian trajectory pre-
diction. The embedded spatial feature, the pedestrian-pedestrian interaction
and the pedestrian-vehicle interaction features are concatenated before being
inputted into the LSTM module.

2) Interaction embedded features: How interactions with
other agents (i.e., pedestrians and vehicles) can influence a
pedestrian’s future trajectory is captured through the interac-
tion feature input. These interactions are captured through
a polar collision grid map in form of a tensor that will
be discussed in more detail in Section III-D. We have
separate tensors for encoding pedestrian-pedestrian (PPCG)
and pedestrian-vehicle interaction (VPCG), as a vehicle
can influence a pedestrian’s trajectory differently from how
another neighbouring pedestrian does. Each of these two
tensors will be processed by going through an embedding
layer with ReLU nonlinearity (ϕp for ped-ped and ϕm for
ped-veh1 interaction) before being used as an input to the
LSTM network.

pit = ϕp(PPCGi
t;Wp) (2)

mi
t = ϕm(V PCGi

t;Wm) (3)

3) Prediction module: The three inputs of spatial feature
(eit), ped-ped interaction feature (pit) and ped-veh interaction
feature (mi

t) will be concatenated and used as input to the
LSTM cell with Wl weights.

hi
t = LSTM(hi

t−1, concat(e
i
t, p

i
t,m

i
t);Wl) (4)

The output of the LSTM will then go through a linear layer
with Wo embedding weight to output the parameters of the
bi-variant Gaussian distribution. The predicted position can
then be generated by sampling from this distribution.

Ŷ i
t = [µi

x, µ
i
y, σ

i
x, σ

i
y, ρ

i]t = Woh
i
t (5)

Ỹ i
t+1 ∼ N (Ŷ i

t ) (6)

4) Loss function: Given that the model is predicting the
parameters of a bi-variant Gaussian distribution (Ŷ i

t ) over
the next positions, a negative log-likelihood loss function is
used for learning the parameters of the model as follows:

Loss = −
∑
i,t

log(P (Y i
t+1|Ỹ i

t+1)) (7)

1Ped stands for pedestrians. Veh stands for vehicle



C. Interacting Agents

In this paper, we rely on collision risks for indicating
each target pedestrian’s nearby interacting agents. Only these
specified interacting agents will then be considered for
constructing the interaction feature of each target pedestrian.
This method is opposed to other approaches followed in
the literature that consider either all the agents present in
the scene or rely only on distance for specifying interacting
agents and building the interaction feature. The intuition is
that at each time step a pedestrian’s trajectory will be affected
only by those agents that are in a collision course with it if
the pedestrian keeps its current trajectory trend.

We use the feature of Time To Collision (TTC) as a proxy
for measuring the collision risk with others. Therefore, at
each time step, having the position and velocity vectors we
calculate the time left for the agents to get closer to each
other than a minimum comfortable distance (dmin), which
we define as collision. This time between agent i and j
with position vectors (x, y) and velocity vectors (vx, vy) is
calculated according to eq 8. The notations used are for the
information at time step t but we have removed the subscript
t for simplicity.

(8)TTCij =

−(D⃗rel · V⃗rel)±
√

(D⃗rel · V⃗rel)2 − |V⃗rel|2(|D⃗rel|2 − d2min)

|V⃗rel|2

In the above equation, the vectors for relative distance and
the relative velocity between agents i and j are denoted as
D⃗rel = Xi−Xj and V⃗rel = V i−V j respectively. Moreover,
(.) denotes the dot product of two vectors and |D⃗| is the size
of the vector D⃗.

Using equation 8, all the agents with a valid TTC of
greater than zero and less than a specified threshold of
TTCthre will be considered for constructing the interaction
features as discussed in the next section. For any agent
that might already be within dmin distance of the target
pedestrian a TTC of zero will be considered.

D. Polar Collision Grid Interaction Feature

At each time step, having the specified interacting agent
and their TTC, we construct the interaction feature in form
of a polar grid centred at each target pedestrian’s current
position and in the direction of its current velocity vector.

We follow a similar approach to how we relied on col-
lision risk for specifying interacting agents for building the
interaction effect feature.

With the justification that a pedestrian follows relatively
similar evasive manoeuvres for agents in the same colli-
sion course in terms of approaching angle, we consider
the angle between the velocity vectors of two potentially
colliding agents as another feature for encoding interaction
and learning the trend of the evasive behaviour. Therefore, we
discretize the angular space around each pedestrian’s current
velocity vector to a specified number of sectors (nsector) and
for each conflicting agent, we calculate the discretized sector
where its approach angle lies on. The angles are calculated

Fig. 2. The process of building the interaction features for pedestrian i
according to the neighbouring agent’s time to collision (TTC) and approach
direction. Eight discrete sectors around the target pedestrian are considered
in this figure for the approach angles. Only neighbouring agents with a
TTC lower than a threshold will be considered in the construction of the
interaction feature. The interaction feature for neighbouring vehicles and
pedestrians are constructed separately.

with respect to the target pedestrian’s current velocity vector
in a counter-clockwise direction. This process results in a
polar grid map around each pedestrian’s current velocity
vector while specifying the presence of each interacting agent
in each cell of this polar grid.

To convert this polar grid map into an interaction feature
that also includes collision risk information, we store the
TTCthr − TTC value of each interacting agent in its
corresponding cell. We aggregate the information of the
multiple interacting agents by focusing on the riskiest agent
in each approach angle cell which is the agent with the lowest
time to collision or the highest value of TTCthr − TTC.
The resulting grid will be called the Polar time-to-Collision
Grid (PPCG) which is a tensor of size 1×nsector calculated
according to equation 9 for each pedestrian i at time step
t. In this equation, 1n[θ] is a binary indicator function to
specify if θ (the angle between vector V⃗ i

t and V⃗ j
t ) is in the

nth cell of the grid, and N i is the set of all interacting agent
of pedestrian i.

PPCGi
t(n) = max

j∈Ni
(1n [̸ (V⃗ i

t , V⃗
j
t )](TTCthr − TTCij))

(9)
This tensor will be constructed separately for pedestrians

(PPCG) and vehicles (VPCG) that are interacting with a
pedestrian. Fig. 2 visually shows the process of creating
these interaction features for pedestrian i in the middle for a
sample scenario. In this figure pedestrians F and G, despite
being close to pedestrian i, are not included in the interaction
feature since they are not causing any collision risks.

These interaction features will then be embedded accord-
ing to equations 2 and 3 and used as an input to the LSTM.

IV. EXPERIMENT

We have evaluated the effectiveness of our proposed
method by first comparing the overall methods with a couple



of baseline methods in the literature. Then we focus on
the effectiveness of each of our introduced modules by
conducting oblation studies.

A. Dataset

Since our method studies the effect of both pedestrian-
pedestrian and pedestrian-vehicle interaction on the trajec-
tory prediction of pedestrian agents, we require a dataset
that contains both pedestrians and vehicles for our training
and evaluation process. Meanwhile, we are willing to train
our model in an environment where the interactions are
less regulated by traffic rules and more governed through
negotiation and social etiquette as these interaction patterns
are more complicated to model compared to behaviours
forced by traffic rules or emerged from strict environmental
structures (e.g, crosswalks). Therefore, datasets from shared
space environments fit our objectives well since traffic rules
and road markings are alleviated in these environments and
all different types of agents are encouraged to share the same
space [27]. Here we use the HBS dataset [28] where its real-
world trajectory data has been captured from a shared space
close to a busy train station in Germany from a bird’s eye
view. This dataset has already been used in other trajectory
prediction methods in the literature [9], [6], [29]. There are
338 vehicles, 1115 pedestrians, and 22 cyclists in the 30-
minute video collected from this area and the trajectory data
are available at 2 Hz. The dominant number of pedestrians
in this dataset also suits our method which is focused on
predicting only pedestrians’ trajectories. Same as [9], [28],
[30], we use the first 10 minutes (31% of the dataset) as the
test set and the remainder for training. Here we observe 6
time-steps covering 3 seconds of the trajectory and predict
the next 6 time steps (3 seconds) of the trajectory, similar
to [9], [30].

B. Evaluation Metrics and Baselines

In line with prior works we use the following metrics to
evaluate the method and report the prediction errors.

• Average displacement error (ADE): The Euclidean dis-
tance between predicted and ground truth positions at
each time step averaged over all predicted time steps.

• Final Displacement error (FDE): The Euclidean distance
between predicted and ground truth positions at the final
predicted time step.

• Modified Hausdorff Distance (MHD): The largest dis-
tance between any two points on predicted and ground
truth trajectories (without considering time step align-
ment).

• Speed error (SE): The root mean square error (RMSE)
between the speed of the predicted trajectory and the
ground truth speed at each time step.

• Heading error (HE): The RMSE between the heading
of the predicted trajectory and the ground truth heading
at each time step.

We compare the performance of our method against the
following baseline methods:

• Linear Regression (LR): A linear regression model for
each position dimension individually.

• Vanilla LSTM: A naive LSTM considering only trajec-
tory history without the interaction effects from pedes-
trians and vehicles.

• Social LSTM: The LSTM model with the social pooling
layer proposed by Alahi et al. [1] considering only
pedestrian-pedestrian interaction.

The grid used in the Social LSTM model as the interaction
encoding module is build based on relative position data.
Thus, it is used as a baseline for evaluating our proposed
interaction grid constructed using TTC information.

C. Implementation Details

The embedding layer for the spatial inputs and the two
interaction feature all have a size of 64. We used a hidden
state dimension of 128 for the LSTM module. The number
of sectors (nsector) for the polar collision grid was set to
8. A TTCthre of 9 seconds with a dmin of 0.7 meters
was used for the pedestrian-pedestrian interaction features.
These values were 8 seconds and 1 meter for the pedestrian-
vehicle interaction feature respectively. These values were
selected after further tuning within a reasonable range ac-
cording to the physical dimensions of the agents and the
common personal space of humans [31] as well as the agents’
minimum distance and speed ranges in the HBS dataset.
Other hyperparameters of the model were also tuned by
testing different values and selecting the one that resulted
in the lowest error. A training batch size of 10 was used
for 200 epochs. We used the RMS-prop optimizer with a
learning rate of 0.001. The Nvidia GeForce RTX 2080 Ti
GPU was used for the training and testing processes.

V. RESULTS AND DISCUSSION

A. Quantitative Evaluation

The performance of the trained models on the HBS test
set are summarized in Table I Since the output of the deep-
learning models is a distribution over the predicted position,
for evaluation, same as [7] we generated 20 samples for
each model and reported the best result. Lower numbers
are better. The best values among the different models for
each metric are shown in boldface. The results show that our
proposed method outperforms the baseline methods on all
the evaluation metrics except for heading angle error. These
results demonstrate the advantage of formulating interaction
according to collision probability and approaching directions
instead of only relying on relative distances. According to
Table I, Social LSTM has slightly higher prediction errors
than the Vanilla LSTM which does not consider interactions.
This is consistent with the result reported by others for these
two models using other datasets [2], [7].

Oblation study: To more clearly show the benefit of our
proposed interaction modules for both pedestrian-pedestrian
and pedestrian-vehicle interaction, we conducted an oblation
study where we took out the interaction modules in a
step-wise process and compared prediction errors with and
without those modules in place.



TABLE I
PREDICTION ERRORS FOR BASELINE METHODS COMPARED TO THE

PROPOSED METHOD AND ITS VARIANTS ON THE HBS DATASET.

Models \Metrics ADE (m) FDE (m) MHD (m) SE (m/s) HE (°)
Linear regression 0.696 1.238 2.995 0.390 44.0
Vanilla LSTM 0.305 0.676 2.855 0.240 32.7
Social LSTM 0.309 0.677 2.852 0.244 31.5
P-CollisionGrid 0.304 0.664 2.811 0.235 32.6
V-CollisionGrid 0.305 0.669 2.827 0.232 32.9
PV-CollisionGrid 0.295 0.648 2.791 0.235 31.7

Following this, we have trained our model by tak-
ing out the pedestrian-vehicle interaction feature and only
keeping the collision grid associated with the pedestrian-
pedestrian interaction. We called this the P-CollisionGrid.
We repeated the same process by this time taking out the
pedestrian-pedestrian interaction feature and only keeping
the pedestrian-vehicle collision grid and called the model
V-CollisionGrid. The prediction errors of these two models
along with our complete model PV-CollisionGrid are also
reported in Tabel I.

The results show that adding each of the interaction
modules positively improves the prediction accuracy of the
model in terms of ADE, FDE, MHD and heading error.
This indicates the effectiveness of our interaction module in
capturing the influence of potentially conflicting agents on
the predicted trajectory of a pedestrian. However, the lowest
speed error is for the model that only considers pedestrian-
vehicle interaction. This could be due to the high influence
that vehicles have on pedestrians’ speed adjustment along
their trajectory especially when a pedestrian stops for giving
way to a vehicle.

Interacting agent selection: For more specifically ana-
lyzing the effect of our proposed method for the selection of
interacting agents based on TTC, we compared two versions
of the Social LSTM baseline model. The first version is
the original one where the interaction feature is constructed
using agents closer than a specified distance. In the second
version, the neighbouring agents are first filtered based
on our proposed TTC criteria and then the original social
pooling module [1] is constructed considering those agents
with collision risks.

The performance evaluation of these two versions in Table
II shows that filtering the agent to consider only the ones in a
conflict course with the target agent will actually improve the
prediction accuracy. According to this result, removing the
information of those agents that do not produce a collision
risk on the target agent seems to be not only harmless but
also beneficial as the target agent’s trajectory will not be
affected by those agents. Therefore, our proposed method of
selecting interacting agents based on collision risk seems to
outperform the distance-based methods by concentrating on
those agents that actually make the target agent adjust its
path for avoiding possible collisions.

B. Qualitative Evaluation

To qualitatively analyze the predicted trajectory of our
model compared to other baselines, we plotted the prediction

TABLE II
THE EFFECT OF OUR PROPOSED INTERACTING AGENT SELECTION BASED

ON COLLISION CHECKS (USED AS A FILTER) ON THE PERFORMANCE OF

THE SOCIAL LSTM MODEL REPORTED ON HBS DATASET.

Models \Metrics ADE (m) FDE (m) MHD (m) SE (m/s) HE (°)
Social LSTM 0.309 0.677 2.852 0.244 31.5
Social LSTM
+Filtered interaction 0.298 0.658 2.827 0.234 32.3

outputs for a couple of interactive scenarios in the test set
as shown in Fig. 3-5.

In the scenario shown in Fig. 3, our method detects
vehicle B as an interacting agent with pedestrian A in
the last observed timestep (tobs), meaning that a collision
will take place if the two agents continue their velocity
as it is at time tobs. Having identified this interaction, our
method then considers Vehicle B’s information on TTC and
approach angle when predicting pedestrian A’s future trajec-
tory. Therefore, as shown in Fig. 3, our method predicts an
avoidance manoeuvre which is close to the ground truth. This
is while the Social SLTM method which does not consider
the pedestrian-vehicle interaction, predicts a trajectory that
ends up in a collision with the vehicle at the last time step
of the prediction window. This supports the effectiveness of
our pedestrian-vehicle interaction module.

Fig. 5 shows another example focused on pedestrian-
pedestrian interactions and compares the prediction of our
Collision Grid method with the predictions of the Social
LSTM method that also models the interaction between
pedestrians. Focusing on Pedestrian C as a target agent which
is indicated with a star marker at time step tobs, we show all
its neighbours at the same time step with a square marker.
In each of the methods, the neighbouring agents that will
be considered for constructing the interaction feature are

Fig. 3. The predicted trajectories for our method compared to the baseline
methods for a pedestrian-vehicle interaction scenario in the HBS test dataset.
A marker with a larger size represents a later time step along the trajectory.
The position of the vehicles at the last time step of the observation period
is indicated with a square marker. Our method detects the target pedestrian
A (indicated with start) to have interaction with vehicle B at this time
step according to the TTC criteria. This identified interacting vehicle is
indicated with a filled square marker at this time step. Considering this
interacting vehicle our method has predicted a trajectory that avoids the
predicted collision while being close to the ground truth trajectory.



(a) (b)

Fig. 5. Prediction of our Collision Grid method compared to Social LSTM
for a pedestrian-pedestrian interaction scenario. Our method produces a
prediction closer to the ground truth for the pedestrians such as Ped C.
This is done by detecting Ped C’s interacting agents (Ped F and Ped B)
more accurately while relying on time to collision for interaction modelling
as opposed to the Social LSTM model that considers all agents closer to
the target pedestrian than a threshold distance regardless of their moving
direction which happens to be all the agents present in the scene here.
Interacting agents for Ped C (target) are indicated with a filled square marker
at time step tobs while markers for non-interacting agents are unfilled.

indicated with a filled square marker. According to Fig. 5
while the Social LSTM considers all the agents present in
this scene in building the interaction, our method only detects
pedestrian F and B as interacting agents for pedestrian C
and therefore relies only on these pedestrians’ information
for constructing the interaction feature. This results in a
more accurate prediction for Pedestrian C’s future trajectory
with less deviation from the ground truth compared to the
Social LSTM method. This shows the effectiveness of our
proposed interacting agent selection process that focuses
specifically on neighbouring agents that can actually affect
the target agent’s trajectory due to being in a potential
collision course, as opposed to other methods such as Social
LSTM that consider all agents that are closer than a distance
to the target agent regardless of their moving direction. This
latter approach can introduce extra not useful information
for interaction consideration that can lead to an undesired
prediction as seen in Fig. 5 for Social LSTM.

More qualitative examples of our method’s prediction

compared to other baseline methods can be found in Fig.
4 for other scenarios. There are cases where our method
has more deviation from the ground truth compared to
other methods. Fig. 4(c) provides an example in which
two pedestrians (Ped A and Ped B) are walking together
as a group. For this case our method has a false positive
collision detection and predicts a trajectory for Ped B that
is slightly to the right of the ground truth, getting away
from Ped A, instead of predicting close parallel paths for
these two pedestrians. However, despite the poor prediction
in these particular cases, our algorithm produces less error
on average compared to other baselines’ predictions as seen
in Table I. In future, the prediction of our algorithm can be
further improved by adding a group detection for filtering
out possible false collision detection in the model.

VI. LIMITATION AND FUTURE WORK

Our work had several limitations. The goal was to model
the interaction effect between pedestrians and vehicles to
predict future trajectories of pedestrians. These complicated
interactions mostly happen in environments that do not seg-
regate the operational space of the pedestrians and vehicles,
e.g., shared spaces. Therefore, we limited our datasets to
shared space environments that greatly embed these high-
interactive behaviours. However, only a few datasets exist
from these shared spaces while in some of them the number
of data points and trajectories are limited. Thus, we only
trained and tested our algorithm on one dataset (HBs) which
outperformed the baselines. Future work can benefit from
testing on other datasets to confirm whether the results can
be generalized to other environments. Also, for focusing on
patterns that could be derived from only trajectory data, we
did not consider the effect of the environment’s structure.
Future work can take the map of the environment as another
input to study the effects of these other factors.

VII. CONCLUSION

We proposed the use of collision-risk information for
encoding the interaction effects for pedestrian trajectory pre-
diction in an environment shared with vehicles. Interacting
pedestrians and vehicles with a target pedestrian were first

(a) (b) (c)

Fig. 4. The predicted trajectories for our method compared to the deep-learning-based baseline methods in the HBS dataset. Our predictions overall are
closer to the ground truth compared to the baselines. Case (c) is an example with a non-accurate prediction from our Collision Grid method where a
probable group interaction between Ped A and Ped B is mistakenly detected as a possible collision ending up with a prediction for Ped B that deviates to
the right of the ground truth data. Interacting agents with a sample target pedestrian (shown with star) are shown with a filled square marker.



selected based on the heuristic of Time-to-Collision (TTC).
A novel polar collision grid map for each target pedestrian
then encoded the interaction effects using the information of
TTC and the approach direction of these interacting agents.

Our results showed that by filtering the neighbouring
agents for focusing only on those agents that could actually
affect the target pedestrians through posing a collision risk,
we may better capture the interaction effects on the predicted
trajectories. Also, by directly using the information on the
approaching risk direction and the criticality of the situation
using TTC, we were able to predict the corresponding
changes in the trajectory more accurately than the baseline
methods. According to the results, we believe that providing
the prediction network with more relevant engineered fea-
tures can guide deep-learning-based prediction methods to
better learn the patterns underlying the trajectories, leading
to predictions that are closer to the ground truth.
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