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Gated Driver Attention Predictor

Tianci Zhao!, Xue Bai?, Jianwu Fang' and Jianru Xue®

Abstract—Driver attention prediction implies the intention
understanding of where the driver intends to go and what
object the driver concerned about, which commonly provides
a driving task-guided traffic scene understanding. Some recent
works explore driver attention prediction in critical or accident
scenarios and find a positive role in helping accident prediction,
while the promotion ability is constrained by the prediction
accuracy of driver attention maps. In this work, we explore
the network connection gating mechanism for driver attention
prediction (Gate-DAP). Gate-DAP aims to learn the importance
of different spatial, temporal, and modality information in
driving scenarios with various road types, occasions, and light
and weather conditions. The network connection gating in Gate-
DAP consists of a spatial encoding network gating, long-short-
term memory network gating, and information type gating
modules. Each connection gating operation is plug-and-play
and can be flexibly assembled, which makes the architecture
of Gate-DAP transparent for evaluating different spatial, tem-
poral, and information types for driver attention prediction.
Evaluations on DADA-2000 and BDDA datasets verify the
superiority of the proposed method with the comparison with
state-of-the-art approaches.

I. INTRODUCTION

The interaction between the driver and the surrounding
road environment implies frequent intention prediction. The
driver fixation contains the intention of where to intend to
go or be interested in safe decision-making. Driver attention
is a typical cognition load that reflects the capacity for
selecting and perceiving the useful road context [1], and is
investigated largely for normal driving situations [2]. With
an important expansion, recent researches find that driver
attention shows manifested promotion for accident prediction
in driving scenes [3], [4]. Driver attention prediction can help
to find the crashing (to be involved in an accident) object in
advance under many adverse environment conditions [5], [6].

The popular prototype in this topic is to leverage the
powerful fitting ability of deep learning architectures. In
different driving scenarios, different drivers may focus on
different scene regions because of their subjective will, which
makes the driver attention prediction with large predic-
tion uncertainty. Consequently, some works begin to adopt
multitudinous information, such as road semantics, scene
motion, intended goals, object locations, etc., to weaken the
prediction uncertainty and find the key elements in accident
scenarios for driver attention prediction [7].
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Fig. 1: Tllustration with a critical scenario in BDDA dataset [8],
where we formulate a driver cognition system with the neural links
for spatial feature, temporal memory, and information type (e.g.,
vision, semantics, and motion) selection (i.e., by gating functions).

Although existing works improve the performance of
driver attention prediction, most of them are not explainable
for which kinds of information or what module play the key
role in the improvement. Commonly, fusing all information
or integrating all modules is universal for final implementa-
tion. In fact, it is natural that different scene information
implies different promotion abilities from the aspects of
the spatial region, temporal memory, or information types.
Claimed by the recent research that appeared in Science
[9], [10], no neuron is an island, and the outcomes of the
exhibited human behaviors are driven by the connections
between the neurons. The connection of the brain neurons
stimulates human intelligence. How to leverage this finding,
measure, or discover the expressive ability of different infor-
mation and encoding modules in this topic? This question
implies information selection or counterfactual reasoning
problems [11]. The work of [2] explores the driver’s visual
fixation behavior with a model-driven white-box representa-
tion, which introduces the driving task-aware representation,
such as steering angles, speed, etc. Then, the driving task-
driven representation is fed into a weight learning module
with motion and bottom-up saliency maps to select the
information. Some works explore the counterfactual role of
different input information by masking or changing some
types of them [11], [12]. These formulations involve many
ad-hoc enumeration tricks, which introduce further questions
for different masking strategies.

In this work, we aim to explore the network connection
gating mechanism, for finding the flexible and transparent
architecture for driver attention prediction (called Gate-
DAP). Specifically, we design the network connection gating
from the Spatial Feature Gating (SpaG), Long-Short-Term
Memory Gating (MemoG), and Information-Type Gating
(InfoG) (to be described in Sec. [[lI-A), as illustrated in Fig
[[} The connection gating units in Gate-DAP can be flexibly



assembled for checking the roles of different information and
encoding modules. In this work, we introduce four types of
information of RGB video frames, road semantic images,
optical flow (motion) images, and the drivable road area.
Different types of information are encoded with the Vision
Transformer (ViT) to leverage the self-attention mechanism.
To conveniently evaluate the role of different information, we
introduce an object-centric counterfactual analysis to check
the role of certain types of information but maintain the
whole model unchanged. The contributions are threefold.

« We explore the network connection gating mechanism
for achieving a transparent architecture of driver atten-
tion prediction (Gate—DAPﬂ which refers to the spatial
feature encoding network, temporal memory encoding
network, and information fusion network.

« The connection gating units are plug-and-play and can
be flexibly assembled. We introduce the object-centric
counterfactual analysis for the information importance
evaluation, which avoids to re-train the whole model
with different configurations.

« We evaluate the performance on two datasets, DADA-
2000 [5] and BDDA [8], and superior performance to
other state-of-the-art methods is obtained.

II. PRECEDENT WORK
A. Driver Attention Prediction in Driving Scenes

The prediction of driver attention reflects the intention
prediction of where intends to go or what is of interest
in driving scenes and is investigated in many applications,
such as important object detection [13], driver distraction
detection [14], driving model, or policy learning [15]. With
the emergence of some large-scale benchmarks, such as the
ones for normal driving situations (DR(eye)VE [16], Traf-
ficGaze [17], and CoCAtt [18]) and the critical or accident
scenarios (Eyecar [7], DADA-2000 [5], and BDDA [8]), the
driver attention prediction has fast progress in recent years.
Driver attention prediction in driving scenes exhibits three
kinds of research prototypes: data-driven, model-driven, and
cognitive-conditioned approaches.

Data-driven formulation aims to leverage the data distri-
bution of driver attention in different scenarios or datasets.
The motion, semantic, and RGB frames are commonly
used in the data encoding modules [7], [16]. For example,
Deng et al. [17], [19] collect the driver attention data the
targeting highway scenario and the rainy condition, and some
Convolution Neural Network (CNN) models are proposed for
the video frame encoder and driver attention map decoder.

Model-driven formulation is accompanied by the inno-
vation of many kinds of learning models for learning the
driver attention patterns, such as the conditional Generative
Adversarial Network (GAN), Inverse Reinforcement Learn-
ing (IRL) [7], or some explainable models [2], etc.

Cognitive-conditioned approaches explore the driver sta-
tus in driver attention prediction, such as the distraction state

I'The code will be available in https:/github.com/TWFangit/Gate-DAP.

and the intention, to guide the drive attention prediction. Co-
CAtt [18] investigates the driver attention pattern in turning
behavior or straight-moving intention. Huang and Fu [14]
adopt the predicted driver attention map to detect the state
of driver distraction. Analogously, the driver’s attention is
also estimated by the head pose [20].

The aforementioned works for driver attention prediction
show manifested progress, while most of them are not
explainable for which kinds of information or what module
plays the key role in the improvement.

B. Gating Networks

In recent years, many kinds of Dynamic Neural Networks
(DNN) [21] have been proposed for fusing different infor-
mation with various fusion strategies. Gating networks are
the types of typical paradigms. Different from the previ-
ous attention-based works [22], the gating network adopts
different gating functions to restrain the link of encoding
networks in spatial, temporal, or modality aspects. Gating
networks usually concentrate on the feature layer skipping
[23], feature channel gating [24], network path selection [25],
and information type allocation [26]. Commonly, the gating
functions are added as a lateral skip residual link on the
original feature extraction pathways. The gating function is
a plug-in module that can be used in arbitrary locations in
different networks.

Spatial gating networks can be divided into pixel-level
gating networks, region-level gating networks, and scale-
level gating networks. For example, gated convolution [27]
is one typical pixel-level gating function by learning a soft
mask from the data, which achieves a dynamic spatial feature
selection for each feature channel and spatial location.

Temporal gating networks commonly add the gating
function in the hidden state or the input of Recurrent Neural
Networks (RNN). For example, Wu et al. propose an efficient
video recognition method, which uses a conditional gating
module to decide whether more discriminative information
is needed for the current video frame.

Modality gating networks aim to explore the modality
selection for final decisions. For example, Dynamic Multi-
modal Fusion (DynMM) [28] proposes a text-vision-audio
fusion method for the final decision, which has a gating
network for selecting the expert networks on each modality.

Most gating networks explore spatial, temporal, and
modality gating separately, while different information is
woven together and each kind of gating function may have an
influence on each other. In this work, we explore the spatial,
temporal, and information types gating together for verifying
different encoding modules for driver attention prediction.

III. GATE-DAP

In this section, we first describe the network connection
gating functions, and then present the whole model of
driver attention prediction. The network connection gating is
inspired by the connection mechanism between the neurons
in the brain, where each kind of connection stimulates the in-
telligent understanding of different information. Meanwhile,
the gating fulfills an information selection.
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A. Network Connection Gating Functions

This work leverages the gating mechanism from the as-
pects of spatial region selection, temporal memory selection,
and information type selection, and fulfills them by the
Spatial Region Gating (SpaG), Long-Short-Term Memory
Gating (MemoG), and Information-Type Gating (InfoG) (as
shown in Fig. |2)) to be described in following.

1) SpaG: SpaG aims to select the spatial region feature
for subsequent information encoding and driver attention
prediction. SpaG is fulfilled by a spatial attention module,
which multiplies the generated feature attention tensors with
the original feature tensor to achieve spatial gating of each
image patch. As shown by the SpaG structure in Fig. 2 for
the input feature tensor S € REWXH  where C, H, and W
are the number of feature channels, the height, and width of
the feature map, respectively. Similar to [29], we first use
the global average-pooling (GAP) and global max-pooling
(GMP) operations along the channel axes for highlighting
the spatial activation regions, and generate two types of
2D feature maps, i.e., F5,, € RY*# and F3,, € RVWXH,
Based on the spatial attention convolution, these 2D feature
maps are then concatenated and convolved by a standard
convolution layer, producing a 2D spatial attention map Ay =
G(WT([ngg;FrSnax])) € RW*H where [;] is the concatenation,
o is the Sigmoid function and W; is the weight of a
convolution operation. Then the final output S after spatial
gated convolution is:

S'=A;68. (D

2) InfoG: InfoG concentrates on the selection of different
types of information, such as RGB video frames, motion
features, semantic features, etc. It is inspired by that different
types of information in the same driving scene may have
differing importance for drivers. For this purpose, we design
two kinds of information-type gating functions: Multiple
Information Type Gating (MU-InfoG) and Monocular Infor-
mation Type Gating (MO-InfoG). MU-InfoG fulfills a cross-
attention model among different types of information, and
MO-InfoG gates the single type of information.

MO-InfoG: MO-InfoG filters the input feature tensor M €
REXWxH by:

M’ = ¢ (W;-M)© o (W, - M), )

where M’ is the output after MO-InfoG, ¢ can be any
activation function (e.g., ReLU, LeakyReLU, etc.), and the
ELU activation function [30] is chosen in this work for
relaxing the gradient and making the neuron be active all the
time. ELU activation function is defined as ¢* — 1 for x <0
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Fig. 3: The structure of MemoG, where G; is the output label of
X/ and omitted in this work.

and x for x >=0. W, and Wy are the gated convolution filters
[27] and the original feature convolution filters, respectively.
Here, o(.) restrains the output of the gating value to [0,1].

MU-InfoG: As shown in Fig. 2| for the input feature
tensor M; € REWXH ' we first use 1D convolution to reduce
their channel dimension and generate m; € R'*W>*# Then,
we concatenate m; along the information type dimension to
obtain a tensor MU with the size of n x W x H, where n is
the number of information types. Next, we use the softmax
function to ensure that the sum of the feature values of
MU at each spatial dimension is 1 to achieve the feature
selection. Finally, we rearrange MU to the shape of the
original feature tensor M; and obtained n masks {mask;}”
with size of H x W. The output of MU-InfoG for each kind
of information is denoted as M;.

3) MemoG: MemoG focuses on the temporal memory
gating with a long and short window consideration. MemoG
stands at the gate recurrent unit (GRU) and filters out
redundant features in historical video frames with short and
long-term information gating. We treat the hidden state H,
as a representation of a long-term memory at time ¢ after
several times of temporal recurrences. The input X, at time
t is denoted as the representation of short-term memory.

Specially, in short-term memory, we consider the uncer-
tainty in driver attention prediction, which is fulfilled by
the cross-attention of the input feature tensors of k frames,
ie., [Xi,X;—1,...,X;—x). If we encounter a sudden change in
driving scenes, the uncertainty estimation will give a large
weight to the frame with sudden change. This consideration
is achieved by the MU-InfoG operation on [X;, X;_1, ..., X; ]
and generates [X/,X]_,,....X_,].

For long-term memory, we employ the MO-InfoG to
gate the hidden state H;_; obtained in the previous time.
Consequently, the MemoG is modeled by:

3)

Fig. 3] demonstrates the structure of MemoG. We omit
Y; for the driver attention decoding. We explicitly enforce
the gating function to the input hidden state and current

H117 1 = MO-InfOG(H17 1 ) 5 Hl = GRU(H/I7 1 X/l) 5
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Fig. 4: The pipeline of Gate-DAP. Notably, we estimate the
uncertainty in the memory gating module, which is useful
for feature learning with sudden scene changes.

observation, which aims to purify the temporal information
before the GRU unit (with 256 dimensions of hidden state).

Thus, the SpaG, InfoG, and MemoG are described, which
can be flexibly adopted in any deep learning model, and are
carefully utilized in our driver attention prediction network.

B. Driver Attention Prediction

In driver attention prediction tasks for driving scenarios,
the driver’s eye movements are usually influenced by mul-
tiple factors due to complex and variable road conditions.
The whole pipeline of the Gated Driver Attention Predictor
(Gate-DAP) model is shown in Fig. In this work, we
consider four kinds of information to model the driving
scenes, and each input sample clip of Gate-DAP consists
of a group of [I14, Fiy, Si4, D14], where the " frame at
one clip is denoted as I; for RGB information, F; for motion
information, S; for semantic information, and D; for drivable
region information. Notably, motion frame F; is obtained by
computing the motion correlation between I, and 7,_;.

Backbone Model: Each frame in one clip is encoded by a
backbone model, respectively. As shown in Fig. 4] different
types of information follow a parallel encoding but share
the encoder weights. Because the encoding of each type
of information is the same, we take the #*» RGB frame in
one clip as an example. In this work, we take the vision-
transformer model (ViT) as the backbone model, which is
pre-trained in ImageNet-1K by masked auto-encoder (MAE)
[31]. ViT is fulfilled by a multi-head self-attention module
on image patches with position embedding. In this work, the
number of self-attentive heads of ViT is set as 12, the depth
of layers is set as 12, and the patch size is 16.

Connection Gating: Denote the feature embedding of the
RGB frame clip is [Z!, ..., Z!]. The feature embedding of each
frame is separately gated by the SpaG to achieve a spatial
feature selection. The output of the SpaG at each frame is
correlated by the MemoG to fulfill a temporal memory gating
over the frames within the frame clip. MU-InfoG is adopted
by following the MemoG at the ¢ frame for gating different

types of information. The gating part of Gate-DAP is:

Ztl = ViTlMAE([t)a €]
Z'} = SpaG(Z}), 5)
H' = MemoG(H!_,,Z"},....Z""]), (6)

M M M M'P] = MU-InfoG(HL HS. HE H?), (7)
M/, = Stack[M'/, M’ M"? M'P]. (8)

where M, is the final feature representation at time ¢ after
stacking all information types and adopted to decode the
future attention map at time 7 + 1. Because embedding each
type of information is time-consuming by the ViT model, we
share the weight for different types of information.

Attention Map Decoding: After the MU-InfoG operation,
M, needs to be converted to an attention map with the same
size as the input frame. Therefore, M; is decoded as the final
driver attention map Y, for the (¢t 4 1)"" frame.

The decoding module consists of three interleaved blocks,
each one of which contains a 2D convolution, batch normal-
ization, ReLU function, and upsampling operation, fulfilled
by [conv(3 x 3,128) — Batch Normalization — ReLU —
upsampling] x 4 — conv(3 x 3,1), and the final block ends
with Sigmoid function for mapping the output value to [0,1]
to highlight the focused regions of the (t +1)"" frame.

Loss Function: Similar to DADA [5], we also take the
joint loss function to train the gated network, which contains
the Kullback-Leibler distance (KLD), linear correlation co-
efficient (CC), and normalized scan path significance (NSS).
The specific loss function is denoted as:

. COV(YHI«,)AEH)
p(Yr)p(Yisr)

LY, Y1) =X Y (Ai)lo'g(s—ﬁ 8_’;’%51"21.) )—
-B- o Il’,H(i) Yo ¥y l(l’)J?;l)(Ym I)I)t-‘rl (i)
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where Y; 1 and P,y are ground-truth saliency and fixation
point maps, respectively, ¥, is the predicted attention map.
i indexes the i pixel across the all N pixels of the saliency
map. o and B are the coefficient that adjusts the weight
of CC and NSS, N indicates the number of image pixel
points, cov(YJA’) indicates the covariance of ¥, and )A’,H; p
indicates standard deviation operation, and € is a very small
constant to prevent the operation from errors such as the
number of denominators being 0.

IV. EXPERIMENTS
A. Dataset

In this paper, we evaluate the performance of the proposed
Gate-DAP on two challenging datasets with critical or acci-
dent scenarios, i.e., BDD-A [8] and DADA-2000 [5].

BDD-A [8] consists of 1,232 sequences (each one owns
about 10 seconds). It focuses on critical situations such as
occlusions, truncations, and emergency braking. To obtain
annotations, 45 drivers are asked to watch videos, and their
eye movements are recorded by an eye tracker to generate
fixations. We follow its partition and obtain 28k frames for
training, 6k frames for validation, and 9k frames for testing.



DADA-2000 [5] concentrates on driver attention predic-
tion in accident scenarios. This dataset contains 2000 videos
with over 658,746 frames. We follow the work [5] that 1000
videos are used for performance evaluation, which provides
598 training sequences (about 214k frames) and 222 testing
sequences (about 70k frames), respectively.

B. Implementation Details

The proposed method is implemented using the PyTorch
framework. During the training process, we used the Adam
optimizer with a learning rate of 107 and a weight decay
of 0.0001. The entire model is trained in end-to-end mode,
and the entire training process takes about 20 hours and 6
hours on one NVIDIA RTX2080Ti GPU with 11GB RAMs
for DADA and BDD-A datasets, respectively. In addition,
regarding the number of input frames in one clip, based
on our previous research [5], [32], we found that for the
frame or map prediction problems, more input frames will
consume more computing resources with little performance
gain. Therefore, in our implementation, due to the limitation
of RAM space, each input clip contains 4 consecutive frames.
We pre-prepare the semantic images, optical flow images,
and drivable area images in advance using the DeeplabV3
[33], FlowNet2.0 [34], and Yolo-P [35], respectively.

Metrics: Following the previous driver attention predic-
tion methods [5], [7], [16], we utilize five metrics to evaluate
the performance, which contains three distribution-based
metrics, i.e., Kullback-Leibler Divergence (KLD), Pearson
Correlation Coefficient (CC), and Similarity (SIM), and two
location-based metrics, i.e., Normalized Scanpath Saliency
(NSS) and the area under the receiver operating characteristic
(ROC) curve (AUC). Here, two variants of AUC were used,
namely AUC-Judd (AUC-J) and shuffled AUC (AUC-S).

C. Ablation Study

1) Which information is important? A counterfactual
analysis. To evaluate the importance of each type of informa-
tion, this work introduces a counterfactual analysis strategy.
We all know that most participants in driving scenes are
pedestrians and vehicles, and these two types of semantics
basically attract driver attention in most situations. If we
remove these two kinds of semantics in the images, the input
images may only contain the background. Specifically, we
maintain the whole architecture of Gate-DAP and remove
these two kinds of semantics one by one for each type of
information (See Fig. [3] for semantic information). For the
drivable area image, we remove the binary mask.

This strategy does not need to re-train the model with dif-
ferent information configurations and check the importance
of each type of information by the metric value difference
with Gate-DAP-Full-Model. Totally, we obtain ten versions
after counterfactual analysis, denoted as three RGB versions
(“Gate-DAP-I w/o P”, “Gate-DAP-I w/o V", and “Gate-DAP-
I w/o V-P”), three motion versions (“Gate-DAP-F w/o P”,
“Gate-DAP-F w/o V>, and “Gate-DAP-F w/o V-P”), three
semantic versions (“Gate-DAP-S w/o P”, “Gate-DAP-S w/o
V>, and “Gate-DAP-S w/o V-P”), and one drivable mask

Semantics

Semantics

!| Drivable Road Area

Gate-DAP-S w/o V-P Gate-DAP-D w/o Mask

Fig. 5: The counterfactual operation on a semantic image (re-
moving pedestrians and vehicles, i.e., “Gate-DAP-S w/o V-P”) and
removing the binary mask in drivable area image (i.e, “Gate-DAP-
D w/o Mask”).
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Fig. 6: Performance influence with the counterfactual operation on
each kind of information, respectively. This evaluation is conducted
on the testing set of the DADA-2000 dataset.

version (“Gate-DAP-D w/o Mask”). Here, “P”, “V”, and
“Mask” denote the indication of pedestrians, vehicles, and
road mask regions, respectively. Larger differences mean that
the information with our counterfactual operation has more
importance. If one kind of information with counterfactual
operation hardly affects the result of each metric, it is useless.

Fig. [6] demonstrates the performance influence of each
kind of information. We observe that the motion information
in this work has the weakest influence on the performance,
verified by “Gate-DAP-F w/o P”, “Gate-DAP-F w/o V”,
and “Gate-DAP-F w/o V-P with little difference. We also
show some snapshots of predicted driver attention maps in
Fig. [7] The visualization results demonstrate that removing
the pedestrian and vehicles in the motion information (Fig.
[7(f)) has little change with the Full-Model. On the contrary,
the drivable area mask (we denote it as an indirect driving
task representation) has the largest performance influence
(marked by the black lines in Fig. [6). Besides motion
information, other kinds of information have an impact on
performance to a large extent. Therefore, we think the role
of motion information in this work is very little.

2) Temporal uncertainty evaluation in MemoG. As
aforementioned, we consider the temporal uncertainty in
MemoG by cross-attention model for successive frames.
This consideration aims to find the sudden scene change
in critical or accident scenarios. Here, we evaluate the role
of this consideration by the setting of MemoG with or
without the Temporal Uncertainty (i.e., MemoG-w-TU. and
MemoG-w/o-TU.). Accordingly, the structure of MemoG for
the short-term memory gating is changed, as shown in Fig.
[B] Table. [l] presents the results on the testing set of the
DADA-2000 dataset, and we can see that TU. shows a slight
promotion role for driver attention prediction.

3) How about the role of different gating modules?
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Fig. 7: Some predicted driver attention maps in DADA-2000 for checking the importance of different types of information.
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Fig. 9: The visualization of some predicted driver attention ex-
amples in DADA-2000 for evaluating different gating modules. (a):
ground-truth; (b): Gate-DAP-Full-Model; (c): Gate-DAP w/o SpaG;
(d): Gate-DAP w/o MemoG:; (e): Gate-DAP w/o MU-InfoG.

The primary insight of this work is to introduce the gating
modules. To evaluate their roles, we take contrastive exper-
iments, where we close the relative gating modules in the
Gate-DAP model. Consequently, we have three versions in
this evaluation, i.e., “Gate-DAP w/o SpaG”, “Gate-DAP w/o
MemoG”, and “Gate-DAP w/o MU-InfoG”.

“Gate-DAP w/o SpaG” is fulfilled by setting the weight
map W in Eq. 1 as an identity matrix.

“Gate-DAP w/o MemoG” has two kinds of gating mod-
ules: MO-InfoG and MU-InfoG. Eliminating MO-InfoG is
achieved by setting the weight matrix W, and W, in Eq. 2
as two identity matrixes. Eliminating MU-InfoG is fulfilled
by setting all the weight of different information equally.

“Gate-DAP w/o MU-InfoG” is obtained by the same
setting for multiple kinds of information (with the same
weight for each type of information).

The results are shown in Tab and we can see that
the gating modules are positive for driver attention predic-
tion. Among them, the MU-InfoG module has the greatest
contribution. We can see that after adding the MU-InfoG
module, all metric values improve. We also demonstrate
some snapshots of predicted attention maps by different
gating configurations in Fig O] From the figure, we can
clearly see without the SpaG and MU-InfoG, the predicted
driver attention is intended on the road region, while the
actual fixations concentrate on the vehicle. Gate-DAP with
all gating modules can localize the true driver fixations well.

TABLE II: Evaluation on different gating modules.

Gating Modules DADA2000 BDD-A
SpaG MemoG MU-InfoG |[KLD | CC+ SIM+ NSS 1|KLD | CC+ SIM 1
170 047 035 3.07 | 147 052 040

v 1.69 047 035 3.11 | 1.44 0.53 042
v 1.69 047 035 3.09| 146 0.52 040

v 1.67 048 035 3.13 | 124 059 045

v v 1.68 047 035 3.13 | 1.43 053 042
v v 1.67 048 036 3.13 | 1.19 0.59 047
v v 1.67 048 036 3.12 | 1.24 0.59 045

v v v 1.65 0.52 036 3.14 | 1.12 0.61 049

D. Comparison with State-of-The-Arts

To validate the superiority of Gate-DAP, seven representa-
tive driver attention prediction methods are compared, with
five video-based BDDA [8], DR (eye) VE [16], TwoStream
[36], SCAFNet [5], TASEDNet [37], Vi-Net [39], Flow-DA
[40], and ASIAF-Net [38]. We compare the results reported
in their works in this evaluation.

In addition, in the ablation studies, we introduce the
counterfactual analysis and gating closing to check the
information’s importance and gating roles, where different
configurations are not re-trained. Certainly, to prove the
reasonability of the ablation study ways, we re-train two
versions, i.e., removing all gating modules (Gate-DAP w/o
Gs) and removing motion information (Gate-DAP w/o F),
to check whether our finding is reasonable or not. The
evaluation results are shown in Table. [l From the results,
we can see that our Gate-DAP shows promising performance
in all datasets, especially for the KLD metric and AUC-J
metric. Besides, the results of Gate-DAP w/o Gs and Gate-
DAP w/o F indicate that the ablation study ways in this work
are promising for checking the role or importance of different
model configurations without model re-training.

V. CONCLUSIONS

This work proposes a Gated Driver Attention Predictor
(Gate-DAP), which explores spatial feature gating, temporal
memory gating, and information type gating to fulfill a
transparent architecture of driver attention prediction net-
works. The gating modules are a plug-and-play that can
be used to check the role of different kinds of features,
i.e., spatial feature, temporal feature, and information type
feature. In addition, we introduce a counterfactual analysis
to evaluate the importance of different types of informa-
tion. Based on the analysis, motion features have the least



TABLE III: Comparison with several state-of-the-art methods.

DADA2000 BDD-A
KLD | CCT SIMT NSS 1 AUC-J T AUC-S 1|KLD | CCt SIM |

DR(eye)VE [16] | 227 045 032 292 091 064 | 1.95 050 —
BDDA [8] 332 033 025 215 086 063 | 149 051 0.35
TwoStream [36] | 2.85 0.23 0.14 148 084  0.64 - - -
TASEDNet [37] | 1.78 046 031 320 0.92 - 124 055 042
Vi-Net [39] - - - - - - 139 061 045
SCAFNet [5] | 2.19 050 037 334 092 066 | 1.39 054 043
Flow-DA [40] - - - - - - 139 061 045
ASIAF-Net [38] | 1.66 049 036 339 093 078 | 124 0.66 —
Gate-DAP w/o Gs| 1.72 046 035 3.03 092 084 | 136 054 039
Gate-DAP w/o F | 1.66 047 035 3.12 092 085 | 1.18 061 042
Gate-DAP 1.65 052 036 3.14 093 085 | 112 061 049

influence after removing the pedestrians and vehicles in
motion images. On the contrary, drivable area images show
manifest performance influence. Through the comparison
with other state-of-the-art methods, Gate-DAP generates the
best performance on DADA-2000 and BDDA datasets.
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