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Abstract— Vehicles embed lots of sensors supporting driving
and safety. Combined with connectivity, they bring new pos-
sibilities for Connected, Cooperative and Automated Mobility
(CCAM) services that exploit local and global data for a wide
understanding beyond the myopic view of local sensors. Internet
of Things (IoT) messaging solutions are ideal for vehicular data
as they ship core features like the separation of geographic
areas, the fusion of different producers on data/sensor types,
and concurrent subscription support. Multi-access Edge Com-
puting (MEC) and Cloud infrastructures are key to hosting
a virtualized and distributed IoT platform. Currently, the are
no benchmarks for assessing the appropriate size of an IoT
platform for multiple vehicular data types such as text, image,
binary point clouds and video-formatted samples. This paper
formulates and executes the tests to get a benchmarking of the
performance of a MEC and Cloud platform according to actors’
concurrency, data volumes and business levels parameters.

I. INTRODUCTION
Advanced Driver-Assistance Systems (ADAS) steer the

current competition on vehicle manufacturers to enhance the
driver experience and safety. This race is bringing lots of
sensors to the vehicle’s body with autonomous driving on the
horizon. These sensors help onboard systems make decision
and anticipate environmental situations. However, the next
natural leap, as the vehicles get connectivity, is extending
onboard sensing with sensors from other vehicles to over-
come the physical limitations of onboard sensors. Once local
discovery and extension are addressed, the next evolution
is based on the ballet and coordination of maneuvers and
traffic in an area perspective. Finally, the data from sensors
can be exploited in a non-real-time manner for telemetry,
diagnostics/maintenance, post-sell, marketing, emergencies
and insurance purposes by stakeholders not present on the
road and providing Connected, Cooperative and Automated
Mobility (CCAM) services.

It becomes evident that all these applications need a large
volume of data to be transmitted from multiple devices to
different systems interested in the same data flows with
a common or different purpose. Internet of Things (IoT)
messaging platforms are widely employed solutions for this
purpose, bringing maturity, concurrency, scalability, flexibil-
ity, specialized data type channels and geographic structure.

5G provides a perfect asset through Multi-access Edge
Computing (MEC) to host an IoT messaging platform on top
of a virtualized infrastructure [1]. This way, data producers
and consumers take benefit of the privacy and low-latency

processing as close to the sensors as possible. Then a Cloud
infrastructure is usually employed to host a central IoT mes-
saging platform managing the hierarchical architecture by
aggregating messages from common IoT topics and splitting
messages according to the geographical sensors’ distribu-
tion. In the edge, IoT solutions such as Message Queuing
Telemetry Transport (MQTT) or Advanced Message Queu-
ing Protocol (AMQP) are used as they are lightweight for
sensors and devices. Then in the Cloud, KAFKA makes the
difference with a high-performance, scalable solution that
links MQTT and AMQP to act as a global concentrator of
local IoT messaging instances.

To fully exploit the scalability potential of the virtualized
infrastructures provided in the MEC and the Cloud for such
a hierarchical IoT structure, the assessment of resources to
cope with the message flows is an essential activity to avoid
bottlenecks that will damage the concurrency, capacity or
latency service levels.

In the 5G Infrastructure Public Private Partnership
(5GPPP) project 5GMETA [2] has been built an IoT platform
for vehicular data including, Cooperative Intelligent Trans-
port Systems (C-ITS) JSON and binary formatted messages,
individual image recordings and live videos. All of them are
embodied in IoT messages allowing live data transmission.
It becomes evident that each data format involves a dif-
ferent processing workload and then the required resources
will vary. So, 5GMETA implementation applies some cost-
effective rules to accommodate different business models.

This paper provides a methodology and framework to
benchmark the nominal capacity of an IoT message platform
virtualized and operated on top of MEC and Cloud infrastruc-
tures. To this end, Section II overviews the IoT architectures
for vehicular communications and CCAM applications and
the studies on their scalability. Then, Section III explains
the 5GMETA platform implementation aspects to consider
to maximize processing capacity and minimize latency while
fostering a car data marketplace and how the MEC and
Cloud setups sustain the developed platform. After, Section
IV explains the methodology and frameworks employed to
score performance, capacity and resulting latency of the
IoT platform and the obtained results. Finally, Section V
highlight the salient results and outlines some future work.
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II. RELATED WORK

Industrial processes catalyzed the IoT technologies to
deliver sensored data to Supervisory Control And Data
Acquisition (SCADA) systems under wired, low throughput
and low energy requirements. Fueled by Big Data solutions,
the small-scale IoT systems turned into a more dense and
connected solution with real-time messaging, data variety,
distributed locations and different actors ingredients present
in its adoption [3].

These IoT messaging technologies are not only used for
communicating the IoT sensors and the process controllers
of a pipeline. They are present in other architecture levels,
used by management systems for monitoring underlying
cellular networks [4], [5] and virtualization infrastructures
[6], [7]. They employ IoT message solutions to provide data
to decision-making systems. Thus, these systems, which goal
the robustness of resource-constrained infrastructures, get
data with minimal traffic overheads to decide on orchestrat-
ing or balancing the allocated assets.

As the mobility, spacial or environmental conditions come
into play, wired connectivity of IoT systems is replaced by
wireless communications where technologies such as Zigbee,
Bluetooth or Long Range Wide Area Network (LoRaWAN),
representing Low Power Wide Area Network (LPWAN),
work properly for low throughput and energy consumption
saving. Then, for higher throughput, WiFi is the general
option. However, in scenarios with high mobility and se-
curity/privacy requirements, like the CCAM applications,
cellular communications make the difference in delivering
IoT messages [8].

Once a cellular network is needed, the suitability of a
MEC infrastructure to host IoT message platforms and apply
efficiency, granularity, business and privacy rules becomes a
natural choice. Additionally, the Radio Network Information
Service (RNIS) and the Location Service (LS) are valuable
features offered by MEC, as it provides actual Radio Access
Network (RAN) statistics to assess the Quality of Service
(QoS) and accurate geo-locations with high-frequency up-
dates [9].

The application of IoT messaging solutions is so wide that
heterogeneous vertical industries are using it to connect data
producers and consumers in a versatile and efficient manner.
Computation-intensive and delay-sensitive applications like
CCAM services require heavy computation tasks processing
IoT messages. However, most of the works published in
the MEC, IoT and vehicular data handle heavy computing
tasks with unlimited processing on local edge or Cloud
infrastructures, applying balancing as an efficiency scheme
for effectiveness [10].

The benefits of IoT messaging technology are validated in
[11] for safety CCAM services with adequate management of
regions of interest and geographic data structures. Regarding
real-time performance for advanced CCAM applications,
authors from [12] test the liability of an IoT platform for
geo-position-based applications. Regarding the confluence of
different stakeholders in the same IoT infrastructure, such

as car owners, transit authorities, automobile manufacturers,
and other service providers, [13] studies the application of
blockchain technologies to enforce security. At the same
time, [14] explores the use of IoT messaging platforms for
data monetization built on top of a car data marketplace. Oth-
ers [15] employ blockchain technology hosted at the MEC
to agree on Smart Contracts between CCAM applications
and cellular network operators for the QoS bridged by the
network.

When studying the allocation and consumption of re-
sources in a virtualized infrastructure to cope with the pro-
cessing of the incoming IoT messages volume, different the-
oretical models try to reduce the computation workload [16],
[17] and the energy consumption [18] of distributed comput-
ing infrastructures performing simulations. Some [19], [20]
focus on the connectivity impact to minimize latencies. Oth-
ers estimate the cost of the solution and applicable business
models of the onboard system, excluding the MEC or Cloud
platform [21]. In terms of virtualization, the evaluation and
validation with benchmarks, exploiting Infrastructure-as-a-
Service (IaaS) platforms at MEC and Cloud to host an IoT
messaging Platform-as-a-Service (PaaS) for vehicular data
and CCAM applications is still under-explored.

The evaluation and validation of the cloud acting as a
central hub of IoT edge platforms is done in [22]. Fur-
thermore, some recent studies also analyze the cost and
performance metrics for commercial cloud [23] and edge
[24] infrastructures to handle national-sized IoT platforms.
The commercial platforms such as Amazon Web Services
(AWS) Greengrass or Azure IoT Edge are evaluated for
different data types such as raw audio, raw image and random
numbers with user-defined frequency. There are also studies
comparing different IoT messaging alternatives [25]. The
analyzed message queuing systems offer high throughputs
and low latencies for processing streamed data. As each one
brings a different performance on guaranteed order, relia-
bility, scalability, throughput and latency, the deployment
of hierarchical solutions, such as MQTT at the edge and
KAFKA at the cloud, or AMQP at the edge and KAFKA at
the cloud, are a common good practice in the IoT industry.
However, the literature lacks of studies targeting these two-
layer architectures.

The benchmarks for other vertical domains with different
parameters and a set of scenarios lead to infrastructure
planning and reproducibility for comparison [26] and cost
reduction [27]. The provided toolset in [28] emulates a
real IoT system mock-up and backs a less biased testing
methodology to benchmark IoT applications. At the same
time, other authors [29] analyze the impact of virtualization
on IoT platforms. However, the estimation of necessary com-
puting resources to process different car data types published
and subscribed by multiple producers and consumers on
top of virtualized IoT solutions hosted in hierarchical MEC
and Cloud infrastructures has not yet been formulated or
analyzed.



III. EXPERIMENTATION SETUP

A. Hybrid platform

As shown in Fig. 1, a hybrid platform has been designed
to manage IoT data streams provided by multiple producers
and their delivery to the platform’s consumers. The main
two segments of the platform are a MEC server over a
5G infrastructure that will be the responsible for acquiring
IoT data streams from IoT producers. The data service
at the MEC anonymizes those IoT data streams in order
to be sent to the next section of the proposed platform,
a cloud deployment on a commercial provider. The cloud
data service is responsible for answering the data requests
from consumers to get the appropriate IoT streams from
the selected MEC where consumers push data. Hardware
characteristics for both segments can be seen on Table I

The main software engine in the MEC is an AMQP
broker that is connected to a KAFKA topic on the cloud
section of the infrastructure. This KAFKA engine in the
cloud infrastructure can be commanded by a consumer to
select the appropriate topic from KAFKA where anonymized
data can be read.

TABLE I: Hybrid platform hardware characteristics.

Segment Number of CPUs RAM

MEC 36 128 GB
Cloud 4 16 GB

Fig. 1: Proposed hybrid platform.

B. Anonymization schemes

Three anonymization schemes have been defined in the
MEC section of the platform. The alternatives allow to
control the required computing resources in the MEC and the
data throughput provided to consumers. Thus, those schemes
are related to the capabilities of hardware resources provided
to the anonymization engine and the number of samples
anonymized and pipelined. The schemes are compiled in
Table II.

TABLE II: Anonymization schemes.

Scheme Number of CPUs RAM in GB Sampling rate

Small 2 2 1 message / 5 sec
Medium 4 4 1 message / sec
Large 8 8 No sampling

C. Local low resource platform
As shown in Fig. 2, a local resource platform has been

designed in order to not have any dependence on cloud
providers or Internet infrastructure. That local platform has
the same logic components, excluding the anonymization
engine, as the hybrid platform but runs on a single computer
instead of a MEC and cloud combination. The anonymization
engine’s absence is explained by the lack of computing
resources compared with the hybrid platform. In Table III,
hardware characteristics for this platform can be seen to un-
derstand that absence compared to hybrid platform hardware
shown in Table I.

TABLE III: Local resource platform hardware characteris-
tics.

Segment Number of CPUs RAM in GB

Local resource platform 20 16

Fig. 2: Local resource platform.

D. Producer
A custom producer has been created for both platforms

(for the hybrid one and for the local one) to push data to
the platform. This producer will generate customized C-ITS
messages with producer IDs and timestamps and will ask the
cloud for which MEC to send data. Then the producer will
send the C-ITS data stream through an AMQP broker.

E. Consumer
As in the case of the producer, for both platforms (the

hybrid one and the local one), a custom consumer has been
created to receive the data generated by the producer to
perform some calculations about the platform’s performance.

This consumer will request a KAFKA topic from the cloud
to consume data from a given MEC, where consumers will
push data. Once the consumer receives the appropriate topic
and address of KAFKA service, will connect to that topic
and will start consuming data by logging the received Coop-
erative Intelligent Transport Systems (C-ITS) [30] messages
and annotating them with the current timestamp.

F. 5G infrastructure
For the deployment of both 5G Core (5GC) and 5G

New Radio (5GNR) base station (gNB) in Stand Alone
(SA) mode, an AMARI Callbox Pro provided by Amarisoft
has been used. Amarisoft is hardware agnostic in terms of
supported hardware, as it can work with different hardware
equipment to provide the necessary radio connectivity. The
5G network has been deployed in Standalone (SA) mode and
has reduced coverage.



IV. EVALUATION

A. Methodology and metrics

This section presents the setup and methodology deployed
to evaluate the different platforms. Fig. 3 shows the eight
scenarios considered for assessing the hybrid and local low
resource platforms in combination with the three anonymiza-
tion schemes defined in Section III.

Fig. 3: Scenarios defined for platform benchmarking.

In a single scenario, we have considered one producer for
each test; in a multiple scenario, we have considered ten
simultaneous producers. Moreover, ten tests of 10 minutes
each have been carried out in each scenario. In addition,
each producer sends C-ITS messages at a 2 Hz frequency.
The transmitted C-ITS has a payload of 1280 bytes.

Considering these eight scenarios, several measurements
have been carried out to obtain the application latency and
the packet losses. In addition, the performance of the 5G
infrastructure that is connected to the platform has also been
measured. For this purpose, the Round-trip time (RTT) and
the throughput of the 5G infrastructure have been measured.
Some custom and proprietary logging tools have been used
to obtain these measurements, some embedded and others
external to the applications under test.

To carry out the measurement related to the 5G infras-
tructure, we have used Dekra’s TACS4 Performance Tool.
This tool enables simultaneous performance testing and user
experience analysis of wired and wireless access networks
for voice and data services. The duration of each test has
been set at 120 seconds, obtaining one sample for every
second, thus reducing the variability in the result. Moreover,
each test has been repeated five times.

Developed producers and consumers have been used to
evaluate the performance of both hybrid and local platforms.
Latency and packet losses have been obtained following
Algorithm 1 and Algorithm 2 respectively.

Finally, both the producer and consumer clocks are syn-
chronized by Network Time Protocol (NTP).

Algorithm 1 Algorithm for obtaining the latency of C-ITS
messages.

1: while NewCITSMessage do
2: getCurrentTime()
3: getOriginTimefromMessage()
4: latency = CurrentT ime−OriginT ime
5: end while
6: end

Algorithm 2 Algorithm for obtaining the packet losses of
C-ITS messages.

1: loadReceivedMessages()
2: loadSentMessages()
3: for all message ∈ receivedMessage do
4: IdTime = getOriginTimeAndId(message)
5: if IdTime in sentMessages then
6: messageReceived
7: else
8: messageLost
9: end if

10: end for
11: end

B. Results

First, to understand the radio limits of the 5G testing setup,
Table IV provides the results of the throughput measurements
on the uplink (UL) and downlink (DL) of the deployed 5G
infrastructure. Based on the configuration of the network,
the achievable DL throughput is close to 150 Mbit/s (below
the 190 Mbit/s when there is only DL traffic transmitting)
and UL throughput is close to 100 Mbit/s (below the 120
Mbit/s when there is only UL traffic transmitting). As seen
in Table IV, the performance in DL is slightly higher. It
can be seen that, on average, in DL, a throughput of 152
Mbit/s is achieved, while in UL, a throughput of 100 Mbit/s
is achieved. Nevertheless, during the measurements, values
of 187 Mbit/s were reached in DL and 113 Mbit/s in UL.

TABLE IV: Platform performance in relation to the 5G
infrastructure.

Metric Throughput (Mbit/s)

DL average 151.88
DL peak 172.95
DL maximum 187.25
UL average 99.79
UL peak 109.66
UL maximum 113.58

Fig. 4 shows the obtained RTT from 5G infrastructure to
the proposed platform. As can be seen, the average value
of the RTT is about 25 ms, but measured values range
from 15 ms to 34 ms. Considering this is a non-commercial
5G network and an experimental platform, the RTT values
obtained are not very high and remain stable within a small
range.



Fig. 4: Platform RTT in relation to the 5G infrastructure.

As shown in Fig. 5 and Table V, all latency parameters
like mean, median and deviation (σ) are quite similar in
all the evaluated scenarios. It can be noticed that the mean
latency in scenarios IV and VIII is lower than in other
scenarios. These scenarios are related to the local low
resources platform, which, as mentioned in Section III-C,
does not have any anonymization engine because of the
lack of computing resources. That leads the platform to a
direct transmission between the AMQP topic, which collects
C-ITS messages from producers and the KAFKA topic,
where consumers get those data streams. This means that
the anonymization process that happens only in a hybrid
platform introduces some delay but a very small one, as
it can be seen comparing results between scenarios with
anonymization (I, II, III, V, VI, VII) and the scenarios
without it (IV and VIII).

Fig. 5: Application latency of platforms for all scenarios.

On the other side, we see the most significant difference
between the evaluated scenarios in the measure of packet
loss. Specifically, the scenarios with anonymization schemes
show noticeable differences in the packet loss metrics, as
shown in Table V. This can be explained by the sampling
parameter shown in Table II. There we can see that the Small

TABLE V: Benchmarking of platforms for all scenarios.

Scenario Latency Packet loss (%)Mean (ms) Median (ms) σ (ms)

(I) 637.64 626.5 289.17 90.01
(II) 653.82 661 287.5 50.25
(III) 648.07 647 290.48 0.68
(IV) 609.11 609 288.74 0.52
(V) 682.86 684.5 291.15 91.29
(VI) 627.33 673 285.47 56.64
(VII) 648.83 650 277.09 13.27
(VIII) 553.86 552 291.6 28.81

and Medium scenarios have some subsampling of the input
stream. This will lead to packet loss.
As said in Section IV-A, input data has a frequency of 2 Hz,
which leads to, taking into account the sampling parameters
defined in Table II, a predicted loss shown in Table VI. In
order to obtain those predicted packet loss values, equation
1 is used, where Pl is the predicted packet loss, Sr is the
sampling rate and Fdata is the frequency of input data.

Pl =

(
1− Sr

Fdata

)
· 100 (1)

TABLE VI: Predicted packet losses

Scenario Predicted packet losses

Small 90 %
Medium 50 %
Large 0 %

Comparing the packet losses from Tables V and VI, single
scenarios (I, II, III) are quite similar, and in multiple scenar-
ios (V, VI, VII), there is a light overhead. That overhead can
be explained because, in those scenarios, multiple instances
for producers were used, and the platform may have some
saturation. This leads the consumers to cannot get all the
stream data. Regarding this, in scenarios IV and VIII, this
saturation when a single producer or multiple producers are
pushing data is more significant because, in those scenarios,
the platform used is the one with low resources.
From the point of view of a sensitivity analysis, it can be
seen that the sampling rate parameter from Table II has a
direct impact on both the predicted packet loss from Table
VI and the obtained packet loss during the benchmarking of
the platform from Table V as shown in equation 1.

V. CONCLUSIONS AND FUTURE WORK

Vehicles are embracing lots of technologies, from sensing
to ADAS and infotainment systems. With the universal inte-
gration of cellular connectivity capacity, the vehicles will be
ready to join a cooperative community for traffic efficiency
and safety. And this is only the beginning. The upcoming
innovations on the horizon, i.e., the next generation of
CCAM applications, will find new ways of monetizing car
data from different and new business models. To sustain this
new industry on top of vehicle data, IoT messaging is key to
connecting data producers and consumers using sophisticated



edge and cloud infrastructures to have virtually unlimited
resources to process vast volumes of data. The scalability
potential of MEC and Cloud infrastructures is not for free,
and it is important to be efficient and appropriately estimate
the size of the IoT messaging platform to deliver all the data
with their different formats and rates.

This paper provides results on stressing a hierarchical
MEC and Cloud IoT messaging platform connecting data
from producers to consumers. The results show that the
application latency remains stable in all the scenarios an-
alyzed and that the anonymization schemes add a reduced
latency to the platform. As for packet loss, we conclude
that the obtained packet losses are as expected due to the
anonymization schemes, but there is a bottleneck when
working with multiple scenarios.

In future work, on the one hand, we have to analyze the
capacity of the multiple scenarios to optimize their perfor-
mance. On the other hand, we have to evaluate the proposed
platform in different conditions and types of messages.
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