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Abstract— Mobility-as-a-Service (MaaS), a new mobility ser-
vice model that integrates multiple mobility providers, relies
on many data processing technologies to manage multi-modal
transport. Artificial Intelligence (AI) is one of the technologies
to improve the services matching to passengers based on their
implicit experience and preference. However, incorporating AI
into MaaS may also introduce loopholes to the system. One may
use the loophole in the heterogeneity of passenger experience
and preference by falsifying data to prioritize their journey,
which jeopardizes the trustworthiness of MaaS. In this paper,
we investigate the cyber security risks in MaaS, focusing on the
spoofing attack in which malicious passengers are prioritized by
falsifying data to gain an advantage in journey planning. The
spoofing attack is based on reinforcement learning that learns to
reduce passenger satisfaction about the MaaS and its profit by
requesting travel with falsifying passenger states. We conduct
experiments based on New York City dataset to evaluate the
spoofing attack. The experiment results indicate that the attack
can reduce about 70% of the profit. By investigating the cyber
security risks in MaaS, we could enhance the knowledge and
understanding of the risks for building a secure and trustworthy
MaaS.

I. INTRODUCTION

Mobility-as-a-Service (MaaS) is a new mobility service
model that integrates multiple mobility providers [1]. Passen-
gers can enjoy the unique services and advantages of MaaS
such as multi-modal journey planning and reservation across
different mobility providers in multi-modal transportation.
The integration of mobility providers could also lead to social
benefits such as traffic, air pollution, and energy consumption
reduction [2]. One of the important features of MaaS is the
multi-modal journey planning as the planning over multi-
modal transportation is much more complex than that of a
single consistent one. In addition, whether the recommended
journey matches with the passenger’s expectations could af-
fect their impression and retention. Therefore, it is important
to improve the journey planning system so that passengers
are satisfied with the plan. One improvement way is to
incorporate implicit passenger experience and preferences
into the decision-making process using artificial intelligence
(AI). AI is one of the popular technologies in the field of
intelligent transportation systems due to its success as in [3],
[4] and [5]. With its extraordinary modeling capability, we
expected that the AI agent could handle the heterogeneity of
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passengers and recommend the best journey unique to each
passenger rather than Pareto-front solutions that are the same
for every passenger with the same origin and destination.

While the AI-based MaaS is promising, there are cyber
security risks in MaaS and AI, and those risks could be inher-
ited by the AI-based MaaS. For the risks in MaaS, Callegati
et al. [6] summarized the insider threats of each component
in the MaaS architecture. Insiders such as developers, service
administrators, managers, etc., may perform various attacks
on MaaS. Those insider attacks may cause serious conse-
quences such as information leakage, operational failure, and
economic loss. Another example of attacks on MaaS is the
Denial-of-Service (DoS) attack studied by Thai et al [7].
The authors identified that attackers could disrupt the system
to maximize passenger loss by maliciously controlling a
fraction of vehicles in the system. As a result, the DoS
attacks cost more than $ 15 US dollars per unit for protection
according to [7]. On the other hand, the risks of AI were well
discovered by the cyber-security community. The opaqueness
of AI, also known as a black-box method, continues to pose
challenges in ensuring the integrity of the decision-making
process [8]. The lack of detailed information on the causality
of AI decision-making hinders the ability to fully explain
the reasoning behind the decisions made. Consequently, it
becomes difficult to provide guarantees that these decisions
are not influenced by corrupted AI-focused attacks. AI could
be attacked by data poisoning attacks [9] that corrupt the
training data to cause the AI to produce desirable outcomes
by the attacker, evasion attacks [10] that manipulate the input
data to produce an error output, and inference attacks [11]
that gain knowledge about the database used to train the
AI. The erosion of people’s confidence in novel systems
and technologies is anticipated due to incidents involving
security vulnerabilities. Therefore, it is imperative to reassess
the security of MaaS systems, particularly those employing
AI technology.

In this paper, we explore the risks to the AI-based MaaS
operators and journey planning problem and identify a
new attack, named passenger spoofing attack (PSA), which
leverages the diversity of passengers and the heterogeneous
service planning in AI to prioritize malicious agents in
the journey planning process. The PSA generates falsifying
profiles and satisfaction by reinforcement learning model to
be used for service queries based on the current state of
other passengers. We conduct experiments on two simulated
scenarios based on the real-world New York City dataset to
investigate the impact of the attack on passenger satisfaction
and MaaS profit, as well as the sensitivity of malicious agent
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spatial distance. The results of the experiments can be used
to develop corresponding detection and defense mechanisms.

The rest of this paper is organized as follows. Section II
illustrates the background MaaS model and journey planning
problem. Section III presents the reinforcement learning-
based PSA. Section IV simulates the attacks in the MaaS
scenario and analyzes the attack influence on the system.
Finally, the paper is concluded in Section V.

II. MAAS JOURNEY PLANNING

In this section, we introduce the background models
including the MaaS and journey planning problem.

A. MaaS Model

MaaS is a cyber-physical transportation system that inte-
grates multiple mobility providers offering mobility services
for the same or different routes. The coordination of mobility
services of different providers is managed by a MaaS co-
ordinator, who facilitates passengers in selecting, reserving,
and paying for combined journeys from their origin to
destination. We model the multimodal transport network as a
directed graph G(N ,A), where N and A represent the sets
of nodes and links in the network, respectively. Let F denote
the set of mobility providers. Each mobility provider f ∈ F
offers mobility services on a sub-network Af ∈ A. The
utility costs associated with each mobility service from node
i to node j offered by f are represented by parameters βf

ij ,
δfij , and ρfij , which represent time1, discomfort, and profit,
respectively. The MaaS coordinator’s responsibility is to
determine an optimal journey fulfilling the transport request
of passenger k, from origin ok to destination dk, based
on the passenger preferences, experiences, and memories,
while considering the mobility services of multiple mobility
providers for multiple passengers.

B. Journey Planning Problem

This section introduces the multi-modal journey planning
problem. To facilitate the formulation of the problem, we
define a binary variable xkf

ij that represents the coordinator’s
decision of the journey, which is commonly used in journey
planning [13]. Specifically, xkf

ij is a binary variable that takes
the value of 1 if link (i, j) operated by f offers mobility
service to passenger k, and 0 otherwise. Formally, we have:

xkf
ij =

{
1 if link (i, j) operated by f offers to k,

0 otherwise.
(1)

The objective function of the problem is to minimize the
total utility cost of passengers, which is formulated as:∑

(i,j)∈Af ,k∈K,f∈F

(wk
ββ

f
ij + wk

δ δ
f
ij + wk

ρρ
f
ij)x

kf
ij , (2)

where wk
β , wk

δ , and wk
ρ are the weighting of the correspond-

ing utility terms.

1In this study, we use a single parameter to represent all time-related
parameters, as a pilot study and for simplicity as in [12]. In a real-world
application, travel time may include waiting, in-vehicle, and transfer time.

We also define N+(i) and N−(i) as the sets of incoming
and outgoing locations of i, respectively, such that N+(i) =
{j ∈ N|(j, i) ∈ Af} and N−(i) = {j ∈ N|(i, j) ∈ Af}.
The offered journey in the transport network has to be
on a connected path, which can be ensured by the flow
conservation equation:

∑
j∈N−(i)

xkf
ij −

∑
j∈N+(i)

xkf
ji =


1 if i = ok,

−1 if i = dk,

0 otherwise,

∀i ∈ N , k ∈ K, f ∈ F . (3)

The total number of services offered is limited by capacity,
so we restrict the total number of passengers for a service
using the following equation:∑

k∈K

xkf
ij ≤ Cf

ij , ∀(i, j) ∈ Af , f ∈ F (4)

where Cf
ij is the maximum capacity of mobility service from

i to j that operated by f ∈ F .
As one may notice, the weights in Eq. 2 may affect the

solution. To enhance passenger satisfaction and increase the
profit of Mobility-as-a-Service (MaaS) providers in the jour-
ney planning problem, it is important to determine a suitable
set of weights based on individual passenger preferences,
experiences, and memories. To incorporate the passenger
experience and memories, a 4-tuple Markov decision process
(MDP) [14], ⟨S,A, P,R⟩, can be utilized to model the
passenger retention process, where S , A, P , and R are
the sets of states and actions, state transition and reward
functions, respectively. For each travel time t, the state
skt ∈ S represents passenger satisfaction and profiles. The
action akt ∈ A is the weighting of utility terms, where akt :=[
wk

β ;w
k
δ ;w

k
ρ

]
for time t and passenger k. P (skt+1|skt , akt )

describes the satisfaction transition from states skt ∈ S to
skt+1 ∈ S with action akt ∈ A. R(skt , a

k
t , s

k
t+1) can be

employed to model the profit obtained from transiting from
skt to skt+1 by taking action akt and is given by:

R(skt , a
k
t , s

k
t+1) =

∑
f∈F

ρkft . (5)

we introduce a passenger satisfaction model that measures
satisfaction level with an N -level integer value proportional
to the retention rate. Let Hk be the satisfaction level of
passenger k. To capture the relationship between satisfaction
and the quality of the offered journey, we model the variation
of satisfaction as a function of the difference between the
expected and actual journey. Specifically, we define the
satisfaction level variation as follows:

Hk :=


Hk + n if Ek ≥ E

k
,

Hk − n if Ek ≤ Ek, ∀k ∈ K,
Hk otherwise,

(6)

where E
k

and Ek represent the upper and lower thresholds
of expectation difference, respectively. Here, n is the satis-
faction level step size, and the expectation difference Ek is



defined as:

Ek = w̃k
β(β̃

k
okdk − βk

okdk) + w̃k
δ (δ̃

k
okdk − δkokdk)+

w̃k
ρ(ρ̃

k
okdk − ρkokdk), ∀k ∈ K. (7)

where w̃k
β , w̃k

δ , and w̃k
ρ are the corresponding utility weight-

ing of passenger k, and β̃k
okdk , δ̃

k
okdk , ρ̃

k
okdk are the utility

expected implicitly by the passenger. Note that the expected
utility represents the utility of the best journey that the
passenger can get without capacity constraint, which can be
determined by solving Eqs. (2) and (3) only. The actual utility
represents the utility of the journey planned by MaaS.

The multi-modal journey planning and passenger satisfac-
tion problem can be formulated as a bi-level problem:

Problem 1 (MDP-based Journey Planning Problem):

min
xkf
ij ,yf

ij

(2)

s.t. (3)–(4),

akt ∈ argmax{
∑
k,t

R(skt , a
k
t , s

k
t+1) : (6)–(7)}.

There is approach to tackle Problem 1 such as the one in
[15]. However, the development and implementation of an
algorithm that efficiently solves this problem is outside the
scope of this paper. The algorithm is assumed to be unknown
to the attacker.

III. PASSENGER SPOOFING ATTACK

In this section, we introduce the threat model, the problem
of spoofing attacks, and the methodology of the attack.

A. Threat Model

In this section, we present our assumptions regarding
the malicious attack on the MaaS system, which involves
the submission of a fabricated query for a passenger with
a tailored state of satisfaction and profiles that is likely
to be prioritized. In urban transportation systems, where
there is heavy traffic and limited capacity, this attack may
cause regular passengers with similar travel paths to be
offered detour journeys during rush hours, leading to reduced
passenger satisfaction and MaaS profit. We assume that the
malicious agent has no prior knowledge of the coordinator
and treats it like a black box. The malicious agent does not
have access to the formulation of the passenger satisfaction
problem, which is defined as Problem 1. However, the agent
has basic knowledge of the environment, such as the state
of other regular passengers, which can be used to generate a
spoofing state through eavesdropping or related attacks [16].

B. Problem Formulation of PSA

In a PSA, a set of malicious agentsM intend to sabotage
the operations of the MaaS or take advantage by spoofing
another passenger. In an urban transportation system with
limited capacity and resources, competing passengers may
reduce the chances of regular passengers to receive the most
desired services. To achieve this goal, a malicious agent may
act as a passenger with similar origin-destination patterns,
such as the daily home-to-work flows during rush hour, to

occupy the resources of regular passengers. To maximize
the impact of the attack, the malicious agent generates
profiles and satisfaction based on those of another passenger.
Specifically, the generated state s̃mt can be defined as:

s̃mt = π(skt |θπ), (8)

where skt represents the state of passenger k, including
their profiles (such as income, age, etc.2), and satisfaction
(Hk), s̃mt is the generated state based on passenger k,
π denotes the generation function, and θπ represents its
trainable parameters.

The objective of the PSA is to minimize the profit of the
MaaS system and reduce passenger satisfaction. To this end,
the PSA problem is formulated as an optimization problem
in which the objective function is the profit generated by the
set of passengers being attacked, as given in equation (9):∑

k∈K,t

R(skt , a
k
t , s

k
t+1). (9)

Since the profit is directly related to the performance of the
MaaS coordinator, the malicious agent considers the journey
planning problem as a black box and incorporates it into the
attack problem, which is formulated as:

Problem 2 (PSA Problem):

min
θπ

∑
k∈K,t

R(skt , a
k
t , s

k
t+1)

s.t. akt ∈ argmax{
∑
k∈K,t

R(skt , a
k
t , s

k
t+1)

+
∑

m∈M,t

R(s̃mt , amt , s̃mt+1) : (6), (7), (8)}.

The controllable parameter in Problem 2 is only θπ . In
other words, the objective of the problem is to minimize the
profit of the set of passengers K, as expressed in Eq. (9),
by determining the parameter θπ and generation function π
as shown in Eq. (8). This is distinct from the lower-level
optimization task in Problem 1, which aims to maximize the
profit of all passengers, including the set of malicious agents
M. Consequently, the malicious agent seeks to entice the
MaaS coordinator to obtain more profit from M, resulting
in a lower actual profit received from the regular passengers
K. An example operation and flow are depicted in Fig. 1, in
which the malicious agent pretends to be a passenger with
the same origin and destination as the regular passenger, and
the MaaS coordinator allocates the ideal mobility service to
the malicious agent instead of the regular passenger based
on falsified profiles and satisfaction.

C. Methodology of PSA

To develop a generation function π and corresponding
parameters θπ that can generate profiles and satisfaction
based on the regular passenger profiles and satisfaction, a
reinforcement learning approach can be employed to learn
from the interactions between the MaaS coordinator and

2Here, income and age are just example profiles. Other profiles can be
used without loss of generality.



Fig. 1. An example showing the interactions among MaaS coordinator, regular passenger, and malicious agent.

passengers. The presented algorithm is a modified version
of the deep deterministic policy gradient (DDPG) algorithm
[17], which is suited for the PSA problem. It is a model-free
algorithm for continuous control problems since the model
of the MaaS coordinator is unknown to the malicious agent,
and both the states and actions are continuous values. The
malicious agent shares the same MDP as the MaaS coordina-
tor, except for two differences from the agent’s perspective.
First, the action of the malicious agent is the generated
profiles and satisfaction for the passenger spoofing, i.e., s̃mt .
Second, the reward function is maximized, which is equal
to minimizing the negative profit, i.e., −

∑
k∈K,f∈F ,t ρ

kf
t .

The algorithm consists of two components, namely the actor
and the critic. The actor function π(s|θπ) is responsible for
performing an action based on a given state, whereas the
critic function Q(s, a) learns the Q-value of the state and
action pair to evaluate the actor. The exploration of the al-
gorithm is modified from an Ornstein-Uhlenbeck (OU) noise-
based method to an epsilon-greedy action selection method
to ensure that the action remains within the designated range.
The epsilon-greedy action selection method specifies that a
uniformly random action is generated under the probability
represented by ϵ. The value of ϵ decays along the episode for
more exploitation in later episodes. The detailed algorithm
is provided in Algorithm 1.

IV. EXPERIMENTS

The reinforcement learning-based attack method is evalu-
ated in a real-world transport network based on New York
City (NYC). Specifically, it simulates the MaaS environment
by considering multiple mobility providers and passengers.
In this regard, this section details the experiment setups and
presents the results obtained to validate the attack ability of
the MaaS system.

A. Experiment Setups

1) New York City Scenario: A real-world scenario is
considered based on the transport network of Manhattan
region in NYC. The taxi zone maps3 are used to construct
the transport network, where each node represents a taxi
zone and an edge is assigned between two nodes if they are
connected in the map. Only connected zones are included
in the network, and any isolated zones are excluded. The
transport network consists of 63 irregularly-shaped nodes,
and 963 edges. For each edge, 3 mobility providers are set,
and each mobility service has four attributes, namely, time,
discomfort, and profit. The values of time, discomfort, and
profit are randomly generated between 0 and 1.

Passenger traffic queries and profiles are simulated using
two publicly available datasets of NYC: the NYC Taxi and
Limousine Commission Trip Record Data4 and the Citywide
Mobility Survey5. The datasets are processed and filtered to
include only passengers within the same Manhattan region as
in the transport network. The expected utility weight for the
calculation of Eq. (7) is determined based on passenger pro-
files, which are unknown to the MaaS coordinator. Initially,
all passengers have a satisfaction level of 3. The journey
planning problem is solved using a standard optimizer in
CVXPY [18].

2) Baselines: We conducted a comparative study between
the proposed reinforcement learning-based PSA and several
baselines, which are listed as follows:

• Without attack: This baseline does not include a mali-
cious agent and serves as a benchmark for comparing

3https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-
ddgc

4https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
5https://www1.nyc.gov/html/dot/html/about/citywide-mobility-

survey.shtml



Algorithm 1 Multi-agent RL algorithm for PSA
1: Initialize actor local π(s|θπ) and critic local networks

Q(s, a|θQ) with parameters θπ and θQ

2: Initialize parameters of actor target π′(s|θπ′
) and critic

target networks Q′(s, a|θQ′
) with parameters θπ

′ ← θπ

and θQ
′ ← θQ

3: for each episode do
4: Initialize passengers’ parameters
5: for iteration t = 1 to T do
6: for malicious agent m = 1 to |M| do
7: jm ← random number between 0 and 1
8: if jm < ϵ then
9: s̃mt ← random action between 0 to 1

10: else
11: s̃mt ← π(skt |θπ)
12: end if
13: Execute action s̃mt to obtain new state smt+1 and

reward rmt
14: Store (skt , s̃

m
t , rmt , smt+1) to R

15: end for
16: if number of transitions |R| ≥ minibatch size B

then
17: Sample a mini-batch (smi , s̃mt , rmi , smi+1) with

size B from R
18: Update critic local θQ using loss function:

L = 1
B

∑
i(r

m
i + γQ′(smi+1, π

′(smi+1|θπ
′
)|θQ′

) −
Q(smi , s̃mt |θQ))2

19: Update actor local θπ us-
ing policy gradient: ∇θπJ ≈
1
B

∑
i∇aQ(s, a|θQ)|s=smi ,a=π(smi )∇θππ(s|θπ)|ski

20: Update critic target θQ
′ ← τθQ + (1− τ)θQ

′

21: Update actor target θπ
′ ← τθπ + (1− τ)θπ

′

22: end if
23: end for
24: ϵ := ϵϵ̄
25: end for
26: return actor parameters θπ

the performance of the original AI-based system.
• Random actions: In this baseline, malicious agents

generate random values of profiles and satisfaction s̃mt
within the range of [0, 1].

• Identical profiles: In this baseline, the malicious agents
have the same profiles and satisfaction s̃mt as the target
passenger.

• Fixed actions: In this baseline, the malicious agents
always choose the same fixed values of 0.5 for both
profiles and satisfaction s̃mt .

• Complementary profiles: In this baseline, the malicious
agents compute their profiles and satisfaction based on
the complement of the target passenger’s profiles and
satisfaction s̃mt .

• Lower income: In this baseline, the income state of the
malicious agents is always half of the target passenger’s
income state.

TABLE I
PARAMETER SETTINGS.

Parameter Definition Value
|N | Number of nodes 63

|A| Number of links 963

|F| Number of mobility providers 3

|R| Replay buffer size 106

B Minibatch size 128

γ Discount factor 0.99

τ Target network soft update rate 0.001

- Actor learning rate 0.0001

- Critic learning rate 0.0003

- Neural network optimizer Adam

ϵ0 Initial random explore rate 1

ϵ̄ Explore rate decay per episode 0.9995

T Number of iteration per episode 10

- Number of neural network layers 3

- Number of neurons of each layer 256

- Range of satisfaction level 1 to 5

E
k upper expectation threshold 0.0

Ek lower expectation threshold -0.1

Fig. 2. Moving average reward of various approaches. The time window
of the moving average is equal to 200.

• Lower age: In this baseline, the age state of the mali-
cious agents is always half of the target passenger’s age
state.

• Lower satisfaction: In this baseline, the satisfaction state
of the malicious agents is always half of the target
passenger’s satisfaction state.

The aim of these baselines is to evaluate the effectiveness of
the proposed reinforcement learning-based PSA in compari-
son to other types of malicious attacks.

B. Experiment Results

We conducted a comprehensive analysis to test the attack
ability of the malicious agent in various aspects. Specifically,
we evaluated its ability to reduce the profit of the MaaS



TABLE II
AVERAGE PROFIT OF THE BASELINES AND ATTACK OF NYC AND

SYNTHETIC SCENARIOS.

NYC Scenario
Without attack 3.0431

Random actions 2.1746

Identical profiles 2.0013

Fixed actions 1.8927

Complementary profiles 2.2351

Lower income 1.7592

Lower age 1.9691

Lower satisfaction 2.2891

PSA 0.9408

system, decrease passenger satisfaction, and examined the
sensitivity of the spatial distance between the malicious agent
and regular passengers.

1) MaaS Profit: We conduct a comparative analysis of the
reinforcement learning-based PSA approach and baselines to
investigate their impact on MaaS profit. The profit earned
per regular passenger in each episode is plotted against the
corresponding method during training, as shown in Fig. 2. In
all attack cases, except the one without an attack, 50% of the
passengers are regular and the rest are malicious agents. The
total number of regular and malicious passengers remains
the same to ensure fair comparison. The case without an
attack generates the highest profit, while the one with PSA
results in the lowest profit. Most of the baselines fall in the
middle of the spectrum. The difference between the cases
without attack and baselines is attributed to the addition of
incapable agents with the same origin and destination, while
the difference between baselines and PSA highlights the
attack ability of the method. By training the malicious agent
to generate appropriate profiles and satisfaction that may
receive higher priority in journey planning over other regular
passengers, the profit declines at the beginning and converges
around 7500 episodes. The average profit of the baselines
and attack scenarios are reported in Table II. The average
profit after 10,000 episodes with and without PSA are 0.94
and 3.04 units, respectively. Most of the other baselines fall
within the range of 1.7 to 2.2 units. This indicates that
the malicious agent can crowd out regular passengers using
the generated profiles and satisfaction, especially when the
capacity is limited. The attack scenarios result in a profit
reduction of about 70%.

2) Satisfaction: We conducted an analysis of the differ-
ences in passenger satisfaction levels between the baselines
and PSA. The frequency distribution of regular passenger
satisfaction levels across all episodes is summarized in Fig.
3. The leftmost bars represent the satisfaction levels resulting
from the MaaS coordinator without attack, and show that
many passengers had high satisfaction levels. However, after
introducing the baselines (middle bars), the satisfaction of
most regular passengers dropped to level 3. In the case of
PSA, most passengers had the lowest satisfaction level. These

results indicate that the malicious agent can reduce the sat-
isfaction levels of other regular passengers by impersonating
a passenger with specific profiles and satisfaction, which is
consistent with our observations from the profit analysis.

3) Number of nodes apart between malicious agent and
regular passenger: In order to investigate the relationship
between the spatial distance from the passengers and the
attack ability, we conducted a series of experiments where we
varied the origin and/or destination of the malicious agent.
The resulting profit was plotted against the number of nodes
apart for three different scenarios: origin only, destination
only, and both origin and destination, as shown in Figs. 4.
Generally, we observed an increase in profit as the number
of nodes increased. The green line, which represents the
case where the number of nodes apart is varied for both
origin and destination, showed a greater increase in profit
than the other two cases. For the case where both origin
and destination were varied, the profit increase started to
converge when the number of nodes apart was larger than
one. For the other two cases, the increases converged when
the number of nodes apart was larger than three. The effect of
increasing the distance from a malicious agent was relatively
small when it was three nodes away. Thus, we can conclude
that the attacking effect will be diminished at an average of
three nodes apart from the passengers.

V. CONCLUSIONS
In order to safeguard the daily operation of urban trans-

portation systems and prevent the incurrence of significant
economic losses, it is crucial to establish a secure and reliable
MaaS system. To effectively counter potential cybersecurity
attacks, it is essential to identify vulnerabilities and potential
attack strategies. This study analyzes threats to the MaaS
journey planning process and identifies PSA that capitalizes
on passenger heterogeneity. PSA is based on reinforcement
learning algorithm to generate spoofing passenger profiles
that are likely to be prioritized by the MaaS coordinator. Ex-
perimental results based on real-world datasets and transport
networks demonstrate that the PSA method can effectively
reduce profits by 70% and significantly lower passenger
satisfaction levels. We also discovered that the attack will
be diminished at an average of three nodes apart from the
passengers.

There are several promising directions for future research.
Firstly, our study mainly focuses on the PSA attack and
its profiles, while countermeasures against the attack need
to be developed to enhance the security of MaaS systems.
Secondly, it would be valuable to investigate the potential
differences in the attack when multiple malicious agents
are present in the system, which could form a multi-agent
scenario [19].
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