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Abstract— Unsignalized intersections are typically considered
as one of the most representative and challenging scenarios for
self-driving vehicles. To tackle autonomous driving problems
in such scenarios, this paper proposes a curriculum proximal
policy optimization (CPPO) framework with stage-decaying
clipping. By adjusting the clipping parameter during differ-
ent stages of training through proximal policy optimization
(PPO), the vehicle can first rapidly search for an approximate
optimal policy or its neighborhood with a large parameter,
and then converges to the optimal policy with a small one.
Particularly, the stage-based curriculum learning technology
is incorporated into the proposed framework to improve the
generalization performance and further accelerate the training
process. Moreover, the reward function is specially designed in
view of different curriculum settings. A series of comparative
experiments are conducted in intersection-crossing scenarios
with bi-lane carriageways to verify the effectiveness of the
proposed CPPO method. The results show that the proposed ap-
proach demonstrates better adaptiveness to different dynamic
and complex environments, as well as faster training speed over
baseline methods.

I. INTRODUCTION

In the past few decades, both academia and industry have
witnessed the rapid development of autonomous driving tech-
nology [1]–[3]. However, ensuring safe and efficient passage
at intersections with high vehicle density and frequent vehi-
cle interactions remains a challenging task for autonomous
driving [4], particularly in the presence of numerous human-
driven vehicles exhibiting unpredictable behaviors. Inaccu-
rate prediction of surrounding vehicle behavior can certainly
influence the decision-making of the autonomous vehicle
and even pose a threat to its safety. The situation becomes
even more complicated when it comes to the unsignalized
intersection, where the autonomous vehicle could interact
with surrounding vehicles from multiple different directions
simultaneously. In this sense, the increasing number of
surrounding vehicles and their mutual influences lead to more
complex behavior modes that are challenging to forecast,
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thus severely affecting the safety and travel efficiency of the
autonomous vehicle.

Currently, substantial research efforts focus on au-
tonomous driving development, including rule-based meth-
ods, optimization-based methods, and learning-based meth-
ods. As a representative of the approach, rule-based methods
show the promising effectiveness due to their transparency
and comprehensibility. A set of rules are proposed to clarify
the sequence of vehicles traversing the unsignalized inter-
section scenario. With planned rules, each vehicle makes
the decision for preempting or yielding the surrounding
vehicles to guarantee the road traffic safety [5]. Generally,
such a rule-based strategy is designed to prioritize road
traffic safety and avoid potential collisions with other so-
cial vehicles at any cost [6]. Moreover, optimization-based
methods, such as model predictive control (MPC), are also
widely utilized owing to their effectiveness in generating
the control strategy while dealing with various constraints
[7], [8]. An autonomous and safe intersection-crossing strat-
egy is developed in [9] where the optimized trajectories
of a team of autonomous vehicles approaching the inter-
section area are generated by centralized MPC. An effec-
tive intersection-crossing algorithm for autonomous vehicles
based on vehicle-to-infrastructure communication capability
is proposed in [10], where all vehicles are navigated by
decentralized MPC with the sharing setting of the expected
time of entering a critical zone. However, rule-based and
optimization-based methods suffer from adaptiveness to the
time-varying traffic situation due to the high complexity and
dynamicity in real-world driving scenarios.

On the other hand, learning-based methods have recently
been developed in the field of robotics and autonomous
driving. Particularly, imitation learning-based methods lever-
age expert experience data to train the agent to gener-
ate trajectory or control commands [11], [12]. However,
as supervised learning methods, the quality of the expert
demonstration dataset will influence the actual performance
of the agent significantly, which makes the training process
rather challenging. Reinforcement learning (RL) is a promis-
ing direction to handle self-driving tasks, such as deep Q-
learning, soft actor-critic, and proximal policy optimization
(PPO) [3], [13], [14]. The target of RL-based methods is
to train the agent to obtain the policy that maximizes the
future cumulative reward by exploring the environment. A
deep RL framework is proposed for navigation at occluded
intersections by combining the deep Q-network and time-
to-go representation [15], which demonstrates higher travel
efficiency and lower collision rate than the time-to-collision
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Fig. 1. Overview of the proposed CPPO framework for autonomous driving at unsignalized intersection. In the four-way intersection scenario, the ego
vehicle is depicted in red and the surrounding vehicles are in blue. The solid vehicle represents the start point, and the semi-transparent vehicle represents
the goal point.

method. A hierarchical decision algorithm is proposed for
self-driving at intersections by integrating an RL-based de-
cision module and an MPC-based planner [16]. However,
this work only considers the situation of vehicles traveling
straight, yet considering the situation where the vehicle turns
left or right will significantly increase the complexity of
the problem. In [17], an RL-based car following model is
proposed for connected and automated vehicles at signalized
intersections. The arrival time prediction is introduced into
the reward function to train the agent.

Nevertheless, a major drawback of the RL-based method
is that it always requires a long training process to obtain
acceptable driving policies for complex self-driving tasks,
such as unsignalized intersection-crossing. Because the train-
ing environment is unknown to the agent, which leads to
that the agent needs to spend plenty of time interacting
with the environment to understand its characteristics be-
fore learning a satisfying strategy. To solve this problem,
a model-accelerated PPO algorithm is proposed in [18],
where a prior model is incorporated into the RL framework
to accelerate the training process. However, due to the
black-box nature of neural networks, the safety of policies
cannot be strictly guaranteed. Transfer learning is a class of
techniques to leverage external expert knowledge before the
learning process of target tasks, which helps to speed up
the training procedure [19]. Moreover, curriculum learning
is an alternative solution to expedite network training, which
initiates the training process from easier tasks [20], [21].
Specifically, in curriculum learning, a series of course tasks
with increasing difficulties are designed to enable agents
to learn optimal strategies faster and more efficiently. In

[22], the curriculum learning technology is introduced into
the soft actor-critic algorithm for autonomous overtaking
tasks, which leads to faster convergence speed compared to
the vanilla RL method. Besides, an automated curriculum
mechanism is proposed in [23] to train agents for traversing
the unsignalized intersection. The agent can obtain a fine-
tuned policy in the final phase by dropping the future state
information during the training process. However, in this
work, surrounding vehicles are assumed not to interact with
other vehicles, and future trajectories of opposing vehicles
are accessible. Besides, the total number of surrounding
vehicles is fixed. These assumptions and settings could
possibly limit the generalization of the trained policy in more
dynamic intersection scenarios.

This work addresses the unsignalized intersection-crossing
task where the ego vehicle interacts with varying numbers
of surrounding vehicles. The main contributions of this
work are summarized as follows: a curriculum proximal
policy optimization (CPPO) framework with stage-decaying
clipping is proposed for training the agent in the highly
dynamic intersection-crossing self-driving task, where the
reward function is particularly designed to balance the safety
and travel efficiency in different traffic situations. The stage-
based curriculum learning technology is introduced into the
PPO method with a decaying clipping parameter to accelerate
the training process and improve the generalization of the
trained policy. By learning a series of courses with increasing
difficulty levels, the agent can capture the uncertainties
of surrounding vehicles implicitly and adapt to situations
effectively with varying numbers of surrounding vehicles.
A series of simulations in different intersection scenarios



are conducted to evaluate the performance of the proposed
method and baseline method in Highway_Env [24]. The
CPPO method demonstrates faster training speed and better
generalization than the standard PPO method.

The rest of this paper is organized as follows. Section II
gives an introduction to the formulation of the intersection
problem addressed in this work. Section III illustrates the
proposed methodology. Section IV presents the experimental
results. The conclusion and future work are discussed in
Section V.

II. PROBLEM DEFINITION

In this section, we first introduce the task scenarios to be
solved in this work. Then, the formulation of the learning
environment is illustrated.

A. Problem Statement

The problem to be solved in this work is to control the
ego vehicle to traverse an unsignalized four-way intersection
and reach the goal position. Furthermore, each road consists
of two lanes. The task scenario is shown in Fig. 1.

We assume that the ego vehicle always starts from a
random position (denoted by a solid red vehicle) in the
lower zone of the intersection, and the goal position of the
ego vehicle (denoted by a semi-transparent red vehicle) is
also randomly generated within the left, upper, and right
zones. There are several surrounding vehicles driving from
other lanes towards different target lanes. They will react to
the behavior of the ego vehicle. Without loss of generality,
we assume that the position and velocity information of
surrounding vehicles can be accessed by the ego vehicle. But
the information about the driving intention of surrounding
vehicles is unknown to the ego vehicle, which increases
the difficulties of this task. The objective of this task is to
generate a sequence of actions that enables the ego vehicle
to expeditiously approach the target point while ensuring
collision avoidance with surrounding vehicles and staying
within the road boundaries.

B. Learning Environment

In this work, we frame the agent’s learning objective as the
optimal control of a Markov Decision Process by defining
state space, action space, state transition dynamics, reward
function, and discount factor. Then the RL problem can be
represented by a tuple E = ⟨S,A,P,R, γ⟩.

State space S: In this scenario, the state space S is explic-
itly defined by Highway_Env environment, which consists
of state matrices St. At each timestep t, the agent observes
the kinematic features of vehicles in the intersection, so the
state matrix can be defined as follows,

St =
[
s0t s1t ... s

N
t

]T (1)

where N denotes the total number of vehicles in the inter-
section. The first row of St, i.e., (s0t )

T , is a vector consisting
of the kinematic features of the ego vehicle, while other rows
of St, i.e., (sit)

T (i = 1, 2, ..., N), represent vectors of the

kinematic features of the surrounding vehicles. The vector
of the kinematic features is defined as follows,

sit =
[
xit yit vix,t viy,t sinψi

t cosψi
t

]T (2)

where xit and yit are the vehicle’s current position in the world
coordinate system, respectively; vix,t and viy,t are the speed
of the vehicle along the X-axis and Y-axis, respectively; ψi

t

is the heading angle of the vehicle at timestep t.
Action space A: Similar to the human driver’s operation

in driving, the action space of the agent consists of five basic
discrete actions as follows,

A =
{
A0, A1, A2, A3, A4

}
(3)

where A0 and A2 are the left and right lane-changing
action, respectively; A1 is the motion keeping action; A3

and A4 represent the deceleration and acceleration action,
respectively.

The vehicle is controlled by two low-level controllers, the
longitudinal and lateral controllers, which convert discrete
actions (3) to the continuous control input [a, δ]T of the
vehicle, where a and δ are the acceleration and steering
angle, respectively. Considering the physical limitations, the
maximum acceleration and steering angle are set as 8 m/s2

and 45 degrees, respectively.
State transition dynamics P(St+1|St, at): The transition

function P defines the transition of environment state, which
follows the Markov transition distribution. The next state
generated by P is related to the current state St and the ap-
plied action at ∈ A. The transition dynamics P(St+1|St, at)
is implicitly defined by Highway_Env environment and
unknown for the agent.

Reward function R: The reward function assigns a pos-
itive reward for successfully completing an episode and for
maintaining survival. It penalizes collisions, out-of-the-road,
and lane-changing behaviors. When there are few vehicles
on the road, the acceleration behaviors will be rewarded,
and vice versa. The details about the structure of the reward
function will be introduced in Section III-C.

Discount factor γ ∈ (0, 1): The future reward is accumu-
lated with a discount factor γ.

III. METHODOLOGY

In this section, we first illustrate the details of the proposed
CPPO framework with stage-decaying clipping. Then, the
curriculum setting is introduced to enhance the training
process of the RL agent. Lastly, the multi-objective reward
structure for the agent is presented.

A. Curriculum Proximal Policy Optimization with Stage-
Decaying Clipping

PPO is a model-free RL framework to solve the sequential
decision-making problem under uncertainties. It alternatively
constructs a clipped surrogate objective to replace the origi-
nal function, which generates a lower bound on the unclipped
objective and avoids the incentive for an excessively large
policy update. Therefore, PPO algorithm facilitates the learn-
ing of policies in a faster and more efficient way. Specifically,



the objective function in the PPO algorithm is shown as
follows,

Jclip(θ) = Et

[
min

(
ρt(θ)Ât, clip (ρt(θ), 1− ε, 1 + ε) Ât

)]
(4)

where ρt(θ) = πθ(at|st)
πθold

(at|st) is the probability ratio between

the new policy and old policy, Ât is the estimated advantage
function at timestep t, ε is a hyperparameter.

The intuitive idea is to change the value of the hyper-
parameter ε in the different training periods. Empirically,
we set ε = {0.25, 0.2, 0.15}. During the beginning stage of
training, a large parameter ε1 = 0.25 is used for the rough
exploration, which is then adjusted to the second largest
parameter ε2 = 0.2 during the middle stage, and finally
adjusted to a smaller parameter ε3 = 0.15 during the later
stage. However, determining when to make adjustments to
the parameters is a problem.

Remark 1: If Â > 0, the probability ratio will not exceed
1 + ε. Otherwise, the ratio will be less than or equal to
1 − ε. Therefore, the magnitude of the clipping parameter
ε will influence the training speed and the performance of
the trained policy. A larger clipping parameter allows for
a more significant step size of the update, which means
that the agent can have a faster training process, but the
optimality of the trained policy cannot be ensured. On the
contrary, a smaller clipping parameter may lead to slow
update speed and drop into a local optimal policy. Therefore,
stage-decaying clipping can capitalize on the strengths of
both approaches while circumventing their weaknesses.

In intersection-crossing tasks, the ego vehicle needs to
interact with a variable number of interactive surrounding
vehicles with different driving behaviors from the other three
directions. Therefore, these scenarios are rather complex. It
is difficult to get a satisfactory driving policy by directly de-
ploying the PPO algorithm in these high-dynamic scenarios.
Here, we introduce stage-based curriculum learning technol-
ogy to generate a task sequence with increasing complexity
for training acceleration and better generalization. Besides,
the clipping parameter can be adjusted when switching the
curriculum, which addresses the issue of when to change the
clipping parameter mentioned before.

We generate a curriculum sequence with three stages,
which is represented as Ω = {Ω1,Ω2,Ω3}. The curriculum
sequence is designed for different goals with increasing
complexity.

Curriculum 1: Intersection without surrounding vehicles.
In stage 1, which is denoted as Ω1, there is only the ego
vehicle in the intersection. The objective of this curriculum
is to learn a transferable nominal policy to obtain the nominal
policy π1 that can find an action sequence to the goal point.
The ego agent is guided with empirically designed rewards
in this curriculum stage, which can decrease the exploration
time in the whole action space and avoid local optimum with
poor generalization. In this curriculum, the hyperparameter
of the clipped function is set as ε1.

Curriculum 2: Intersection with a few vehicles. In the

second stage, we load the policy trained in Curriculum 1
as the initial policy of this stage for the following training
process. In this curriculum, there are a few surrounding
vehicles in the intersection. We aim to train the nominal
policy to obtain a new policy π2 with the preliminary
obstacle avoidance ability by maximizing the intersection-
crossing reward in this stage. The hyperparameter is switched
to ε2.

Curriculum 3: Intersection with numerous vehicles. In the
third stage, we load the policy trained in Curriculum 2 as the
initial policy. In this stage, there are numerous surrounding
vehicles in the intersection. The objective of this curriculum
is to train the previous policy to obtain the optimal policy
π∗ with better obstacle avoidance ability in a more complex
environment. In the preceding episodes of this stage, the
parameter ε remains at 0.2, and then transits to ε3 to continue
the course training.

B. Multi-Objective Reward Design
For the RL-based method, the design of the reward is

essential for the success of policy training. An inappropriate
reward function not only slows down the speed of training
but also leads to a trained policy with poor performance.
Therefore, it is challenging to guide the agent to obtain
a satisfactory driving strategy in a complex scenario. In
this work, the reward is smartly designed for intersection
scenarios with different densities.

Considering the complexity of the target scenario, a com-
prehensive reward function is designed as follows,

r = rsucc(T,Ncar) + rcolli(v,Ncar)

+ rTO + rOfR + rLC + rl,
(5)

where rsucc and rl are the reward for successfully com-
pleting tasks and surviving in the task, respectively;
rcolli, rTO, rOfR, and rLC are the penalty of collision with
surrounding vehicles, time-out, out-of-the-road boundary,
and lane-changing behavior, respectively.

Remark 2: Inspired by the idea of curriculum learning,
several terms in the reward function are related to the
setting of the scenario. The success reward term is related
to both the time of finishing the task and the maximum
number of surrounding vehicles in the intersection central
area when the ego vehicle is crossing. It will encourage
autonomous vehicles to expedite the intersection-crossing
task, and greater rewards will be obtained when completing
more complex tasks. Additionally, the collision penalty is
related to the speed of the ego vehicle when the collision
happens and the maximum number of surrounding vehicles.
This reward term aims to encourage autonomous vehicles
to maintain a lower speed when there are more vehicles
in the central area of the intersection to ensure safety, and
greater penalties will be imposed if collisions occur in more
complex tasks. Thereby, the balance between the safety and
travel efficiency is achieved through the particular designed
reward function.

To sum up, the proposed CPPO framework with stage-
decaying clipping is summarized in Algorithm 1.



Algorithm 1: Curriculum Proximal Policy Optimiza-
tion with Stage-Decaying Clipping

Input: Environment state st, curriculum set Ω
Output: π∗ = f(θ∗)

1 Initialize the policy network with parameter θ0;
2 while not terminated do
3 Select curriculum Ωi from curriculum set Ω;
4 Reset the environment according to the setting of

curriculum Ωi;
5 Select the clipping parameter ε = εj ;
6 if curriculum switched then
7 Load policy π∗ trained by Ωi−1 as the initial

policy;
8 end
9 Update the policy network by maximizing the

designed reward (5);
10 Save the trained policy as πi;
11 end
12 The policy network obtained by the last curriculum is

the final policy θ∗ = θ3.

IV. EXPERIMENTS

In this section, we implement the proposed algorithm in
dynamic intersection-crossing scenarios. Then we compare
the performance of CPPO with that of two baseline methods.
The simulations are conducted in Highway_Env [24].

A. Experimental Settings

The experiments are conducted on the Windows 11 system
environment with a 3.90 GHz AMD Ryzen 5 5600G CPU.
The task scenarios are constructed based on Highway_Env
environment, where each road is a bi-lane carriageway.
We use fully-connected networks with 1 hidden layer of
128 units (action network) and 64 units (critic network)
to represent policies. The neural network is constructed in
PyTorch [25] and trained with an Adam optimizer [26].
The MDP is solved using the proposed CPPO framework
and the standard PPO method with two different fixed
clipping parameters. The simulation frequency is set as 15
Hz. The hyperparameters for network training are listed in
Table I. Here, we compare the proposed method, CPPO,
and two baseline methods with different clipping parameters
(ε = 0.15, 0.25). For the sake of fairness, other network
parameters of these methods are the same.

TABLE I
HYPERPARAMETER SETTINGS.

Hyperparameter Value

Learning rate for actor network 5× 10−4

Learning rate for critic network 1× 10−3

Discount factor 0.9
Number of epochs 20

Then we test all trained policies in intersection scenarios
with different numbers Nsv of surrounding vehicles, whose

behaviors are characterized by the intelligent driver model
(IDM) [27]. We record the success rate, collision rate, time-
out rate, and out-of-road rate, respectively. By conducting
these simulations, we can evaluate the generalization perfor-
mance of these trained policies.

1) No surrounding vehicles (Nsv = 0): This scenario can
be used to check whether the trained policy has the ability
to find the nominal trajectory to achieve the goal point.

2) Different number of surrounding vehicles (Nsv =
1, 2, ..., 6): These trained policies are tested in simple and
complex scenarios to estimate their generalization perfor-
mance and safety.

Fig. 2. Reward curve comparison among different methods. The train-
ing curves are smoothed by the Savitzky-Golay filter. The curriculum is
switched at 2× 103th and 5× 103th episode, respectively.

TABLE II
TRAINING TIME OF DIFFERENT METHODS.

Methods Training Time (hour:min.:sec.)

CPPO 3:34:28
PPO1 (ε = 0.15) 6:45:32
PPO2 (ε = 0.25) 5:58:28

B. Training Results

To illustrate the effectiveness of the proposed framework,
the training time is listed in Table II for comparison. It is
obvious that CPPO has a much faster training speed than
the two baseline methods. Specifically, the training speed of
CPPO is 47.2% faster than PPO1, and 40.2% faster than
PPO2.

The change in reward during the training process is shown
in Fig. 2. According to these three learning curves, we can
find that the CPPO agent initially receives the least reward,
which is because that the reward function is positively
correlated with the number of vehicles in the environment
upon successful task completion. However, as CPPO’s policy
network converges to the optimal policy in the final stage,
its reward curve surpasses that of the other two baseline
methods. As the baseline algorithm PPO1, with the parameter
ε = 0.15, is deployed directly in a complex environment



(a) Timestep t = 5 (b) Timestep t = 25 (c) Timestep t = 35 (d) Timestep t = 55

Fig. 3. Demonstration of the driving performance attained by the proposed CPPO method in an unprotected left-turn task at the unsignalized intersection.
The green car and blue cars represent the ego vehicle and surrounding vehicles under normal driving conditions, respectively. The red cars represent the
vehicles that have collided. (a)-(d) present four key snapshots during the performance evaluation demonstration.

TABLE III
COMPARISON OF SUCCESS RATE, COLLISION RATE, AND TIME-OUT RATE AMONG DIFFERENT METHODS.

Methods Nsv=0 Nsv=2 Nsv=4
succ.(%) coll.(%) time-out(%) succ.(%) coll.(%) time-out(%) succ.(%) coll.(%) time-out(%)

CPPO 100 0 0 90.5 9.5 0 78.5 21.5 0
PPO1(ε = 0.15) 55.5 0 44.5 86 14 0 76.5 23.5 0
PPO2(ε = 0.25) 69.5 0 30.5 83.5 16.5 0 72 28 0

for learning, its reward curve exhibits minor fluctuations in
the later stages of training and is lower than that of the
CPPO algorithm. For the agent trained by the baseline PPO2

with ε = 0.25, its reward curve exhibits a rapid increase
initially. However, due to the large parameter ε, it oscillates
significantly in later episodes. Although its reward curve ends
up resembling that of PPO1, the performance of its policy
may be inferior to that of PPO1. Above results illustrate that
the introduction of stage learning allows for a more efficient
sampling process, leading to a faster training speed and better
convergence compared to baseline methods.

C. Performance Evaluation
To further demonstrate the superiority of CPPO in

unsignalized intersection scenarios, comparative simulations
are conducted. We test policies obtained by three methods in
intersection scenarios with different numbers of surrounding
vehicles. Each method is retested 200 times in each scenario.
Among all testing results attained by the proposed CPPO
method at the unsignalized intersection, we pick up the
results from a left-turn task for demonstration, and the
details are presented in Fig. 3. In this demonstration, the
ego vehicle is generated on the right lane of the lower
zone, and its goal lane is the left lane in the left zone. We
can observe that the ego vehicle exhibits a safe interaction
behavior of decelerating and steering left when encountering
a surrounding vehicle approaching from its left side in Fig. 3.
Specifically, in the first snapshot, the ego vehicle drives
at a constant speed from the right lane in the lower zone
towards the central area of the intersection, preparing for
a left turn. Then, in the second snapshot, the ego vehicle
perceives that it is getting close to a surrounding vehicle
ahead, and the vehicle ahead shows no signs of slowing down
to yield. As a result, the ego vehicle decelerates and steers
left to avoid a collision. Afterwards, in the third snapshot,

the closest surrounding vehicle in the previous snapshot has
moved away from the ego vehicle. The ego vehicle perceives
that there are no other vehicles that could potentially collide
with itself. Therefore, it adjusts its heading angle, accelerates
towards the target lane, and continues driving until the
completion of the unsignalized intersection task.

The success rates of the three methods in all evaluation
scenarios are shown in Fig. 4. It is evident that the CPPO
method achieves the highest overall task success rate. While
its success rate decreases with the increasing complexity of
the environment, it remains higher than that of the other two
baseline methods. It indicates that the proposed method has
better generalization performance. Furthermore, except for
the scenario where there are no surrounding vehicles, PPO1

achieves a slightly higher task success rate than PPO2. This
is because a smaller parameter ε enables a search for better
policies. Besides, it is noted that both two baseline methods
have a low task success rate in the scenario where there is
only the ego vehicle.

In addition, we have summarized the results of the success
rate, collision rate, and timeout rate of tests with Nsv =
0, 2, 4 surrounding vehicles in Table III. From this statistical
result, we can observe that both baseline methods exhibit a
large number of timeouts in testing, 44.5% and 30.5% for
PPO1 and PPO2, where there is no surrounding vehicles.
This suggests that directly deploying the agent in a complex
environment for training may cause the policy to become
stuck in a local optimum. For other task scenarios with
surrounding vehicles, two baseline methods did not exhibit
timeouts in testing results. Because of the integration of the
curriculum sequence, there is no timeout case happening
for the CPPO. Therefore, the introduction of the curriculum
learning technologies enables the agent to converge to a
better optimum compared to those agents trained directly.



Fig. 4. Success rate comparison of three algorithms in unsignalized
intersection with a different number of surrounding vehicles.

V. CONCLUSION

In this paper, we proposed a novel CPPO framework
with stage-decaying clipping for unsignalized intersection-
crossing tasks. We formulate a curriculum sequence for
guiding the agent to learn the driving policy in scenarios
where task difficulty gradually heightens by increasing the
number of surrounding vehicles, and the clipping parameter
in PPO varies as the curriculum stage switches. Besides, the
reward function is particularly designed to guide the agent
to balance safety and travel efficiency in different situations.
A series of experiments were conducted in Highway_Env
environment to verify the effectiveness of the proposed
method. We compared the performance of the proposed
method and two baseline methods. The results show that the
CPPO method has the fastest training speed and the highest
task success rate among different settings, which demon-
strates that the proposed method has better generalization
performance than all baseline algorithms. In the future, we
will consider incorporating game theoretic methods into the
CPPO framework to enhance the effectiveness of our method.
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[1] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[2] S. Narayanan, E. Chaniotakis, and C. Antoniou, “Shared autonomous
vehicle services: A comprehensive review,” Transportation Research
Part C: Emerging Technologies, vol. 111, pp. 255–293, 2020.

[3] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 4909–4926, 2021.

[4] L. Wei, Z. Li, J. Gong, C. Gong, and J. Li, “Autonomous driving strate-
gies at intersections: Scenarios, state-of-the-art, and future outlooks,”
in IEEE International Intelligent Transportation Systems Conference
(ITSC), pp. 44–51, IEEE, 2021.

[5] G. Lu, L. Li, Y. Wang, R. Zhang, Z. Bao, and H. Chen, “A rule based
control algorithm of connected vehicles in uncontrolled intersection,”
in IEEE International Intelligent Transportation Systems Conference
(ITSC), pp. 115–120, IEEE, 2014.

[6] A. Aksjonov and V. Kyrki, “Rule-based decision-making system for
autonomous vehicles at intersections with mixed traffic environment,”
in IEEE International Intelligent Transportation Systems Conference
(ITSC), pp. 660–666, IEEE, 2021.

[7] X. Qian, I. Navarro, A. de La Fortelle, and F. Moutarde, “Motion
planning for urban autonomous driving using bézier curves and
MPC,” in IEEE International Conference on Intelligent Transportation
Systems (ITSC), pp. 826–833, IEEE, 2016.

[8] Y. Wang, Y. Li, H. Ghazzai, Y. Massoud, and J. Ma, “Chance-
aware lane change with high-level model predictive control through
curriculum reinforcement learning,” arXiv preprint arXiv:2303.03723,
2023.

[9] L. Riegger, M. Carlander, N. Lidander, N. Murgovski, and J. Sjöberg,
“Centralized MPC for autonomous intersection crossing,” in IEEE
International Intelligent Transportation Systems Conference (ITSC),
pp. 1372–1377, IEEE, 2016.

[10] M. Kneissl, A. Molin, H. Esen, and S. Hirche, “A feasible MPC-
based negotiation algorithm for automated intersection crossing,” in
European Control Conference (ECC), pp. 1282–1288, IEEE, 2018.

[11] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 4693–
4700, IEEE, 2018.

[12] K. Menda, K. Driggs-Campbell, and M. J. Kochenderfer, “Ensem-
bledagger: A Bayesian approach to safe imitation learning,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 5041–5048, IEEE, 2019.

[13] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep rein-
forcement learning framework for autonomous driving,” arXiv preprint
arXiv:1704.02532, 2017.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[15] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 2034–2039, IEEE, 2018.

[16] T. Tram, I. Batkovic, M. Ali, and J. Sjöberg, “Learning when to
drive in intersections by combining reinforcement learning and model
predictive control,” in IEEE Intelligent Transportation Systems Con-
ference (ITSC), pp. 3263–3268, IEEE, 2019.

[17] M. Zhou, Y. Yu, and X. Qu, “Development of an efficient driving strat-
egy for connected and automated vehicles at signalized intersections:
A reinforcement learning approach,” IEEE Transactions on Intelligent
Transportation Systems, vol. 21, no. 1, pp. 433–443, 2019.

[18] Y. Guan, Y. Ren, S. E. Li, Q. Sun, L. Luo, and K. Li, “Centralized
cooperation for connected and automated vehicles at intersections
by proximal policy optimization,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 11, pp. 12597–12608, 2020.

[19] Z. Zhu, K. Lin, A. K. Jain, and J. Zhou, “Transfer learning in deep
reinforcement learning: A survey,” arXiv preprint arXiv:2009.07888,
2020.

[20] X. Wang, Y. Chen, and W. Zhu, “A survey on curriculum learning,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 9, pp. 4555–4576, 2021.

[21] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and
P. Stone, “Curriculum learning for reinforcement learning domains: A
framework and survey,” The Journal of Machine Learning Research,
vol. 21, no. 1, pp. 7382–7431, 2020.

[22] Y. Song, H. Lin, E. Kaufmann, P. Dürr, and D. Scaramuzza, “Au-
tonomous overtaking in gran turismo sport using curriculum reinforce-
ment learning,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 9403–9409, IEEE, 2021.

[23] S. Khaitan and J. M. Dolan, “State dropout-based curriculum rein-
forcement learning for self-driving at unsignalized intersections,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 12219–12224, IEEE, 2022.

[24] E. Leurent, “An environment for autonomous driving decision-
making.” https://github.com/eleurent/highway-env, 2018.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in Neural Information Processing Systems (NeurIPS), vol. 32, 2019.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[27] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical Review
E, vol. 62, no. 2, p. 1805, 2000.


	Introduction
	Problem Definition
	Problem Statement
	Learning Environment

	Methodology
	Curriculum Proximal Policy Optimization with Stage-Decaying Clipping
	Multi-Objective Reward Design

	Experiments
	Experimental Settings
	No surrounding vehicles (Nsv=0)
	Different number of surrounding vehicles (Nsv=1,2,...,6)

	Training Results
	Performance Evaluation

	Conclusion
	References

