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Abstract— We consider the problem of group interactions
in urban driving. State-of-the-art behavior planners for self-
driving cars mostly consider each single agent-to-agent inter-
action separately in a cost function in order to find an optimal
behavior for the ego agent, such as not colliding with any of
the other agents. In this paper, we develop risk shadowing, a
situation understanding method that allows us to go beyond
single interactions by analyzing group interactions between
three agents. Concretely, the presented method can find out
which first other agent does not need to be considered in
the behavior planner of an ego agent, because this first other
agent cannot reach the ego agent due to a second other agent
obstructing its way. In experiments, we show that using risk
shadowing as an upstream filter module for a behavior planner
allows to plan more decisive and comfortable driving strategies
than state of the art, given that safety is ensured in these cases.
The usability of the approach is demonstrated for different
intersection scenarios and longitudinal driving.

I. INTRODUCTION

Behavior planners for self-driving cars and driver support
systems increasingly can tackle more complex driving situa-
tions. Here, most state-of-the-art behavior planners consider
usually each agent separately to find a safe plan. Examples
of behavior planners are search-based planners (such as A*
search) [1], trajectory optimization approaches [2] or cooper-
ative planning methods [3]. While considering each agent-to-
agent interaction separately ensures safety, for decisive and
comfortable behavior planning, interactions of groups should
be considered for more proactive planning.

Fig. (1] illustrates a driving situation in which group inter-
actions are important. The figure shows three agents at an
intersection: an ego agent in green that intends to cross, while
another car in red and another truck in red are approaching.
Please note that the other car is driving at high velocity and
the truck already drives on the intersection space. State-of-
the-art behavior planners would consider both other agents
separately in the motion planning problem and possibly
recommend that the ego agent brakes for the fast other car.
However, since the other car cannot reach the ego agent due
to the truck obstructing its way, the car can be neglected
from the perspective of the ego agent. In this paper, we
therefore present risk shadowing, a situation understanding
method that allows us to analyze such group interactions.

The novel risk shadowing approach consists of two dif-
ferent methods: a) a time-based risk model for predicting
possible collisions and b) a reachability analysis based on
geometrical constraints. Important is that both methods need
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Fig. 1. The image shows an example driving situation in which another
car cannot reach the ego agent due to the truck obstructing its way. In this
paper, we propose risk shadowing which allows to filter other cars based
on such group interactions and in turn allows the behavior planner of the
ego agent to plan more decisive and comfortable behaviors.

to be applied from the perspective of each agent in the driving
situation. In the example case of the figure, it has to be
applied for the ego agent, the other car and the other truck.
Since the computational effort required for group interactions
increases quadratically with the number of involved agents,
we propose to use a simple risk model, the closest encounter
model, for this task.

The risk shadowing approach is finally used in the paper
as an upstream filter module for a behavior planner. Agents
which are filtered out by risk shadowing may be neglected
in the planning step. In the example of Fig. [I] the planning
system would thus not consider the other fast car due to the
truck obstructing its way and recommend for the ego agent,
for example, to keep its velocity and drive first through the
intersection. The proposed system can better understand the
driving situation and plans more decisive and comfortable
behaviors than a system without risk shadowing.

A. Related Work

To the knowledge of the authors, this is the first paper
introducing a simple model-based group interaction analysis
method for filtering in behavior planners. However, there are
many works that are related to the proposed method.

First, while state-of-the-art behavior planners consider
agents separately, recent learning-based prediction methods
and neural planners may implicitly consider group interac-
tions. For example, the authors of [4] trained a model that
predicts behavior trajectories with a graph neural network. If
the driving data includes situations with group interactions,
the model may implicitly learn these phenomena. Similarly,
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Fig. 2.

The proposed risk shadowing initially utilizes the closest encounter model to predict future collision points, then determines reachability areas

for the agents and lastly, performs an overlap check between the reachability areas. This allows the approach to analyze group interactions and to solve
situations like the one from the introduction, filtering out the other car due to the truck obstructing its way.

a reinforcement learning planner was trained in simulation
in [5] and might learn that some agents do not need to be
considered because of the interaction with a third agent, and
a lane change prediction based on three agents was learned in
[6]. However, the generalizability to other driving situations
is not ensured with these learning-based approaches.

Klingelschmitt et al. [7] proposed a probabilistic situation
recognition approach for multiple interacting agents. He
shows that the consideration of multiple agents outperforms
state-of-the-art methods.

Second, there is recently an extensive group of works that
investigate reachability analysis. As an example, Althoff et
al. published the work of [8] that allows to plan fail-safe
behaviors based on reachable areas and the work of [9] that
allows to apply a safety check for given behavior planners.
The proposed risk shadowing of this paper applies a similar
reachability analysis. In contrast to these works, however,
risk shadowing is used for filtering due to group interactions
and not for safety verification of planners.

Third, there have been risk models applied previously for
filtering in other works. The paper [10] surveys different risk
models for filtering agents in large intersection scenarios to
reduce the computational cost for behavior planners. Besides
the mentioned risk models in the paper, usable risk models
for filtering are, for example, Responsibility Sensitive Safety
(RSS) from [11] or acceleration-based methods, such as from
[12]. All these risk models focus, however, only on single
agent-to-agent interactions and not group interactions.

B. Contribution

In summary, in this paper we introduce risk shadowing
for decisive and comfortable behavior planning. The method
applies a simple time-based risk model with a reachability
analysis. Using this risk shadowing method as a filter module
allows computationally cheaper planners and more intelligent
driving. We will experimentally show the effectiveness of the
resulting system. Here, the driving simulations are evaluated
for different intersection scenarios and dynamic longitudinal
driving, in which cars and trucks cross, follow or pass each
other.

The paper is structured as follows: Section II describes the
implementation of the risk shadowing concept. We formulate
the closest encounter model, compose reachability areas and

calculate an overlap check to find out which agents can be
neglected due to group interactions. Afterwards, Section III
describes the system architecture of using risk shadowing
as a filter and how we find an optimal plan with a behavior
planner. Section IV demonstrates the results of the simulation
experiments for multiple driving situations and Section V
gives a summary and outlook for the paper.

II. RISK SHADOWING APPROACH

The overall framework of the risk shadowing approach is
illustrated in Fig. 2] The figure explains the steps involved in
risk shadowing and provides output examples for each of the
steps. These examples are based on the driving situation from
the introduction, which includes an ego car encountering
another car that is obstructed by a truck.

The proposed risk shadowing enables us to filter out the
other car in the given driving situation using the follow-
ing method. Initially, risk shadowing utilizes the closest
encounter model to predict future potential collision points
for the interactions between the agents. The collision points
are visualized in the figure with red points. Then, our
approach determines reachability areas for each agent, which
are highlighted with red areas in the figure, based on these
collision points. Lastly, risk shadowing performs an overlap
check between the reachability areas. In the given driving
situation, since the reachability area of the other car does
not overlap with the ego car’s area, risk shadowing can filter
out the other car due to the truck obstructing its way, see the
highlighted red cross above the other car.

Risk shadowing involves accordingly three steps. The first
step is the risk model closest encounter, while the second
and third step involve a reachability analysis, specifically de-
termining reachability areas and applying an overlap check.
In the next sections, we will describe each step of this
framework in more detail.

A. Closest Encounter Model

The closest encounter model is used to find out future
collision points between the agents in the driving situation.
Fig. [3] shows this process of predicting collision points in
detail. An important aspect is that the model is required to be
applied from each agent’s perspective. Therefore, the figure
shows for the driving situation of three agents, the collision
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Fig. 3. In the closest encounter model, the collision points are predicted
from the perspective of each agent to analyze group interactions. The model
predicts the agents’ motion and computes the points of collision.

points from the perspective of the other car, the other truck,
and the ego car. Applying the model for each agent allows
to consider group interactions between the agents.

As an example, the determination of a collision point
between two agents is described in the following. The closest
encounter model predicts the agents’ motion along their
given driving paths with constant velocity. This results in, for
example, two position sequences x;(s) and xo(s) with the
considered agent 1, another agent 2 and the future time s.
The distance between the agents is subsequently computed
for each timestep with the formula

d(s) = ||xa(s) = x1(s)/|[] (1)

The closest encounter model is then composed of the three
variables: distance of closest encounter (DCE), time of clos-
est encounter (TCE) and point of closest encounter (PCE).
These variables can be derived based on the distance over
the future time d(s) according to

DCE = ming{d(s)}, 2
TCE = argmin {d(s)}, 3
PCE = x, (s — TCE). @)

Here, a collision point requires that DCE needs to be smaller
than a threshold dy,, and we finally write for the collision
point X0 the condition

if DCE < d,: Xcon = PCE. (&)

Fig. 3|illustrates on the top left box, amongst others, these
collision points from the other car’s perspective. These are
the first collision point with the other truck and the second
collision point with the ego car. We specify multiple collision
points with Xc,j, whereby j represents the index of the
given collision point. The process is repeated for the truck
and the ego car, as can be seen in the figure.

B. Reachability Areas
Once the collision points are determined for every inter-
action in the group of the driving situation, the reachability

IPlease note that in the current implementation, the agents’ vehicle shapes
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Fig. 4. In the reachability area determination, the reachability areas are
calculated by finding the closest collision point along the considered agent’s
driving path. Other collision points are disregarded.

areas can be determined in the next step. Fig. [] illustrates
the process of the reachability area determination. We define
the reachability area (RA) of an agent to start at the agent’s
current position and to end at the closest collision point along
the agent’s driving path. An agent will not be able to drive
further than this first collision point. To simplify the problem,
we thus project the agent’s position Xageen: and collision point
results Xco,; onto the respective path to obtain longitudinal
positions along the path lyeen; and leop,;. A reachability area
can consequently be calculated by

RA = [lagenta minj{lcoll,j}]~ (6)

In the equation, the reachability area is modeled as a one-
dimensional line. The agents’ width is added afterwards for
a two-dimensional representation.

Fig. ] shows the described process of the reachability
area determination from the perspective of each agent. A
reachability area is determined for the other car, other truck
and ego agent. For example, the other car’s reachability
area starts at the car’s current position and ends at the first
collision point with the truck. The second collision point with
the ego car comes after the first collision point and therefore
remains disregarded, which is illustrated with a blue line that
crosses out the point. Risk shadowing can proceed now to
the final step, which is the overlap check.

C. Overlap Check

In the final step of risk shadowing, the reachability areas
of the ego agent and other agents are checked for overlaps.
Fig. 5| shows this check for the ego car in the driving situation
of the introduction example.

Based on the reachability areas, we can conclude whether
another agent can be filtered out or not. In particular, if the
reachability area of the ego agent and of another agent do not
overlap, the agent may be filtered out. We therefore define
for another agent ¢ that if the condition

RAego n RAolher,i =0 @)

holds, then the other agent ¢ is filtered out. The agent can
be safely neglected because it cannot reach the ego agent in
the current driving constellation.
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Fig. 5. For the ego agent, an overlap check is applied. If the reachability

area of the ego agent and the reachability area of another agent do not
overlap, the other agent is filtered out.

As Fig. [5] depicts on the left box, the reachability area of
the ego car does not overlap with the reachability area of the
other car because the other car’s area already ends before the
truck. The other car can thus safely be filtered out and does
not need to be considered for an upcoming behavior planner.
The risk shadowing approach found out that the other car is
obstructed by the truck and considers this group influence
for the ego car. On the other hand, the ego car’s reachability
area overlaps with the other truck’s reachability area, see the
right box. This is highlighted with a blue overlap area. The
truck is thus considered according to risk shadowing.

III. PLANNING WITH FILTER

In the last section, the proposed risk shadowing approach
of this paper was explained based on the introduction exam-
ple of three agents. Since group interaction analysis requires
some steps to be repeated from the perspective of each agent,
the time complexity is O(n?), with n being the number of
agents. For this reason, in this paper, the models were chosen
to be simple. The closest encounter was chosen as a simple
risk model for the collision predictions and the reachability
area determination was done with one-dimensional lines.
Risk shadowing can efficiently filter out agents that cannot
reach the ego agent based on group influences.

Fig. [ shows now the usage of the risk shadowing ap-
proach as an upstream filter module for a behavior planning
module. As an input, risk shadowing requires the information
from sensors, e.g., from cameras or lidars, for all sensed
agents in the driving situation. The information includes the
position, velocity, and their future driving paths from, e.g.,
map data. As an output, risk shadowing gives a reduced set
of agents that does not include the filtered out agents. Only
relevant other agents are considered.

The behavior planner utilizes the reduced set of agents
as an input and plans an optimal behavior for the ego
agent. This simplifies the behavior planning problem. In this
paper, we employ Risk Maps [13] for the behavior planning
module as explained in detail in [14]. Risk Maps generates
here multiple ego behaviors and checks their risk, utility
and comfort for choosing an optimal behavior. The found
behavior is finally executed. In the following, we will shortly
explain Risk Maps to conclude the methods sections.

A. Risk Maps Planner

Risk Maps [13], [14] models the driving behavior of the
ego agent with taken velocity profiles over the future time,
which follow the given driving path. Accordingly, we solve
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Fig. 6.  Risk shadowing is used in this paper as an upstream filter module
for the behavior planner Risk Maps. From the sensed agents, agents are
filtered out, and Risk Maps only uses the remaining set of agents to find
an optimal behavior.

behavior planning with a velocity planner, as can be seen
with the velocity plot at the bottom right of Fig. [

Risk Maps generates first for the ego agent several po-
tential velocity profiles v" that are composed of h different
acceleration and deceleration behaviors. The optimal behav-
ior is then the velocity profile voy among these generated
profiles that has the lowest driving costs C. The costs C'
consists here of future risks Rz, utility U and comfort costs
O. We therefore write

Vopt = argminh{C(vh)}, (3
with C(v") = R(w") — U(W") + O(v"), 9)

for the planning formulation of Risk Maps. As an example,
an optimal behavior for the ego agent could be to brake in
order to allow another agent to pass and then to keep constant
velocity for the rest of the planning time.

The used risks in the cost formulation of Risk Maps are
probabilistic and include, on the one hand, risks for the ego
agent to collide with other agents, and, on the other hand,
risks for the ego agent to lose control in sharp turns. While
Risk Maps targets to minimize these risks, at the same time,
the behavior planner also maximizes utility and minimizes
comfort costs. Utility is therein represented by the traveled
distance towards the ego agent’s goal point and comfort costs
penalize sudden changes in the velocity profile, such as high
acceleration or jerk values.

For more details about the velocity profile modeling, the
cost formulation and the used parameters in Risk Maps, we
refer the reader to the work of [14]. At this point, however,
we want to note that other behavior planners can be used
as well. The main contribution of this paper is the risk
shadowing approach that helps behavior planners to reduce
the driving situation’s complexity.

IV. EXPERIMENTS

In this section, we will finally present the experiments of
this paper that evaluate the performance and robustness of
the risk shadowing approach. In the experiments, we applied
risk shadowing as an upstream filter module for a behavior
planner as described earlier. For this purpose, simulations
were carried out using a traffic simulator, where the ego agent
followed the planned behavior generated by the combined
system of risk shadowing and Risk Maps, and other agents
drove with fixed behaviors. To model the behavior of the
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Fig. 7. The image shows risk shadowing and Risk Maps being applied on the introduction example that includes another car obstructed by a truck. With
risk shadowing, the other car is filtered out and the planner finds a decisive and comfortable behavior of crossing the intersection with constant velocity.
In contrast, the baseline system without risk shadowing accelerates and brakes in response to the other car.

agents, we used here kinematic models that updated their
positions along the respective driving paths.

The section is divided into three parts. First, we will show
simulations of the introduction example including another
car that is obstructed by a truck. We analyze the output of
risk shadowing and of the behavior planner in order to show
the performance of the approach. Second, different variations
for the intersection scenario are shown that involve three
agents interacting with each other and we highlight different
filter and non-filter examples to analyze the robustness of
risk shadowing. Third, we will discuss the limitations of the
current implementation of risk shadowing.

In order to show the advantages of the risk shadowing ap-
proach, we will compare the novel system of risk shadowing
and Risk Maps with a simple system using only the behavior
planner Risk Maps. We therefore label in the experiments the
novel system as “risk shadowing” and the simple system as
“baseline”.

A. Introduction Example

The improvement of using risk shadowing with a behavior
planner for the driving situation of the introduction example
is depicted in Fig.[7} The top portion of the figure shows the
results obtained by applying “risk shadowing” and the bot-
tom portion the results obtained by applying the “baseline”
without risk shadowing.

We now focus on the figure’s top portion, which illustrates
birds-eye-views of the driving situation for three timesteps
(left). The ego agent in green is crossing an intersection,
while another car in red and another truck in red are present.
By applying risk shadowing, the complexity of the driving
situation is simplified. Due to the truck obstructing the way
for the other car, the car is filtered out. The behavior planner
Risk Maps thus finds that the optimal behavior is to maintain
a constant velocity and the ego agent crosses the intersection.
The filtering and behavior graphs (right) demonstrate this
circumstance. The other car is filtered out until around the
simulation time of 5 seconds in the filtering graph and the

behavior graph contains constant velocity and no acceleration
for the ego agent over the complete simulation.

In contrast, at the bottom, the figure presents the same
simulation using the baseline” system. The system consists
only of the behavior planner Risk Maps. Here, there is no
filtering and no group interaction analysis applied.

The other car, which is approaching the intersection, has a
strong influence on the ego car and the planner recommends
to initially accelerate in order to avoid the other car, and, after
crossing the intersection, to brake for returning to the original
velocity (see the birds-eye views of the driving situation).
The planner is unaware that the truck is obstructing the way
for the other car and minimizes this separate agent-to-agent
collision risk. The behavior graph demonstrates that the ego
agent accelerates from 0 to 3 seconds and then decelerates
from 3 to 8 seconds in the simulation.

Overall, the introduction example has shown that applying
risk shadowing for intersection scenarios with group inter-
actions allows the behavior planner to find a more decisive
and comfortable behavior. The planner recommends to keep
the current velocity instead of unnecessarily changing its
behavior.

B. Further Scenarios

Fig. 8] shows further examples with three agents interacting
on an intersection exhibiting benefits of risk shadowing. In
particular, risk shadowing is analyzed for crossing, following
and turning intersection scenarios which cover a variety of
possible interactions.

The figure depicts for each of the scenarios the birds-eye-
view of the driving situation for one timestep during the
simulation on the left and the behavior graph of the ego agent
for the risk shadowing” approach and the ’baseline” on the
right. In the scenarios, risk shadowing allows to filter out
the other car because of the obstruction from the truck. The
planner finds decisive and comfortable behaviors by crossing
the intersection using constant behavior. In comparison, the
baseline system without risk shadowing overestimates the
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Fig. 8. The improvement of risk shadowing for behavior planning is
shown for crossing, following and turning scenarios. A more decisive and
comfortable behavior is also achieved in these scenarios.

risk from the other car in the scenarios and recommends the
ego agent to change its behavior by strongly accelerating
or braking. The baseline system hence assesses the situation
wrong for group interactions.

Furthermore, to give insights into the calculation internals
of the risk shadowing approach, the determined reachability
areas of each agent for the different scenarios are visualized
in Fig. 0] The figure presents on the top four filter examples
where another car is filtered out because of a third vehicle
obstructing its way. At the bottom of the figure, in contrast,
four non-filter examples, in which reachability areas either
have an overlap or the agents have already passed each other,
are shown. In the scenarios, risk shadowing correctly assesses
the group interactions.

We want to highlight the presented longitudinal following
scenarios in the figure. As can be seen in the filter examples
(second row on the right), another car is filtered out by risk
shadowing if the ego agent cannot reach this car because of a
third car in between. This is true when the car in between, for
example, brakes strongly. The non-filter example scenario of
longitudinal following (fourth row on the right) shows that
this car should, however, not be filtered out if the agents
drive all with similar velocities.

C. Discussion

In total, the experiments have shown that the risk shad-
owing approach can be applied to different driving situations
and allows to filter out other agents because of group inter-
actions. However, limitations of the approach are discussed
in the following.

In the intersection experiments, we analyzed group inter-
actions where one agent is driving close to or on the inter-
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Fig. 9. The determined reachability areas of the risk shadowing approach
are visualized for different filter examples and non-filter examples. Besides
intersection scenarios, the robustness of risk shadowing was tested for
longitudinal following.

section space. The current implementation of risk shadowing
does not filter out another agent based on group interactions,
if all the agents in the group are distant from the intersection
space. Analyzing such group interactions can also result in
a more intelligent behavior for the ego agent and should be
investigated.

In addition, in both, the shown intersection scenarios and
longitudinal following examples, the agents were assumed to
have one driving path. It is possible to consider multiple path
options for one agent by applying risk shadowing on each
path and only filtering out another agent if it is obstructed
on all its paths. Nevertheless, this scales unfavorably if the
path options are numerous for each agent. Further heuristics
should be investigated and tested to filter out agents in these
situations.

The last limitation of the current risk shadowing approach
is the assumption of constant velocity in the used closest
encounter model. This assumption may not hold true when
agents are exerting strong accelerations and decelerations,
which can result in inaccurate predictions. To improve risk
shadowing, safety margins may be added in the reachability
areas to account for errors in the prediction and further tests
that parametrize these safety margins are needed.

V. CONCLUSION AND OUTLOOK

In summary, in this paper, we proposed a situation under-
standing method called risk shadowing that allows to analyze
group interactions. The approach implements a) a time-based
risk model and b) a reachability analysis to find out if another



agent can be filtered out and neglected in a behavior planner
of an ego agent, because the way of this first other agent is
obstructed by a further second other agent. Risk shadowing is
implemented here in a computationally efficient manner by
using, amongst others, the simple closest encounter model
for the risk model.

In experiments, we finally showed that this risk shadow-
ing allows to reduce the situation complexity for different
driving situations. The combined system of risk shadowing
with the behavior planner Risk Maps allowed to plan more
decisive and comfortable driving strategies than state of the
art not using risk shadowing. While the combined system
could drive the ego agent with constant behavior through
intersections, the baseline system recommended unnecessary
accelerating and braking behaviors. The analyzed driving
situations included intersection scenarios where agents were
crossing, following and turning as well as examples of pure
longitudinal following.

A remaining limitation of the risk shadowing method for
intersection scenarios is that the method can only be applied
if one of the agents in the group is already located close to the
intersection space. In future work, we therefore would like
to investigate a more continuous than discrete risk model for
group interactions. This would allow us to filter out agents
distant to the intersection space and cover further phenomena
of group interactions. Such a filter could be interesting, for
example, for future self-driving cars.
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