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Abstract— Route reservations have been proposed as an
effective solution to mitigate traffic congestion while preserving
the road network in free-flow traffic conditions, offering users
some limited departure time and route choices. However, high
user compliance is required. To provide users with the freedom
to choose among any spatiotemporal route in the road network,
in this work we propose a dynamic pricing route reservations
architecture. At each time step, the central controller sets prices
dynamically, using the network’s reservations status and the
users’ demand characteristics. Rational users will ultimately
choose the route that minimizes their disutility by considering
routes’ travel time, schedule delays, and reservation price.
A series of microscopic simulations reveal that the proposed
approach demonstrates a similar traffic performance as other
optimal route reservation approaches. It however outperforms
them in terms of social welfare, user satisfaction and flexibility,
providing users with numerous spatiotemporal free-flow route
choices, while minimizing aggregated disutility.

I. INTRODUCTION

For the past several years now, traffic is a blunt reality in
big cities, caused by urbanization and negatively affecting
citizens’ quality of life. In the U.S. alone, traffic congestion
costs billions of dollars and billions of travel hours in
lost time, further generating massive greenhouse gas emis-
sions [1]. Considering its immense consequences, research
to alleviate congestion is ongoing. To date, a number of
different solutions have been proposed to combat congestion,
like the many navigation applications aiming to redistribute
demand away from hotspot areas in real-time. Such practices
ultimately result in poor road network performance, how-
ever [2]. Recent state-of-the-art elaborates on more socially-
oriented solutions, like the social optimum approaches that
redistribute demand in time and space [3].

A traffic management route reservations architecture
(RRA) of this kind has been recently proposed in [4]. In
this setting, the controller proposes to the user a single,
congestion-free path of the earliest arrival time, given the
system reservations status. If the majority of the users comply
(i.e., at least 70%), RRA achieves a (near) free-flow operation
of the network. Users’ personal choice however is restricted,
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as they cannot deviate from the controller’s directions for
the system to operate smoothly. Recent attempts tried to
overcome this issue by applying static-priced techniques to
RRA. In [5], a flexible RRA (FRRA) was proposed: a single
path is again suggested by the controller, who uses a fixed
piecewise linear pricing function to set tolls. The user may
choose to depart with a minimum toll price within a specific
time window, after (or before) which (s)he will have to pay
a maximum price. The authors went a step further in [6] to
propose alternative path and departure time choices using
pricing along with different routing algorithms; however,
choices of users are limited in this architecture as well.

A core revenue management mechanism that uses price as
the primary control variable to manage demand is dynamic
pricing, which arose with the birth of commerce itself,
where sellers used price adjustments to sell their goods at
the highest price possible, but also affordable to customers
[7]. Dynamic pricing is extensively applied in industries
such as airlines, hospitality, and electric utilities [8], being
further integrated in Intelligent Transportation Systems to
facilitate fare pricing, charging pricing for electric vehicles,
parking management, as well as congestion control pricing
[9] [10]. Utility models are commonly used in such systems
to model user choice behavior. Utility by definition denotes
a user’s satisfaction of a phenomenon. The utility of travel
however, is generally negative [11], usually referred to as
travel disutility, and defined in Transport Economics as a
user’s perceived difficulty in making a trip [12]. Another
important related concept is the maximum Willingness to Pay
(WtP), denoting the subjective inherent maximum value a
user assigns to an offering in monetary terms [13]. WtP has
been used in designing optimal pricing solutions for airline
reservations (e.g., [14]), intelligent transportation (e.g., [15])
and more. We hereby define W¢P in route reservations as
the maximum price a user of the road network is willing to
pay to reserve a route from an origin to a destination at
time t. Note here that, without loss of generality, prices can
be measured in utils instead of monetary units [16].

In this work, we propose a demand-driven Dynamic Pric-
ing (DP) route reservations mechanism that preserves the
network in free-flow traffic conditions, while giving users the
desired freedom of choice. From the controller’s side, the aim
is to use dynamic pricing to affect the users’ decision making
in an implicit manner, so that the network can keep operating
in free-flow. Spatiotemporal route options that vary both
spatially, as well as temporally are available to users any time
within a prespecified time horizon, and priced dynamically in
view of demand and users” WtP. Users will ultimately choose
a spatiotemporal route based on their distinct disutility.



This is a novel traffic management dynamic pricing ar-
chitecture that contributes to the literature by: i) effectively
controlling and balancing traffic in space and time, ii) accom-
modating users to choose road trips tailored to their needs,
thus achieving higher user satisfaction, and iii) minimizing
total aggregated user disutility and increasing social welfare.

The remainder of this paper is organized as follows:
Section 2 illustrates the dynamic pricing route reservations
architecture. Section 3 formulates the problem, discussing
further user’s disutility in context. In Section 4, we describe
the dynamic pricing mechanism used by the controller to
affect users’ routing decisions. In Section 5, the minimum
disutility routing problem is presented and a solution is
discussed in Section 6. In the final sections we present
simulations, discuss results and conclude this work.

II. DYNAMIC PRICING ROUTE RESERVATIONS
ARCHITECTURE

The DP Route Reservations architecture has a central-
ized structure, with a central controller implementing traffic
management activities, so that the network’s utilization is
maximized while its operation is maintained at free-flow
conditions. The controller is specifically responsible for:

1) monitoring the utilization of the road-segments and

coordinating the route reservations process.

ii) spreading the reservations load in space and time so that
congestion is avoided.

iii) setting demand-based dynamic prices for all road-
network’s segments, so that users reserve a route with-
out compromizing the network’s free-flow operation.

A user initially makes a route reservations request to the
central controller, sending the desired origin-destination pair,
the time (s)he wants to depart, as well the desired arrival
time. The controller replies with dynamic prices for all
segments of the road-network, using the road segments’
reservations status, as well as the user’s demand characteris-
tics. Essentially, when a segment has reached a reservations’
threshold value predefined by the controller, its price is set
over the highest value that the user is willing to pay to
traverse it. This way, dynamic pricing aims to affect the
user’s choice implicitly by deterring him/her from traversing
high traffic paths, so that the network will keep operating in
free-flow mode. On the basis of the provided dynamic prices
and route characteristics, the user will eventually choose
a spatiotemporal route that minimizes user’s disutility. The
controller will then reserve the route for the user on a first-
come-first-served basis, and update the reservation state of
all the road segments included in the chosen route, at the
exact time slots the user is expected to traverse them in free-
flow. In this way, accurate traffic state estimates and future
demands of road segments are maintained.

III. PROBLEM FORMULATION

Let a homogeneous region of an urban road-network be
modeled as a directed graph G = (V, &), where vertices
V represent road-junctions and edges & represent road-
segments. Road-segments (i,7) € &£ have \;; number of
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Fig. 1: Users’ demand curve as a function of their disutility and
number of reservations they make.

lanes and [;; length, and the time horizon is divided into
discrete time-slots k¥ € K = {1,..., K}. Regional traffic
dynamics follow the Macroscopic Fundamental Diagram
(MFD), with v(k), q(k) and p(k) representing speed, flow
and density at time-step k, respectively. Also, p;;(k), ,ol-cj
and p;fj represent the density of the (i,j) segment, its
critical and jam density respectively. At time-step k, when
pii (k) < picj Y(i,7) € &, vehicles travel with free-flow speed
v, Otherwise, their speed is given by v(k) = q(k)/p(k).
Furthermore, a vehicle traverses (4, j) at k in 7;;(k) slots:

7i (k) = [l /v(k)/TT, (D

where T is the sampling interval and |y] denotes the nearest
integer to y.

We further define c;; as a threshold on the number of
vehicles desired in a road-segment (i, 5):

cij = w (lijAij)/C, (2

where w is a parameter ratio and C' is the average car length.
At each time slot k, the controller keeps the number of
vehicle reservations r;; (k) ¥(4, j) € £, and further sets each
road segment’s price dynamically, for a given future time
horizon M = [k +1,--- , k+ M].

We assume that a user sends at time k € IC a route reser-
vation request (OD, t?, t*) to the controller, where OD is the
origin-destination pair, and ¢ and ¢¢ are the user’s desired
departure and arrival time respectively, with %, € M. We
further assume that users in the system are perfectly rational
having a specific demand for route reservationﬂ modeled
typically as a linear decreasing function (e.g., [17]) of the
form: H(V) = o/ — b'V, where H() is the users’ demand
expressed as the number (quantity) of route reservations
they make, V is their disutility, and o’ ,b’ are the intercept
and demand elasticity respectively. Figure |1| depicts that the
quantity of total route reservations H made by the users
decreases as their disutility V' increases, until it reaches the
maximum disutility accepted VMaz  after which the users
are unwilling to reserve and exit the system (i.e., they may
choose other means of transport like public transportation,
walking, etc., or not travel at all).

The aim of the controller is to serve the user, while keeping
the network running in free-flow and distributing incoming

I Different utility types of users will have different demand curves, as in
[17]. For simplicity, in this work we consider all users of the same utility
type and demand.



demand in a balanced way. Therefore, prices set should be
a function of i) the network reservations’ status at each k €
K for traffic balancing, and ii) some price d that will set
the user’s disutility over the maximum accepted V%, for
deterring the user from choosing routes containing segments
that have reached reservations’ threshold.

Then, let the Availability Ratio c;;(k) be the available
threshold ratio of a road segment (4, j) at slot k:

aij(k) = (cij — ri(k))/ci 3)

For each time-step & € K and road segment (i,7) € &,
dynamic prices d;;(k) may be determined as

dij(k) = f(VMr a,5(k)), V(i,j) €E, Ve K. (4

On the basis of these dynamic prices, the user will select
the spatiotemporal path that minimizes the user’s disutility.
The minimum disutility routing problem is discussed in
Section [V]

A spatiotemporal path is defined here as a tuple P, =
(t°,pn), where t¢© € K 1is the chosen starting time
of the routing process, and p; is the h-th spatial path
from O to D. Path p; is specifically defined as p; =
(07, 1h), (1R 27), (27, 3R), ... (LP—1,L"), where j* € V
is the j-th visited node in path py,, with 0" = O and L" = D.
A spatiotemporal path’s toll price is then defined as dj, (¢¢).

A. User’s disutility in the context of route reservations

We now define user disutility within the route reservations
context, adopting an adapted version of the random utility
model found in [18]. We specifically assume that drivers
spend their day participating in activities, travelling in be-
tween to reach the destination of the next activity. Rational
users will seek to minimize their travel disutility, associated
with the activity before they depart, the actual trip, as well as
the activity they perform at arrival. Below we adjusted the
disutility framework of [18] to consider the more general
case where user disutilities are associated with the activities
and respective scheduling preferences at both departure and
arrival as in [19], as interferences with both activities are
considered in practice by users when evaluating a potential
spatiotemporal route.

We further issue the following assumptions for the user of
route reservations:

« All users have a particular disutility function associated
with predefined activities at the departure and destina-
tion. The disutilities for these activities are independent
of the trip’s travel time.

o The user disutility depends on the required travel time
to traverse the chosen path.

o The activity at departure has a desired end time, equal
to the desired ¢¢ of the user.

o The activity at arrival has a desired starting time, equal
to the desired t® of the user.

o A user has a certain disutility due to early/late depar-
tures/arrivals.

o A user has a certain disutility due to toll prices.

In our framework, the user evaluates a set of P, = (t¢, py,)
spatiotemporal paths, consisting of the starting routing time
t¢ and the spatial path p;,, which is traversed in ¢} time units.
Let Vj,(t¢,t%,t*) denote the disutility of the spatiotemporal
path (t¢,pp,), defined as the sum of the trip and activity
utilities as follows:

Vi (e, 19, 6%) = ViE(t°) + ViAo, t9) + ViR (t6,%),  (5)

where V,I'(t¢), Vid(t¢,t?) and V;2(¢%,t*) denote the trip,
departure activity and arrival activity disutilities of the user,
respectively.

The trip disutility V,7'(¢¢) is the sum of the disutilities of
the trip made D, the trip’s travel time ¢;, and the travel
cost associated with the path’s toll price dj,(¢¢) such that

ViE(t°) = Dy, + &t + Cdn(t9), (6)

where ¢ and ( are constant parameters denoting user’s
weights of travel time and trip cost, respectively.

The disutility of the user with respect to the activity at
departure is defined as

VAt th) = W+ BZ +yViH (16,19, (7)

where W and Z denote the time-of-the-day and the duration
of the activity, respectively, and § and -y are constant param-
eters. V;H (t¢,t%) represents the disutility of the deviation of
t® from the end time of the activity at departure, defined as

Vi (t9,47) = 1 SDE(t, t7) + 12 SDL(t°,t%),  (8)
where parameters 7; and 7, are weights and SDE(t¢, %)
and SDL(t¢,t?) are the early and late schedule delays
defined as

SDE(t°,t%) = max(0, (t — t°)) )
SDL(t, t%) = max(0, (t¢ — t%)). (10)

In a similar manner, the user’s disutility with respect to

the activity at arrival is defined as
ViA(t°, 1) = F + 6G + €V, (t°,1%), (11)

where F' and G denote the time-of-the-day and the duration
of the activity, respectively and § and € are constant param-
eters. VY (t°,t%) is defined as

VY (t°,t%) = eeSDE(t%, t,,t%) + e2SDL(t%, ty,, %), (12)

where €; and ey are weights and SDE(t% ts,t*) and
SDL(t¢, tp,,t*) are defined as

SDE(t°, t, t) = max(0, (t* — (° + t)))
SDL(t°, th, t%) = max(0, (£ + 1) — ).

13)
(14)

IV. DYNAMIC PRICING MECHANISM

With respect to the dynamic pricing mechanism of the
proposed architecture, at each time k, and V(i,j) road-
segment, the controller should define future dynamic prices
within a given reservation horizon M = [k+1,--- ,k+ M],
i.e., a pricing decision vector [d;;(k+1),...,d;;j(k+M)].
Essentially, at each time-step k, the controller returns an



Priced graph at k+M,
as calculated at k
o
.

Fig. 2: M road-network’s priced graphs calculated by the controller
at k

Maz& vector of prices (Figure [2), where all road segments
(i,7) are assigned with prices for M = [k+1,--- ,k+ M].

The controller decides on prices using a function of
segment reservations, unless a road-segment reaches its reser-
vation threshold. Then, the segment is priced much higher
than what the user would be willing to pay to traverse it.
Thus, being a rational user, (s)he will not choose any of the
paths including this road segment. In this way, the controller
is implicitly excluding the road segment that has reached its
reservation threshold from the eligible user choices, though
not explicitly forbidding the user from traversing it.

For the purposes of this paper we utilize a function of
exponential form

WP
dij(k) = ———— (eI (k) _q 15
]() (69—1)(6 )7 ( )
where d;;(k) is the price of the road segment (¢, ), and 0

a curve convexity parameter. We hereby assume knowledge
of the users’” WtP, which can be found using survey or
experimental methods as in [20].

V. MINIMUM DISUTILITY ROUTING PROBLEM

Given the user’s reservation request (OD,t?,t%), the Min-
imum Disutility (MD) routing problem seeks to find a
spatiotemporal path so that the user’s disutility is minimized.
A rational user is expected to choose this MD path.

Let P, = (t°pp) denote any h-th spatiotemporal path
consisting of the spatial path p;, from O to D and departure
time t¢, so that the path disutility V}, of the user does not
surpass the user’s yMaz,

Vh S V]\/Iax (16)

2We set the following requirements with respect to the pricing function
of a segment (¢, 7) at time step k: i) to be monotonically increasing; ii) to
be continuously differentiable; iii) when reservations 7;; (k) are zero, the
price of the segment should be zero as well; iv) when r;; (k) reaches the
segment’s threshold, the price of the segment should be set to a maximum
price above which the user won’t be willing to reserve, e.g., the user’s WtP.
The route reservations platform does not aim to generate income, thus
functions that keep prices low when utilization is low can be of use, such
as exponential functions.

The spatial D, is defined as
(o 1hy, (1 2m), (28, 3%, (L} — 1,L}), where
j" € V is the j-th visited node in the path, with 0" = O and
L? = D. Let also U, ;j denote the Disutility Contribution of
the partial path from O to j* € V to the overall disutility of
the user for the h-th spatiotemporal path. Then the disutility
contribution at each node of P}, can be expressed as:

Uy, on =V2(t¢,t9)
Uh 1k :Uhoh + V}_L:Z—‘(Oh’lh)<tc)

A7)
Uprr =Uppp_1 + Vi wph—1,om () + VR (5, 89),
where V;&(¢¢, %) and V;%(¢¢,t*) have been defined in (7) and
(TT) respectively, and ¢¢ L1 is the departure time from node
Lh — 1. Essentially, at node 0" the user initially experiences
only the disutility associated with the activity at departure
Va(te,t?). As (s)he then travels to each following node, the
trip disutility of the path travelled from the previous node is
added up. At the final node, the disutility associated with the
activity at arrival is added, resulting finally to U, L which
is equal to the overall user’s disutility V}, for the hth path.

The MD problem is expressed as:

(t°%,p") = min V,,, (18)
te,pn

s.t. Model Dynamics (T)), @) — (17),

where p* and t°*, are the spatial path and departure time
respectively of the minimum user disutility path.

It is to be noted that users’ actual utility functions and
parameters can be obtained through experimental design and
survey research, as in [20].

We solve this problem using an algorithmic variation on
the principles of Dynamic Programming by constructing a
time-expanded graph [21], which is described below.

VI. SOLVING THE MINIMUM DISUTILITY ROUTING
PROBLEM

We construct a Directed Acyclic Graph (DAG) denoted by
GgPE (VPP £PP) in which:

i) the x-axis represents consecutive slots of the time hori-
zon K'. K' is defined as [t*,..,t%, .., t/], where t5 < t?
and ¢ > t% are the horizon bound values, calculated on
the assumption that no user will choose a spatiotemporal
path with disutility that surpasses the user’s V™%,
Therefore, by solving (T6) for V™ as well as the
minimum reservation price (i.e., 0), minimum travel
time value (i.e., shortest path time) and zero delays,
the bound values ¢* and ¢/ can be calculated.

ii) the y-axis represents a time instance of each node in
the network, i.e., the node indices of G(V, £).

In this setting, each node in DAG denotes the junction
where a vehicle arrives at the specific time slot k, whereas
each node’s state value represents the disutility contribution
U;, considering there is a physical connection between
the related node j and the origin. Initially, the algorithm



Algorithm 1 Minimum Disutility Solution for the m-th user

1: Input:  (Op.Dmitd), WitP,, VMer, d.(k),Vk €
K'\V(i,j) €€

2: Initialization: Calculate ¢° and ¢/ ; initialize all states in
GPP (VPP PP as infinite

3: Algorithm Execution:

4: Initialize U; Vk € K’ for originating nodes

5. for ke [t®,...,t/] do

6.

7

for (i,5) € € do
if U; < U; when adding the (7, ) trip disutility
and U; < V,}'%* then

8: Insert (i, ) and update U;
9: if U; is destination node then
10: update U; with destination delay disutility as in

11: Output: p* and t°* for the m-th user

calculates the time horizon bounds (i.e., #* and tf) for the
request (O, Do, tfn) of the m-th user having WtP,,
and Vrfl”‘“”, and further initializes all state values of the
GPP(YPP gPP) ag infinite (line 3). At the main part of
the algorithm, all possible states at the originating node
O,, (denoting different potential departure times) are first
initiated with the early or late departure disutility values, for
each column (line 5). Next, the edge insertion process starts,
where an edge is inserted based on two discrete conditions:
1) the newly inserted edge (i,j) of GPP (VPP gPF) s
reachable from the source node O,,, meaning that there is a
path that connects the source node with (i, j). 2) The DAG
value of the ending node, denoting the disutility contribution
as in Eq. (T7), is reduced (e.g., from co) when adding the
edge, and it is also not higher than V,2¥9%_ Only in the case
that both conditions are satisfied, an edge (4, ) is added on
GPP(YPP PP (lines 8-9). The process is repeated for ¢
to t/, and for all nodes. Finally, at the destination node, the
disutility contribution is updated with the user’s early or late
arrival disutility (lines 11-12).

The algorithm’s outputs are the optimal path p* and depar-
ture time ¢“* that minimize the m-th user’s total disutility.
This information is used to make the appropriate route
reservations on each road segment at the expected traversal
times, and also calculate the segments’ prices. The algorithm
converges in O(|K’'N|) and results in an optimal solution.

VII. SIMULATION RESULTS

The proposed DP Route Reservations are evaluated within
the SUMO micro-simulator, considering a 1.8-km?® non-
signalized urban region of downtown San Francisco as in
[22]. Within simulations vehicles dynamics following the
Krauss car following model the following parameters: ve-
hicle length 5 m, maximum speed 15 m/s, acceleration 2.5
m/s?, deceleration 4.5 m/s2, and minimum-gap-distance 2.5
m. Simulations were run for the i) RRA, ii) DP, and iii)
the uncontrolled scenario (USP), where users depart at the
desired starting time, following the shortest path. For DP,
the disutility parameters of (B)-(I4) equations were set as
follows: the travel time weight £ = 0.1, the toll price weight
¢ = 1.0, the activity at departure schedule delay weights for

£ 6000 £ 6000
k5 k5
=~ =
~ 4000 "2 4000
g g
2 2000 2 2000
3 3
8 0 — 8 0
0 200 400 600 800 0 200 400 600 800
Number of Vehicles (veh) Number of Vehicles (veh)
(a) (b)

Fig. 3: MFD analysis for (a) USP, (b) DP cases

early and late departure v; = 0.8 and -2 = 0.4 respectively,
and the activity at arrival respective weights €; = 0.4 and
€2 = 0.8. D,,W, Z, F and G constants were further set to
zero for simplicity. Wt P was set to 4000 utils. A minimum
threshold for V™% was set to 4000 in , and the price
convexity parameter 6 to 15.0 in (I3).

We initially conducted MFD Analysis for USP and DP,
following [4]. To generate the MFD, a 6-hour scenario is
used, with traffic flow in the first hour set at 2000 veh/h,
gradually increasing by 2000 veh/h for the next 4 hours,
while no vehicles enter in the last hours, allowing the system
to evacuate the vehicles. Figures [3(a) and [3[b) demonstrate
the resulting MFD when the USP and DP algorithm is
employed. From the figure it is clear that if we do not employ
any control action, then traffic congestion can not be avoided.
On the other hand, in case the DP algorithm is used, even
though the drivers are free to make their own decisions, no
congestion emerges. Similar to the work in [22], the USP
case is used to derive the following MFD parameters: critical
density 30 veh/km/lane, a free-flow speed of 30.0 m/s.

Ten Monte Carlo simulations were then run for each
architecture over a 2-hour simulation horizon with demand
varying from 3000 to 8000 veh/h. As demonstrated in Fig-
ures a) and b), the traffic performance in the DP case is
similar to the RRA and therefore optimal [4], in terms of both
average travel time and the number of vehicles that complete
their journey. Nevertheless, while RRA instructs users on
the route and departure time requiring their full compliance,
DP provides limitless user route choice flexibility. Figure [3]
further demonstrates that while in both DP and RRA cases
the aggregated disutility of users is similar, and even lower in
DP for higher flow rates, there is significant total aggregate of
utils in DP (nil for RRA). If money is used, this aggregated
revenue could be used e.g., for the maintenance and further
development of the road network. Overall, the performance
of the DP is similar to the optimal RRA platform, considering
similar travel times and number of vehicles with completed
journeys. Nevertheless, DP further exhibits lower aggregated
disutility for higher flow rates, designating higher user sat-
isfaction and overall social welfare.

VIII. CONCLUSIONS

In this work, we propose a dynamic pricing route reser-
vations architecture, where the controller applies dynamic
prices to sustain the network under free-flow conditions,
while users are free to choose among any spatiotemporal
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Fig. 4: (a) Average Travel Time, (b) Number of Vehicles
with Completed Journeys for the RRA, DP, and USP cases

path in the network. Simulation results illustrate that the
DP approach demonstrates similar traffic performance as the
optimal RRA, where users are instructed on the specific
route and departure time to follow. Most importantly, DP
decreases users’ disutility exhibiting higher overall social
welfare. Future research should investigate users’ responses
to dynamic pricing within the route reservation context using
experimental design methods, to extract appropriate choice
models and utility functions. Furthermore, the robustness
of the DP platform when users are bounded rational and
inaccuracies are present due to e.g., speed and travel time
deviations should be further investigated.
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