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Abstract— Perception that involves multi-object detection
and tracking, and trajectory prediction are two major tasks
of autonomous driving. However, they are currently mostly
studied separately, which results in most trajectory prediction
modules being developed based on ground truth trajectories
without taking into account that trajectories extracted from
the detection and tracking modules in real-world scenarios are
noisy. These noisy trajectories can have a significant impact on
the performance of the trajectory predictor and can lead to
serious prediction errors. In this paper, we build an end-to-end
framework for detection, tracking, and trajectory prediction
called ODTP (Online Detection, Tracking and Prediction). It
adopts the state-of-the-art online multi-object tracking model,
QD-3DT, for perception and trains the trajectory predictor,
DCENet++, directly based on the detection results without
purely relying on ground truth trajectories. We evaluate the
performance of ODTP on the widely used nuScenes dataset for
autonomous driving. Extensive experiments show that ODPT
achieves high performance end-to-end trajectory prediction.
DCENet++, with the enhanced dynamic maps, predicts more
accurate trajectories than its base model. It is also more
robust when compared with other generative and deterministic
trajectory prediction models trained on noisy detection results.

I. INTRODUCTION

Trajectory prediction plays a crucial role in achieving
autonomous driving. It involves observing the behavior of
agents like vehicles, pedestrians, and other road users in a
few past time steps. This observation information includes
perceiving the road users’ type and their past trajectories,
which is then fed into a trajectory predictor to forecast their
potential trajectories in the following time steps. Despite the
rapid development of trajectory prediction methods, they are
usually developed independently of the perception module,
assuming that the ground truth information of the road
users’ past trajectories is already available. This means that
trajectory predictors trained on ground truth data may not
reflect the complexities of real-world driving scenarios [1].
Moreover, the input data to the trajectory prediction module
is prone to noise because the perception module is imperfect
due to long-standing issues such as changes in lighting,
scale, background interference, sensor limitations, and mul-
tiple occlusions. Therefore, this paper aims to address the
task of trajectory prediction by integrating the perception
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module and developing an end-to-end framework for road
user detection, tracking, and prediction.

Object detection results lay as the foundation for multi-
object tracking and trajectory prediction. Our focus is primar-
ily on mixed traffic scenarios that comprise not only vehicles
and pedestrians but also other types of road users. In this
paper, we have selected monocular images obtained from a
moving vehicle as the input for the perception module, as
camera sensors are low-cost for capturing all the objects in
the field of view and straightforward to deploy. The per-
ception module we have employed is the monocular Quasi-
Dense 3D Object Tracking (QD-3DT) [2] as the base model,
which can effectively associate moving agents over time and
estimate their complete 3D bounding box information from
a sequence of 2D images captured on a mobile platform.

To achieve end-to-end prediction, the prediction module
takes the 2D positional information at discrete time steps
from the perception module as input. In order to consider
the multimodality nature of agents’ movements and their
mutual influence during interactions, we use the DCENet
model [3] as the base model for the prediction module.
DCENet explores the spatial and temporal information cap-
tured by dynamic maps and leverages the attention mech-
anisms [4] and Conditional Variational Autoencoder [5] to
predict agents’ multimodal trajectories. Instead of relying on
ground truth point-wise trajectory data, we extend DCENet
to take as input the perceived trajectory data, including the
agents’ shape and pose information. This approach allows
the dynamic maps to more accurately map the position,
velocity, and pose information of each agent into the 2D
grid cells that are projected from the agents’ detected 3D
shape. Furthermore, the extended DCENet model is trained
based on detection results, which are more robust against
detection noise compared to ground truth data. We term
this new prediction model DCENet++ to reflect its improved
performance.

Figure 1 depicts the end-to-end detection, tracking, and
prediction framework overview. It comprises three primary
components: monocular image sensor input captured from
the ego vehicle, the QD-3DT-based 3D detection and track-
ing module, and the DCENet++ multimodal prediction mod-
ule for trajectory prediction. We name our end-to-end frame-
work ODTP (Online Detection, Tracking and Prediction).
The key contributions of our work are as follows:

• We propose an end-to-end framework ODTP, which
automatically detects and tracks various types of road
users from monocular images and predicts their multi-
modal trajectories. The prediction module in ODTP is
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Fig. 1: The overview end-to-end detection, tracking and trajectory prediction framework using camera sensors.

trained directly on the detection and tracking results,
rather than on the manually labeled ground truth data.

• We extend the trajectory prediction model DCENet by
adding road users’ shape and pose information acquired
by the detection module, called DCENet++, which
achieves better performance than DCENet that only
relies on the 2D positional information.

II. RELATED WORK

A. Object Detection and Tracking

In this paper, we focus on object detection and track-
ing based on images. In the paradigm of object detection,
the most attention has been given to two-stage detectors
represented by R-CNN-based models with region proposal
networks [6]–[8] and one-stage detectors represented by
YOLO-based models [9, 10]. SORT [11] uses Faster R-
CNN [8] for object detection and predicts and updates the
motion track using the Kalman filter [12]. The Hungar-
ian dichotomous matching algorithm [13] with Intersection
Over Union (IOU) as the matching criterion is then used
to match detected and tracked objects. DeepSORT [14]
further adds appearance representation of detections using
deep neural networks to enhance the tracking performance.
Several works, such as [15]–[19], propose the use of 3D
information to narrow the search area and make the object’s
trajectory smoother. A dominant approach to associating
data in multi-object tracking (MOT) problems is to utilize
different kinds of costs, including trajectory priors, bounding
box center locations, optical flow, bounding box overlap,
and appearance information or deep appearance features
[2, 16, 20]. For example, [16] employs simple complementary
costs for data association, which include 2D-3D cost, 3D-3D
cost, appearance cost, and shape and pose cost. [20] employs
discriminative feature embeddings and the greedy bipartite
matching method to match new detections and trajecto-
ries. Moreover, DEFT [21] proposes a joint detection and
tracking method that relies on the appearance features from
a detection backbone for object-to-track association. 3D-
Times [22] employs attention mechanisms to learn spatial-
temporal information cues for joint 3D detection and tracking
from monocular videos. In this paper, we use QD-3DT [2]
as our base model for joint 3D detection and tracking. It
employs Faster R-CNN for 2D detection basis and Region
of Interest (ROI) features for each proposal extracted by a
region proposal network to regress the 3D dimensions, 2D

projection center, depth, and orientation. Moreover, different
similarity cues, such as the deep representation similarity,
the overlap of 3D bounding boxes, and the motion similarity,
are utilized for data association. In addition, QD-3DT uses
an LSTM-based module instead of using 3D KF for motion
refinement.

B. Trajectory Prediction

Recent years, deep learning methods, such as Generative
Adversarial Network (GAN) [23], Conditional Variational
AutoEncoder (CVAE) [5, 24], and attention mechanisms
[25, 26], have been introduced to the trajectory prediction
task. Gupta et al. [27] propose a fusion of LSTM and
GAN, using the global pooling module of LSTM as the
encoder-decoder generator and a discriminator composed of
multiple LSTMs. For machine navigation, Altan et al. [28]
propose a pedestrian-dependent spatio-temporal graphical
representation that can effectively represent the importance
of pedestrians in congested environments. Social-BiGAT [29]
proposes the Graph Attention Network (GAT) [30] to learn
feature representations and performs reversible transforma-
tions between the scene and the response’s underlying noise
vector. Similarly, SR-LSTM [31] employs Graph Neural Net-
works (GNN) to model the interconnections among agents
and predicts their deterministic future trajectories. Agent-
Former [32] utilizes the Transformer network [4] to learn
spatial-temporal information of agents and applies CVAE for
multimodal trajectory predictions. In contrast, [3] proposes a
model called DCENet that utilizes self-attention and LSTM
to model interactions between agents and a CVAE framework
to predict a set of possible trajectories conditioned on its
observed trajectory and the learned dynamic context for
each agent. Considering its superior performance, we utilize
DCENet as our prediction model baseline. In comparison to
the original DCENet, we add the agent’s shape and pose
information to the dynamic maps, which can model inter-
actions more accurately. We also adopt DCENet to moving
camera scenes, i.e., real autonomous driving scenarios. In this
way, in contrast to training the prediction model using ground
truth trajectories, our model utilizes camera data only, and
the prediction is conducted on detection and tracking results.

C. Joint Tracking and Forecasting

Recently, a few studies have investigated the possibility of
joint MOT and trajectory prediction [1, 33, 34]. Weng et al.
[34] propose a novel data association method that utilizes



GNNs to model interactions between new detections and
trajectories. After message passing by GNNs, the affinity
matrix between new detections and trajectories is learned
for association. Instead of processing the MOT task first and
then the trajectory prediction task, Weng et al. [34] process
the two tasks in parallel, so the trajectory prediction task
does not explicitly depend on the MOT results. Liang et
al. [33] change the order of tasks for MOT and trajectory
prediction. Unlike the traditional approach, it first carries
out joint detection and prediction tasks before updating
the object trajectory. Zhang et al. [1] propose to extract
the motion information based on the affinity cues among
detection results and predict trajectories directly based on de-
tection results. Inspired by the query-based end-to-end object
detection with transformers [35], end-to-end perception and
motion prediction is achieved by extending the object query
with recurrent temporal information, such as ViP3D [36] and
UniAD [37]. In contrast to those works, our work utilizes
camera data only to build an end-to-end detection, tracking,
and prediction framework. The trajectories extracted using
monocular images have noise and introduce a greater chal-
lenge to the task of trajectory prediction. As most trajectory
prediction methods are trained and inferenced on ground
truth trajectories, the effect of noise in the detection and
tracking tasks on trajectory prediction is not considered.
To the opposite, we compare the performance differences
between generative and deterministic trajectory prediction
models when dealing with such noisy trajectories.

III. METHODOLOGY

A. Problem Formulation

The goal of the end-to-end framework ODPT is to take
a monocular image sequence as input for the 3D object
detection module and output a set of 3D bounding boxes
(bbx) at frame t, denoted as S= {st

1, ...,s
t
J}. After performing

data association and motion refinement in the MOT module,
which takes the bbx as input, we obtain a series of smooth
trajectories denoted as T= {τ1, ...,τN}, where τi ∈RT×2, and
the refined 3D bounding boxes denoted as S = {st

1, ...,s
t
N}.

Here, i ∈ {1, ...,N}, N ≤ J represents the total number of
detected and tracked agents in the given scenario, and T
is the observed time horizon. T ≥ 2, to make sure that we
have enough observed steps to derive the speed and pose
information. Subsequently, the trajectories T and detection
bbx S serve as the input to the trajectory prediction module.
In this module, we predict a set of possible future trajectories
denoted as {Ŷ T+1:T ′

i,1 , ...,Ŷ T+1:T ′
i,K } conditioned on the detected

trajectories and bbx for each agent i. Here, K represents the
number of predicted trajectories and T ′ − T represents the
predicted time horizon. In the following sections, we explain
each module of ODPT in detail.

B. QD-3DT

The goal of the QD-3DT module [2] is to provide the 3D
information of all tracked objects by inputting consecutive
frames of monocular images and GPS/IMU information
from the ego vehicle. The GPS/IMU data is used to obtain

Fig. 2: Comparison between the original and the refined dy-
namic maps with the agents’ shape and pose information. (a)
No agents’ shape and pose information (b). Only considering
the agents’ shape information, and (c) Considering both the
agents’ shape and pose information.

localization information about the ego vehicle’s motion. To
achieve this, we transfer the 3D information, including the
shape, pose, and position of all neighboring agents, from
the cameras to the local frame of the ego agent. During the
perception process, the monocular images are first processed
through a backbone network, such as VGG16 [38], and a
Region Proposal Network (RPN) [8], to generate 2D regions
of interest (ROIs). These ROIs are then fed into two multi-
head networks, which output similarity feature embeddings
and 3D layouts. To track 3D object instances over time, mul-
timodal similarity metrics between the tracked trajectories
and detected objects are computed utilizing 3D information,
motion information, and feature embeddings. Additionally,
motion-aware data association and depth-ordering matching
techniques are used to mitigate occlusion problems. Finally,
the tracking module refines the 3D information of the objects.
It is worth noting that in our approach, we directly use the
image pixel coordinates without normalization to calculate
the IOU between the detected and ground truth bbx. This
differs from the original setting of QD-3DT. We made this
choice based on empirical findings that using normalized
coordinates changes the image scale and leads to larger
detection errors [2].

C. DCENet++

We utilize the DCENet model [3] for the trajectory pre-
diction module and adapt it from a bird’s-eye view to the
ego perspective of the mobile cameras. With the 3D tracking
module from QD-3DT, we not only estimate the 3D object
center {x,y,z} but also the object dimensions D = {l,h,w}
and object pose θ for each agent. Therefore, compared
to the original dynamic maps that use an approximation
of the agent’s shape, we use the detected shape and pose
information to refine the dynamic maps, allowing for a
more accurate modeling of the neighboring agents’ position,
velocity, and pose information. In this work, we assume
that all agents are moving on the ground surface and our
prediction task is focused on the 2D positions of the x-
and y-coordinates. Consequently, the dynamic maps for all
the objects are modelled based on the projection on the
ground plane, leaving object height h and altitude z out of
consideration. Fig. 2 (a) shows the original dynamic map
[3], which assumes that each agent has the same size and
orientation. This approximation is based on the observation
that pedestrian size varies little within the pedestrian tra-
jectory dataset (e.g., [39]). Since pedestrians are relatively



small and occupy only one grid cell in the dynamic maps,
orientation information can be disregarded in the pedestrian
dataset. However, when adapting DCENet to autonomous
driving scenarios, we need to consider the significant shape
differences among heterogeneous types of agents, such as
vehicles and cyclists. To ensure proper alignment, especially
for large agents occupying multiple grid cells in the dynamic
maps, the occupied grid cells should align with the agent’s
pose. Fig. 2 (b) and (c) illustrate the dynamic maps that
include shape information alone and both shape and pose in-
formation, respectively. These refined dynamic maps enable
us to handle objects with varying shapes and poses. We refer
to DCENet with the refined dynamic maps as DCENet++.

D. Joint 3D Tracking and Forecasting

With the QD-3DT perception module, which includes data
association and tracking, we obtain a set of tracked trajecto-
ries T = {τ1:T

1 , ...,τ1:T
N } from previous frames, as well as a

set of detections S = {sT
1 , ...,s

T
N} at frame T . We configure

the batch size of DCENet++ to match the number of objects
detected in the current frame, the same as N. This choice
allows us to focus solely on the interactions among agents
that are present concurrently and successfully detected in
the given frames. To model the interactions between the ego
agent and its neighboring agents, we employ the extended
dynamic maps. At each time step t ∈ {1, ...,T}, we project
the neighboring agents onto the grid cells of the dynamic
map, centered at the current position {x,y} of the ego agent.
The projection is based on the detected 3D shape {l,h,w}
obtained from S. Next, we map the position, velocity, and
pose information derived from the tracked trajectories T
onto dedicated channels in the dynamic maps, following
the approach described in [3]. Simultaneously, the offset
sequence ∆X1:T−1

i = {∆x1
i , ...,∆xT−1

i } ∈ R(T−1)×2 for each
agent’s trajectory is combined with the sequence of dynamic
maps at the corresponding time steps. These combined inputs
serve as the joint condition for the prediction module of
DCENet++. Finally, DCENet++ predicts multimodal trajec-
tories {Ŷ T+1:T ′

i,1 , ...,Ŷ T+1:T ′
i,K } for all agents.

IV. EXPERIMENT

A. Dataset

We evaluate our ODTP on nuScenes [40], which is one
of the most commonly used large-scale real-word datasets
for autonomous driving. The ego vehicle is equipped with
multiple sensors, such as LiDAR, monocular camera, and
radar. In this paper, we focus on the camera images. In
total, the dataset contains 1000 driving scenes in Boston and
Singapore, including 700 scenes for training, 150 scenes for
validation and 150 scenes for test.

B. Evaluation Metrics

MOT metrics. We adhere to the tracking metrics estab-
lished by nuScenes, specifically AMOTA and AMOTP [41].
AMOTA stands for averaged multi-object tracking accuracy
(MOTA) [42] at various recall thresholds. MOTA provides a

comprehensive assessment by taking into account false pos-
itives, missed targets, and identity switches. AMOTP refers
to the average multi-object tracking precision (MOTP) [42].
MOTP quantifies the misalignment between the annotated
and predicted bounding boxes, offering insights into the
accuracy of object localization.
Trajectory prediction metrics. We employ two widely
used metrics to evaluate the trajectory prediction task: Av-
erage Displacement Error (ADE) and Final Displacement
Error (FDE) [43]. ADE calculates the average Euclidean
distance between the predicted trajectory and the corre-
sponding ground truth trajectory, while FDE measures the
Euclidean distance between their final positions. Consistent
with previous works [27, 44, 45], we select the minimum
ADE (ADEK) and FDE (FDEK) from the best prediction
among K trajectory samples for each agent.

C. Experimental Setting

Following the VeloLSTM module in QD-3DT [2], we set
the observation time horizon to 2.5 seconds with a frame
rate of 2 Hz. The prediction time horizon is set to 4 seconds
with the same frame rate.

For the 3D detection and tracking module, we adopt the
approach presented in QD-3DT [2]. We utilize a pretrained
Faster R-CNN [8] model on ImageNet [46] from TorchVision
[47] for 2D detection and 3D center estimation. However, to
address accumulated tracking errors, we modify the default
setting in QD-3DT. Instead of continuously predicting the
object state until it goes beyond the tracking range or its
lifespan ends (e.g., ten time steps), we use the predicted bbx
at the next step once to compute the affinity between the
trajectory and the detected object state. Moreover, different
from the default setting in QD-3DT, we use the image
pixel coordinates without normalization to calculate the IOU
between the detected and ground truth bbx.

During training, the VeloLSTM module is trained for
100 epochs using ten sample frames per object trajectory,
with a batch size of 128. For trajectory prediction model
DCENet++, we employ the Adam optimizer [48] with early
stopping, setting the patience parameter to ten to prevent
overfitting. The initial learning rate is set to 10−4, and we
decay the learning rate by a factor of 0.5 every 20 epochs.

V. RESULTS

In this section, we begin by evaluating the performance
of the perception module. Subsequently, we assess the per-
formance of the trajectory prediction module. Finally, we
present the qualitative performance of the ODPT framework
for end-to-end object detection, tracking, and prediction.

A. Perception Performance

Firstly, we compare our setting with the default setting in
terms of computing the IOU between the detected bounding
box and the ground truth annotation, as well as the affinity
between the trajectory and the detected object state. Table I
illustrates the results of this comparison. The improved
AMOTA and the decreased AMOTP demonstrate that our



pixel-based IOU computation and the one-time update of
the detected object state yield better performance compared
to the default setting in QD-3DT.

TABLE I: Perception performance for multi-object tracking.

IOU state update AMOTA↑ AMOTP↓

default default 0.233 1.528
pixel default 0.235 1.517
pixel one time 0.243 1.512

Next, we explore different IOU thresholds to strike a
balance between precision and recall for object detection.
As depicted in Table II, we observe that an IOU threshold
of 0.5 yields slightly better results compared to the other
thresholds. Consequently, we adopt an IOU threshold of 0.5
as the default setting for subsequent experiments.

TABLE II: Comparison of IOU.

IOU AMOTA↑ AMOTP↓

0.4 0.236 1.516
0.5 0.243 1.512
0.7 0.243 1.515

B. Trajectory Prediction Performance

We conduct experiments by varying the dimensions of
the latent variable in the CVAE-based DCENet++ model.
As presented in Table III, increasing the dimension from 2
to 32 leads to a reduction in trajectory prediction errors,
as measured by ADE10 and FDE10. However, when we
further increase the dimension to 64, the prediction perfor-
mance deteriorates. Therefore, for subsequent experiments,
we maintain a fixed dimension of 32 for the latent variable.

TABLE III: Different dimensions of latent variable z.

Methods ADE10↓ FDE10↓

zdim = 2 0.82 1.54
zdim = 32 0.79 1.50
zdim = 64 0.82 1.53

Additionally, we perform an ablation study on the di-
mension and pose information in the dynamic maps of
DCENet++. Comparing it to the baseline model, DCENet,
which lacks dimension and pose information for aligning
agents in the dynamic maps, the performance of DCENet++
is better in terms of both ADE and FDE, as shown in
Table IV. Interestingly, we discover that utilizing either
dimension or pose information alone does not result in a
clear improvement in performance. This is because either
the lack of dimension or pose information could lead to sub-
optimal alignments in the dynamic maps.

After adjusting the hyperparameters of DCENet++, we
conducted a performance comparison with two well-known
trajectory prediction models using the nuScenes motion
prediction dataset, as shown in Table V. It should be noted
that, for a fair comparison, all these models do not use any

TABLE IV: The ablation study for the dynamic maps.

Methods dimension pose ADE10↓ FDE10↓

DCENet - - 0.80 1.51
DCENet+

√
- 0.80 1.51

DCENet+ -
√

0.80 1.50
DCENet++

√ √
0.79 1.50

map with scene context information. One of the models we
compared DCENet++ to is AgentFormer [32], which is a
transformer and CVAE-based model capable of generating
multimodal predictions for each agent. In the multimodal
prediction task, DCENet++ outperforms AgentFormer in pre-
dicting both five and ten modalities. Furthermore, DCENet++
exhibits superior performance compared to AgentFormer
in single-modal prediction as well. Given these promising
results, we proceeded to compare DCENet++ with the de-
terministic model SR-LSTM [31], which utilizes GNN to
model interactions among agents. In terms of both ADE and
FDE, DCENet++ surpasses SR-LSTM.

TABLE V: Evaluation of trajectory prediction on nuScenes.

Methods ADE1↓ FDE1↓ ADE5↓ FDE5↓ ADE10↓ FDE10↓

AgentFormer [32] 7.91 4.55 1.67 2.62 1.06 1.56
SR-LSTM [31] 1.29 2.57 - - - -

DCENet++ 0.97 1.86 0.86 1.62 0.79 1.50

In the following analysis, we examine the impact of
noisy MOT training data by comparing the performance of
DCENet++ when trained on ground truth (GT) trajectories
versus MOT trajectories. The results presented in Table
VI clearly demonstrate that, as anticipated, training the
prediction model DCENet++ using GT trajectories and sub-
sequently testing it on MOT trajectories leads to a significant
drop in performance. Namely, the prediction errors increases
by over 200% when compared to the realistic setting of both
training and testing DCENet++ using the MOT trajectory
data. This indicates that a model trained solely on GT
trajectories may struggle to generalize effectively in real-
world driving scenarios, where the perception module un-
avoidably produces noisy trajectories during the observation
period. However, this issue can be largely mitigated when
DCENet++ is trained and tested on MOT trajectories. Re-
markably, the MOT-trained DCENet++ exhibits impressive
generalization capabilities when deployed in testing on GT
trajectories, performing only slightly worse than the ideal
scenario where both training and testing are conducted on
GT trajectories.

TABLE VI: Comparison between using ground truth and
MOT trajectory data. Using the MOT data for both training
and testing is referred as the baseline of prediction errors.

Model Training Testing Errors
MOT GT MOT GT ADE10↓ FDE10↓

DCENet++
√ √

2.54 (+222%) 4.59 (206%)
DCENet++

√ √
0.79 1.50

DCENet++
√ √

0.47 (-40%) 0.94 (-37%)
DCENet++

√ √
0.44 (-44%) 0.90 (-40%)



Fig. 3: Qualitative results of DCENet++ (first row) and SR-LSTM [31] (second row). On the left is the ego-driving perspective
and on the right is the bird’s-eye view. The squares represent predicted trajectories and circles denote history trajectories.

Fig. 4: Qualitative results of DCENet++ (first row) and AgentFormer [32] (second row). On the left is the ego-driving
perspective and on the right is the bird’s-eye view. The squares represent predicted trajectories and circles denote history
trajectories.

Fig. 5: Qualitative results of DCENet++ from multi-camera perspectives. On the left is the ego-driving perspective and on
the right is the bird’s-eye view. The squares represent predicted trajectories and circles denote history trajectories.



C. Qualitative Results

We present the performance analysis of the ODPT in vari-
ous driving scenarios. To visualize the results, we employ the
visualization method proposed by Hu et al. [2]. Specifically,
we display the detection results obtained from the camera
view and plot the tracked and predicted trajectories using a
bird’s-eye view perspective above the ego vehicle. Fig. 3 and
4 showcase the outputs of DCENet++ and SR-LSTM, and
DCENet++ and AgentFormer models, respectively, revealing
that they generate realistic predictions. However, compared
to the other models, the predictions from DCENet++ exhibit
smoother trajectories even though the input trajectory data
from the MOT module is noisy.

Furthermore, Fig. 5 demonstrates the adaptability of
ODPT to monocular images captured from various perspec-
tives. This demonstrates the versatility and effectiveness of
the ODPT approach across different camera viewpoints.

Limitations. In spite of the promising performance demon-
strated above, in this work, we need to separately train
the perception module and the trajectory prediction module,
which is time-consuming. Also, because they are separately
trained, we could not share the intermediate feature maps
to unify the encodings for both the perception and tra-
jectory prediction tasks. Moreover, whether the multimodal
trajectory prediction in this work can consolidate the data
association in MOT through providing a more time and
space consistent object motion could be further explored. We
leave this as our future work. Last but not least, when the
perception model mis-detects agents due to, e.g., occlusions
and lighting conditions, the trajectory prediction module fails
to anticipate the movements of these mis-detected agents. To
mitigate the issue of occlusions and detection limitations,
one potential solution could be implementing cooperative
perception by sharing detection information among agents
using the vehicle-to-vehicle communication network [49, 50].

VI. CONCLUSION

In this paper, we propose a framework called ODTP
that combines the perception module of the monocular
Quasi-Dense 3D Object Tracking with the trajectory
module of DCENet. This framework enables end-to-end
detection, tracking, and prediction for autonomous driving.
We enhance the DCENet model by extending the dynamic
maps to include agents’ shape and pose information,
which is termed DCENet++. This enhancement allows
for more accurate mapping of interactions among agents.
Furthermore, we demonstrate that training the trajectory
prediction module using multi-object tracking data helps the
prediction module better adapt to cope with the noisy data
perceived in real-world driving scenarios.
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