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Abstract— For driver observation frameworks, clean datasets
collected in controlled simulated environments often serve as
the initial training ground. Yet, when deployed under real
driving conditions, such simulator-trained models quickly face
the problem of distributional shifts brought about by changing
illumination, car model, variations in subject appearances,
sensor discrepancies, and other environmental alterations.

This paper investigates the viability of transferring video-
based driver observation models from simulation to real-world
scenarios in autonomous vehicles, given the frequent use of
simulation data in this domain due to safety issues. To achieve
this, we record a dataset featuring actual autonomous driving
conditions and involving seven participants engaged in highly
distracting secondary activities. To enable direct SIM→REAL
transfer, our dataset was designed in accordance with an exist-
ing large-scale simulator dataset used as the training source. We
utilize the Inflated 3D ConvNet (I3D) model, a popular choice
for driver observation, with Gradient-weighted Class Activation
Mapping (Grad-CAM) for detailed analysis of model decision-
making. Though the simulator-based model clearly surpasses
the random baseline, its recognition quality diminishes, with
average accuracy dropping from 85.7% to 46.6%. We also
observe strong variations across different behavior classes. This
underscores the challenges of model transferability, facilitating
our research of more robust driver observation systems capable
of dealing with real driving conditions.

I. INTRODUCTION

To speed up the development of driver observation sys-
tems, researchers often leverage simulated environments
for collecting the training data [1], [2], [3], [4]. These
environments provide a controlled and easily reproducible
setting, which allows for the collection of clean datasets,
avoiding the challenges associated with real-world complex-
ities. Furthermore, when studying driver behaviors during
autonomous or highly automated driving [1], [5], [6], [7], [8],
safety becomes a significant challenge, leading to simulators
being very prominent. However, deploying models trained
in simulation to real-world scenarios presents a significant
challenge, as the distributional shifts between the two envi-
ronments can lead to poor generalization and performance
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Fig. 1: We collect the first video-based driver activity
recognition dataset featuring secondary activities in real
autonomous driving scenarios. Unlike the controlled simu-
lated environments, our recordings include real-world com-
plexities, such as car movement and fluctuating lighting
conditions. Combined with a large-scale training database
collected in a simulator, we utilize our dataset as a testbed
for validating direct SIM→REAL transfer of deep learning-
based driver observation models.

degradation. These shifts can be caused by various factors,
such as changing lighting conditions, discrepancies in car
models and sensors, and other environmental variations.
Some works have presented results from real world tests to
validate and show potential discrepancies regarding results
from simulated data, e.g., for take over requests [9].

To address these issues and improve the transferability
of driver observation models, this paper investigates the
efficacy of different CNN-based approaches in bridging the
domain gap between simulated and real environments (an
overview is provided in Figure 1). We first introduce the
validation testbed, a collected dataset for video-based driver
monitoring in autonomous vehicles, and the training dataset
generated from a simulated environment. Through a series
of experiments, we provide a thorough evaluation of the
performance of these models in real driving scenarios.

By offering valuable insights into the challenges associ-
ated with transferring models from simulation to real-world
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scenarios, we aim to contribute to the development of more
robust and reliable driver observation systems that can be
deployed in real driving conditions.

II. RELATED WORK

Models for recognizing driver activity from video fall into
two main categories: ones that utilize manual feature descrip-
tors, and ones that leverages end-to-end deep learning, pro-
cessing video inputs directly and concurrently learning inter-
mediate representations alongside the classifier. Traditional
methodologies based on manual features [10], [11], [12],
[13], [10], [13] exploit classical machine learning models
like Support Vector Machines and Random Forest. These first
extract features related to the driver’s hand movements, body
and head posture, and eye direction. Recently, end-to-end
deep learning models have become an increasingly prevalent
choice for recognizing driver activities. These models often
utilize Convolutional Neural Networks (CNNs)[2], [1], [14],
[15], [16], [17] and transformer-based models[16] as their
backbone. While neural network-based approaches are at the
top of most driver observation benchmarks, they require a
significant amount of annotated training data. Several real-
world datasets are tailored for in-vehicle observation during
manual driving [18], [19], [10]. However, for autonomous
driving, simulators are more commonly used [1], [5], [6], [7].
For instance, Drive&Act [1], the largest public dataset for
video-based driver observation during autonomous driving,
was collected in a stationary car placed indoors, surrounded
by three screens imitating outdoor surroundings. Conversely,

TABLE I: Overview of the recorded video dataset of sec-
ondary activities during real autonomous driving sessions.

Dataset statistics
Context Real driving session
Manual driving ✓
Autonomous driving ✓
Data type RGB video
Number of subjects 7
Nr. female subjects 2
Nr. driver activities 7
Recording lengths (min) 100.83
Number of samples* 1987

Fig. 2: Autonomous vehicle used for the data collection.

research from the broader field of human activity recognition
reports a substantial decline in recognition quality when
transitioning from synthetic to real data [20]. Another line of
work focuses on domain adaptation for driver observation,
such as cross-view recognition or model adaptation for par-
ticipants wearing glasses [21], [22]. Given real-life training
data and resources for post-hoc model adjustment, these
domain adaptation approaches show promising potential to
significantly enhance recognition, presenting an important
future research direction. However, this falls outside the
scope of our study, as such methods require additional
unlabeled training data in the target domain and cannot
be applied directly. Overall, recent research in video-based
driver observation tends to prioritize the development of
high-accuracy classifiers for conditions similar to training
environments, while performance under distributional shifts
or adverse conditions is often considered secondary.

Inspired by this, we present an empirical evaluation of
direct SIM→REAL transfer of deep learning-based activity
recognition models in the context of autonomous driving.
To address the gap in suitable SIM→REAL benchmarks, we
first collect a real-world dataset of in-vehicle observation
during actual autonomous driving, annotated with a subset
of activities present in a large-scale simulator-based dataset,
facilitating the aforementioned validation scenario.

III. VALIDATING SIMULATOR-BASED DRIVER
OBSERVATION MODELS IN REAL ENVIRONMENTS

A. Testbed: collected dataset for video-based driver moni-
toring in autonomous vehicles

The dataset used in this study consisted of videos obtained
from the scientific personnel of Johannes Kepler University
Linz. The data collection was carried out utilizing the JKU-
ITS vehicle (see Figure 2), as described in [23], where
participants engaged in various tasks while the vehicle au-
tonomously navigated through a designated test lane within
the university premises.

The data collection setup resembled that of the work pre-
sented in [24], where participants were required to activate
the vehicle’s automation and commence task performance,
while the automation system assumed control of the vehicle
throughout the experiment.

In our study, the vehicle automation involved two distinct
processes. The first process encompassed the drive-by-wire
capability, implemented using Openpilot algorithms [25]. By
utilizing the Black Panda device, acceleration and steering
commands were transmitted to the vehicle via the internal
ADAS (Advanced Driver Assistance System), facilitated by
a ROS Wrapper that exposed the Black Panda’s communica-
tion protocols to ROS topics. The second process involved a
custom ROS2 high-level controller of the vehicle, responsible
for generating trajectories, speed profiles, and steering and
acceleration commands based on pre-recorded waypoints
obtained through the vehicle’s GPS.

To ensure safety during the experiment, a security driver
was present in the passenger seat, overseeing the proper
functioning of the system. In case of emergencies, the



security driver could assume manual control of the vehicle
using a joystick to apply the brakes.

For video recording of the participants, a Logitech C920
webcam was utilized. The webcam was positioned on the
passenger door, capturing the entirety of the participants’
body movements.

Dataset statistics. Table I provides an overview of a recorded
video dataset of secondary activities during real autonomous
driving sessions. All secondary activities are recorded dur-
ing fully autonomous driving, except for the driving/sitting
still activity, which also included sequences of the subject
steering manually. The dataset includes seven subjects in
total, two female and five male. These subjects are recorded
engaging in seven different driver activities: driving/sitting
still, using a phone, talking on the phone, reading a magazine,
reading a newspaper, reading a book, and drinking. The
duration of the recorded data is 100.83 minutes. Following
the procedure of [1] a single sample to be classified is
defined as a 3-second video clip that is labeled with a specific
activity. The objective of the recognition model is therefore
to accurately tag each 3-second or shorter action segment
(for events of lesser duration) with the appropriate activity
label. The dataset comprises 1987 such annotated samples.
Note, that our dataset is not intended for training, but for
validation of the SIM→REAL transfer of modern neural
networks trained on simulator-based data.

B. Validation Protocol and Recognition Model

Training dataset collected in a simulator. As the simulator-
based training dataset, we leverage Drive&Act[1], the largest
public in-vehicle human activity dataset focused on distrac-
tive behavior during both, manual and autonomous driving.
The data is collected from 15 subjects and is annotated
with 34 fine-grained activities at the main evaluation level.
To maintain label correspondences, we select 6 categories
present in Drive&Act. In addition, we collect the reading
book activity, which was not present in Drive&Act in this
form and is therefore interesting for looking at the networks
behavior in the case of a new object (book). At the same time,
Drive&Act contains similar activities - reading newspaper
and reading magazine and an ideal model would map the
new reading book situation to one of these states

Neural Architecture. We utilize the Inflated 3D architec-
ture (I3D)[26], an extension of the Inception-v1 network,
renowned in video classification and driver observation
fields[1]. The I3D adapts the 2D filters of Inception-v1 into
a temporal dimension and processes 64-frame video snippets
of 224x224 resolution. I3D consists of 27 layers, with
nine Inception modules executing parallel convolutions and
concatenating the output to ensure computational efficiency.
We use the original model [1] trained on the Drive&Act
split 1 (200 epochs, SGD at a learning rate of 0.05 and
momentum of 0.9, pre-training on Kinetics) and exclude the
activity labels not present in our dataset in the last fully-
connected layer.

C. Model Attribution Analysis

To examine the way simulator-based video classification
models operate when facing real-life driving data, we lever-
age the Gradient-weighted Class Activation Map method
(GradCAM) [27]. However, the original approach was de-
signed for static images [27], while we are additionally
dealing with the time dimension. We, therefore, implement
a three-dimensional variant of GradCAM similar to [28].

Given an input video, we predict a class c, then estimate
the gradient over yc with respect to each value in the feature
channel Ak.

The importance wk
c is then estimated separately for each

channel k by averaging the gradients:

wk
c =

1

n

∑
i,j,t

( ∂yc

∂Ai,j,t
k

)
, (1)

We then calculate final weights V i,j,t
c by applying the

ReLU function to the linear combination of feature map
values and importance estimates:

V i,j,t
c = ReLU

(∑
k

wk
cA

i,j,t
k

)
. (2)

For visualization, we average the heat-maps over time.

IV. VALIDATION RESULTS

A. Main quantitative results

We evaluate the recognition quality of driver activities
collected in a simulator versus a real-life self-driving car,
as presented in Table II. The performance of each model is
evaluated based on accuracy.

For all driver activities, a random chance baseline yields
an accuracy of 14.29% in both the simulator and real-life
scenarios. The Inflated 3D architecture (I3D), when trained
on simulator data, attains an overall accuracy of 85.7% in
the simulator and 46.56% in real-life observations. Notably,
the I3D model significantly outperforms the random baseline
in both settings, demonstrating its efficacy.

However, the per-category results for the simulator-trained
I3D reveal some variability. In the simulator, high accuracy is
observed for activities such as driving/sitting still (99.01%),
using a phone (90.36%), reading a newspaper (98.03%), and
drinking (100%). However, the accuracy decreases consider-
ably in a real-life environment, with the highest scores being
reading a book (69.49%) and drinking (60.4%). Notably,
talking on the phone and reading a magazine activities wit-
ness the most substantial drops in accuracy, scoring merely
8.52% and 20.34%, respectively, in real-life conditions. To
facilitate the comparison between the different accuracy
results, they are graphically represented in Figure 3 as a radar
diagram.

This analysis underscores the difficulties in transferring
models trained in simulated environments to real-world con-
ditions, especially for specific activities. It also suggests the
need for further fine-tuning and optimization of the I3D
model for real-life driver observation.
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Next, we analyze the most common confusions in Figure 6
and the confusion matrix (Figure 4). Nearly all categories are
often mistaken for driving/sitting still, which is not surprising
considering its overrepresentation in the original simulator-
based training set [1]. The category itself is recognized
correctly in 56% of the cases. It is unsurprising that read-
ing a magazine is most frequently confused with reading
a newspaper (39%), while the confusion in the opposite
direction is less common (7%). Talking on the phone is
often mistaken for drinking (27%), which is understandable
as both actions involve raising one hand close to the mouth.
The difficulty in fine-grained recognition of smaller objects,
such as phones, may arise from the downsampling performed
by 3D CNNs, which rapidly decreases image resolution
to obtain larger receptive fields. Undoubtedly, talking on
the phone is a highly common and significant distractive
secondary activity. Accurately recognizing such fine-grained
actions from images holds immense importance for the
future. Similarly, like other behaviors, the most frequent con-
fusion for talking on the phone is with the overrepresented
category of driving/sitting still (46%). While using a phone
is better recognized than talking on the phone, with a 57%
accuracy in predictions, confusions with driving/sitting still
still occur relatively frequently (17%).

Considering this information, it is clear that improvements
are needed, especially with regard to fine-grained activities
involving smaller objects, particularly when differentiating
activities from the “default” driving/sitting still state.

B. Attribution analysis and qualitative examples

In Figure 5, we visualize an example of a single driving
session collected in our dataset. The upper bar depicts
the true secondary activities of the driver, while the lower
bar depicts the predictions of the I3D model trained on

0.6 0.21 0 0.06 0.03 0 0.09

0.24 0.56 0 0.03 0.15 0 0.03

0.07 0.15 0.69 0 0 0 0.09

0.12 0.16 0 0.2 0.39 0.01 0.12

0.05 0.31 0 0.07 0.55 0 0.03

0.27 0.46 0 0.02 0.07 0.09 0.1

0.11 0.17 0 0.11 0.04 0.01 0.57

drinking_bottle

driving/sitting_still

reading_book

reading_magazine

reading_newspaper

talking_phone

using_phone

dr
ink

ing
_b

ot
tle

dr
ivi

ng
/si

ttin
g_

sti
ll

re
ad

ing
_b

oo
k

re
ad

ing
_m

ag
az

ine

re
ad

ing
_n

ew
sp

ap
er

ta
lki

ng
_p

ho
ne

us
ing

_p
ho

ne

Prediction

R
ef

er
en

ce

0.0

0.2

0.4

0.6

Proportion

Fig. 4: Confusion matrix for the direct SIM→REAL transfer.

TABLE II: Recognition Quality for Driver Observation col-
lected in a Simulator vs Real-life Self-Driving Car

AccuracyActivity Simulator Real
All Driver Activities
Random chance baseline 14.29 14.29
Simulator-trained I3D 85.7 46.56
Per-category Results for Simulator-trained I3D
driving/sitting still 99.01 55.76
using phone 90.36 56.7
talking phone 52.94 8.52
reading magazine 73.91 20.34
reading newspaper 98.03 54.72
reading book - 69.49
drinking 100 60.4

simulator data. The model had issues in recognizing the first
two driver behaviors (using phone and reading magazine),
although there were certain brief segments with the correct
classification. Secondary behaviors that followed were easier
to recognize, and the majority of the frames were assigned
the correct label. A surprising observation is that, for this
particular subject, talking on phone was recognized better
than using phone. This is contrary to the overall trend
observed when examining the statistics of the entire dataset.
These findings highlight that individual appearances and
the unique manner in which humans perform actions can
significantly influence the quality of recognition.

In our subsequent analysis, we explore the specific input
pixels that influence the model’s decisions, leveraging the
GradCAM technique [27] adapted for our spatiotemporal
data (see Section III-C). Figure 7 presents frames that have
been correctly classified (top row) and those misclassified
(bottom row), with an overlay of a heatmap that highlights
the pixels that contributed to the current network decision.
The analysis unveils that the video classification model pre-
dominantly focuses on the hands and objects in use, particu-
larly when the predictions are accurate. Interestingly, in the
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correctly classified talk on phone example (Figure 7b), the
attention does not center on the hands, but gravitates towards
the area around the wrist. This observation suggests that the
network places importance not on the object per se, but rather
on a specific wrist position, potentially accounting for the
subpar recognition of this category. Conversely, when talk
on phoneis erroneously identified as drinking (Figure 7g), the
model’s attention is indeed trained on the driver’s hands. This
evidence suggests that the model’s comprehension of talk
on phone and drinking is centered around certain wrist and
hand patterns, discounting the significance of the associated
objects. We also observe, especially in failure cases, that the
model’s attention can deviate from the hands or the relevant
object, steering towards the mid-cabin area or certain outside
patterns, presumably in response to unusual movements
absent from the simulator training data. In conclusion, the
GradCAM analysis offers significant insights into the way
simulator-based video classification models operate when
facing naturalistic driving data. Especially for categories
that are hard to recognize, we discover a strong reliance
of the model on hand and wrist movements, potentially at
the expense of object recognition. This might be due to the
different appearance of these objects present in the training
set. Enhancing the training data with a broader range of
phones, drinking bottles, cups, and similar objects could
address this limitation. Furthermore, we observe instances
where the model’s focus shifts to external movement during
misclassifications (Figure 7h). This suggests that the absence

of such movement in the simulator data adversely impacts the
model’s recognition capability. Moving forward, we advocate
for the inclusion of such variable movements in the training
data. This could be accomplished by recording more natural-
istic datasets or developing sophisticated data augmentation
methods that effectively mimic these car movements.

V. CONCLUSION

We collected a video-based dataset for driver activity
recognition during real autonomous driving sessions. Our
key motivation is to study the direct SIM→REAL transfer
of deep learning-based driver observation models, which is
of particular relevance given that simulated data is a preva-
lent resource in autonomous driving research. Our dataset
features seven drivers engaged in six distractive activities
as well as a short manual driving segment. Furthermore, the
dataset is constructed with annotations and sensor correspon-
dence to a large-scale simulator-based dataset, specifically
designed to supplement the validation protocol of simulator-
trained models with real-world data. While the model clearly
surpasses the random baseline, its recognition quality drops
drastically when moving from simulated to real-life record-
ings, highlighting the necessity of incorporating real-world
data into validation protocols of simulator-trained models.
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