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Identifying Reaction-Aware Driving Styles of Stochastic Model

Predictive Controlled Vehicles by Inverse Reinforcement Learning

Ni Dang1, Tao Shi1, Zengjie Zhang2∗, Wanxin Jin3, Marion Leibold1, and Martin Buss1

Abstract— The driving style of an Autonomous Vehicle (AV)
refers to how it behaves and interacts with other AVs. In a
multi-vehicle autonomous driving system, an AV capable of
identifying the driving styles of its nearby AVs can reliably
evaluate the risk of collisions and make more reasonable driving
decisions. However, there has not been a consistent definition
of driving styles for an AV in the literature, although it is
considered that the driving style is encoded in the AV’s trajec-
tories and can be identified using Maximum Entropy Inverse
Reinforcement Learning (ME-IRL) methods as a cost function.
Nevertheless, an important indicator of the driving style, i.e.,
how an AV reacts to its nearby AVs, is not fully incorporated
in the feature design of previous ME-IRL methods. In this
paper, we describe the driving style as a cost function of a
series of weighted features. We design additional novel features
to capture the AV’s reaction-aware characteristics. Then, we
identify the driving styles from the demonstration trajectories
generated by the Stochastic Model Predictive Control (SMPC)
using a modified ME-IRL method with our newly proposed
features. The proposed method is validated using MATLAB
simulation and an off-the-shelf experiment.

I. INTRODUCTION

The driving style of an Autonomous Vehicle (AV) refers

to how it generally achieves its driving goal and interacts

with other vehicles, e.g., how to make driving decisions

according to the current states, the desired speed, or the

collision avoidance requirements [1]. The AV that can predict

others’ driving styles and incorporate the prediction into its

decision-making is considered to be capable of reasonably

evaluating and reacting to the risk of collisions with other

nearby AVs. A reactive AV is expected to make safer and

more reasonable driving decisions than those that do not.

However, the driving style of an AV has not been consistently

defined in the literature. Also, the driving styles in reactive

and non-reactive situations may be different, which brings

up challenges to its identification. The driving style has been

represented as a cost function with weighted features [2], [3]

and can be learned from demonstration data [4].
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Inverse Reinforcement Learning (IRL) that retrieves an

unknown reward function from demonstration data has been

widely employed to learn the driving style cost functions [2],

[4]–[7]. Among them, [4], [5] learn driving styles based

on a stochastic Markov Decision Process (MDP), adopting

a probabilistic transition model. However, high-order prop-

erties, such as acceleration, can not be incorporated into

the feature design with stochastic MDPs, although they are

obviously important to determining driving styles. Different

from them, in [6], [7], deterministic MDPs are used to model

the vehicle dynamic such that accelerations are considered

in the feature design. Instead of modeling the dynamics as

deterministic MDP, [2] represents trajectories using time-

continuous splines that allow for incorporating acceleration

into the feature design. IRL uses a linear combination of the

features to capture the characteristics of trajectories [3], [8].

The IRL method aims to find the optimal weights of features

and reproduce a trajectory that best mimics the driving style

encoded in the demonstration trajectory generated by an

expert. However, to the best of our knowledge, these methods

have only been mainly applied to single-AV cases where

the reactions among different AVs were rarely considered.

Specifically, how an AV reacts to a nearby AV is not

incorporated in the features used to identify the driving style.

Learning the driving style using IRL methods requires

demonstration data. Stochastic Model Predictive Control

(SMPC) is capable of generating demonstration trajectories

that encode the desired driving styles. The driving style of

an AV controlled by SMPC depends heavily on the risk

parameter in the probabilistic constraint to avoid colliding

with obstacles [9]–[13]. How the risk parameter qualitatively

affects the driving style of an SMPC-controlled vehicle has

been described in [13]. A greater risk parameter leads to a

more conservative driving style, and vice versa [13]. There-

fore, SMPC can get qualitatively aggressive or conservative

driving styles by simply adjusting the risk parameter.

In this paper, we solve the driving style identification

problem for a two-vehicle system. We stand on the position

of the ego AV and identify the driving styles of its nearby

AV using a Maximum Entropy IRL (ME-IRL) method.

Different from the conventional methods used for single-

vehicle cases [2], [6], [7], we design four additional features

to depict the ego AV’s reactions to its nearby AV. Among

them, three are active only when the AV is close to the nearby

AV. This requires a triggering condition to activate them. The

detailed contributions are summarized as follows:

• We propose four novel features to capture the reaction-

aware characteristics of the driving style for a two-
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vehicle case;

• We design a triggering condition based on an elliptical

index to activate the reaction-aware features.

The rest of the paper is organized as follows. Sec. II

introduces the preliminaries containing SMPC, trajectory

representation, and ME-IRL. In Sec. III, we present the

modified ME-IRL method to identify the driving style from

the demonstration trajectory. The simulation studies that

validate the efficacy of the proposed method are shown in

Sec. IV. Finally, Sec. V concludes the paper.

II. PRELIMINARIES

Preliminary to the main results, we first present an SMPC

formulation including the safety constraints with the risk

parameter. Then, we describe how we represent trajectories.

Finally, we briefly introduce the ME-IRL method.

A. SMPC and Safety Constraint

We use SMPC to generate demonstration trajectories.

The formulation of SMPC and the safety constraints are

introduced as follows.
1) SMPC Formulation: An Ego Vehicle (EV) that avoids

a Target Vehicle (TV) solves the following optimal control

problem at each time step [13]:

min
uuu

J(ξξξ ,uuu) (1a)

s. t. ξk+1 = F (ξk,uk), k = 0,1, · · · ,N − 1, (1b)

ξk ∈ Ξ, k = 0,1, · · · ,N, (1c)

uk ∈ U , k = 0,1, · · · ,N − 1, (1d)

Pr (ξk ∈ Ξsafe
k )≥ p, k = 1,2, · · · ,N, (1e)

with the state ξk and control input uk at prediction step k,

where k counts from current time t on. The state vector ξk =
[xk,yk,φk,vk]

⊺
consists of longitudinal position xk, lateral

position yk, inertial heading of the vehicle orientation φk and

the vehicle velocity vk at prediction step k. The control input

vector uk = [ak,δk]
⊺ contains the acceleration ak and the front

steering angle δk at prediction step k. The sequences ξξξ =
{ξ0,ξ1, . . . ,ξN} and uuu = {u0,u1, . . . ,uN−1} are the system

states and inputs over the entire prediction horizon N. The

cost function J (1a) is optimized over the control input

sequence uuu along the prediction horizon N. We expect

the EV to track reference states ξ ref
k and do not have big

control inputs; therefore, J = ∑N−1
k=0 (‖ξ k − ξ ref

k ‖2

Q +‖uk‖2
R)+

‖ξ N − ξ ref
N ‖2

QN
. The weighting matrices are Q ∈ R

4×4,

R ∈ R
2×2 and QN ∈ R

4×4. Constraints include the system

dynamic F of the EV in (1b), utilized to generate EV

predictions. The sets Ξ and U in (1c) and (1d) denote the

sets of admissible states and the control inputs, respectively,

where the road boundaries, physical limitations of the EV

and the traffic rules are taken into consideration. A safety

constraint to avoid colliding with the TV is introduced by

the probabilistic constraint (1e), where Ξsafe
k depends on the

prediction of the TV where the uncertainty in the prediction

is taken into account by Gaussian distributions. Pr(∗) ≥ p

means that the hard constraint ∗ is satisfied at least with

probability p ∈ (1,0).

2) Safety Constraint with Risk Parameter: The safety

constraint ensures that the EV remains outside a convex

region [9] around the TV with a probability of p. Thus, p

is a risk parameter. As in [10], [14]–[16], we choose the

ellipse region as the convex region. The center of the ellipse

is also the center of the TV. Given the longitudinal distance

∆xk = xk − xTV
k and the lateral distance ∆yk = yk − yTV

k

between the EV and TV, the hard constraint that keeps the

EV outside the ellipse region is

dk =
∆xk

2

la
2 + ∆yk

2

lb
2 − 1 ≥ 0, (2)

where the size of the safety ellipse is determined by the

length of the semi-major axis la and semi-minor axis lb.

dk ≥ 0 is one way to realize the hard constraint ξk ∈ Ξsafe
k in

(1e). We soften constraint dk ≥ 0 employing a probabilistic

constraint Pr (dk ≥ 0)≥ p. The safety constraint is active only

when the EV is close to the TV and reacts to the TV. The risk

parameter dominantly influences the driving style of the EV.

The greater p is, the less aggressive the EV is, and vice versa.

B. Trajectory Representation

We represent the demonstration and the reproduced trajec-

tories using piecewise quintic spline segments to ensure their

smoothness and continuity. The continuous-time splines al-

low for the existence of integral feature functions. The spline

segments are parameterized using control points comprising

the positions, velocities, and accelerations in the longitudinal

and lateral directions [17].

1) Control Points: We employ piecewise quintic splines

s j(t) to represent a trajectory r, i.e., r(t) = s j(t) for t ∈
[t j, t j+1], j ∈ {0, · · · ,S− 1}, where S denotes the number of

spline segments. Spline s j is parameterized employing the

pair of control inputs c j and c j+1 at interval [t j, t j+1] [2].

Control input c j is comprised of positions, velocities and

accelerations in the longitudinal and lateral directions at

interval [t j, t j+1] [2],

c j =

[

cx
j

c
y
j

]

=

[

[rx
j vx

j ax
j]
⊺

[ry
j v

y
j a

y
j]
⊺

]

, (3)

where rx
j , vx

j and ax
j are the position, velocity, and acceleration

of the vehicle in the longitudinal direction, respectively; r
y
j ,

v
y
j and a

y
j are the lateral counterparts. All control points

c j at any time t j constitute the set of control points c̄ =
[c⊤0 c⊤1 · · · c⊤S ]

⊤ ∈ R
6(S+1). The control point c0 is fixed

during the learning process. How we get control points for

demonstration trajectories and reproduced trajectories will be

introduced in Sec. III-D.

2) Quintic Polynomials: To define a 2D quintic polyno-

mial [18] of spline

s j(τ) =

[

qx
5τ5 + qx

4τ4 + · · ·+ qx
1τ + qx

0

q
y
5τ5 + q

y
4τ4 + · · ·+ q

y
1τ + q

y
0

]

(4)

where τ ∈ [t j, t j+1], twelve coefficients qx
5, · · · ,qx

0,q
y
5, · · · ,q

y
0

are required. The coefficients qx
5, · · · ,qx

0 for the longitudinal

direction can be obtained using control points cx
j = [rx

0,v
x
0,a

x
0]

at time t j and cx
j+1 = [rx

T ,v
x
T ,a

x
T ] at time t j+1, as shown in



equations (7) and (8) in [18]. If we replace the longitudinal

part of the control points with their lateral parts, we obtain

coefficients q
y
5, · · · ,q

y
0. For spline s j+1, we use control points

[c j+1,c j+2] to calculate the coefficients. Since two adjacent

spline segments share control points, we have continuous

velocity v(t) and acceleration a(t) along the entire trajectory.

Given the above, the set of all control points c̄ parameterize

the trajectory r consisting of S segments.

C. ME-IRL

The driving style is quantified by a cost function rep-

resented by a linear combination of features that capture

the important characteristics of the trajectories. The ME-

IRL method aims to identify the weights of the features

that best fit the driving style of the demonstration trajectory

and reproduce trajectories that mimic the driving style of

the demonstration. [2], [6], [7]. The features together with

their weights describe the driving style and can be used to

measure the similarity between trajectories.

1) Features: We adopt the following six features for an

individual AV from [2] and [19]. These features include

accelerating, approaching or maintaining desired speed, and

approaching or remaining in the target lane [2].

a) x-acceleration: fax =
∫

t ‖r̈x(τ)‖2
dτ .

b) y-acceleration: fay =
∫

t ‖r̈y(τ)‖2
dτ .

c) Desired velocity: fv =
∫

t

∥

∥vx
des − ṙx(τ)

∥

∥

2
dτ , where vx

des

is the desired velocity in the longitudinal direction.

d) Desired lane: fl =
∫

t |ldes − ry(τ)|dτ , where ldes is the

desired lane.

e) Initial lane: fil =
∫ tturn

0 |linitial − ry(τ)|dτ , where linitial is

the initial lane of the EV and tturn is the time when the

EV remains in linitial.

f) End lane: fel =
∫ tend

tend-1

∣

∣ltarget − ry(τ)
∣

∣dτ , where ltarget is

the target lane of the EV at the ending time tend.

Therefore, the features can be recognized as functions of

a trajectory r. All features are collected in a feature vector

f(r), which will be introduced in Sec. III.

2) Learning of Weights: The weights of the features are

summarized in a weight vector θθθ = [θ1, · · · ,θm]
⊺ ∈R

m. Then,

a trajectory can be reproduced by a learned weight vector θθθ ,

denoted as rθθθ . We aim to find the optimal feature weight θθθ ∗

such that the features of the reproduced trajectory rθθθ∗ are

closest to those of the demonstration trajectory rD , i.e.,

θθθ ∗ = argminθθθ εθθθ (5)

where εθθθ =
∥

∥f(r∗θθθ )− f(rD)
∥

∥

2
is the learning error, r∗θθθ =

argminrL(θθθ ,r), where L(θθθ ,r) = θθθ⊺f(r) is a cost function

that represents the driving style. This is a bilevel optimization

problem [20]. The optimal weight θθθ can be solved using an

updating law θθθ = θθθ +α∇θθθ with a learning rate α , where

∇θθθ = Ep(r|θθθ)[f(r)]− f(rD), where Ep(r|θθθ)[f(r)] ≈ f
(

r∗θθθ
)

, ac-

cording to [8]. The learning is conducted in an iterative

manner, i.e., the weights θθθ are used to derive a trajectory

rθθθ which is then used to produce the gradient ∇θθθ for the

update of θθθ . The iteration of the learning process terminates

when the incremental learning error is smaller than a given

threshold, i.e.,
∣

∣ε i
θθθ − ε i−1

θθθ

∣

∣< ε̄ , where ε i
θθθ is the learning error

at iteration i ∈ N
+ and ε̄ ∈R

+ is a predefined threshold.

III. MODIFIED ME-IRL

To identify the driving style of an AV in a two-vehicle

system where the ego AV reacts to the other’s behaviors, we

modify the ME-IRL method in [2], [6], [7]. The main modi-

fications include four novel reactive features that capture the

characteristics while the AV is reacting to its nearby AV. One

of them ( ftiv) is active during the entire time and the other

three ( fsd, fed, fid) are triggered only when the AV is close

to the nearby AV. Additionally, the demonstration trajectory

rD is generated in the form of states ξξξ t by SMPC and

then re-represented using Quintic Polynomials. The overall

framework of our method is shown in Fig. 1.

Modifications

SMPC
Trajectory

Representation
ME-IRL

ξξξ t rD

Triggering
Condition

Reactive Features

fsd, fed, fid

ftiv

Fig. 1: The overall framework of the methods

A. Novel Features

For a two-vehicle system that contains an EV and a TV,

we propose four novel features to capture the reaction of the

EV to the TV when it tries to avoid collisions, apart from

the existing features introduced in Sec. II-C.1.

g) The inter-vehicular time (TIV)-based feature: ftiv =
∫

t

vx
lane

|rx
TV(τ)−rx

EV(τ)|
dτ , where vx

lane is the limit velocity of

the target lane, which is also the desired speed of the

target lane.

h) Start distance: fsd = e−|r
y
EV(ttrg)−r

y
TV(ttrg)|, where ttrg is

determined by the triggering condition which will be

discussed in Sec. III-B.

i) End distance: fed=e−|ry
EV(ttrg+Trct)−r

y
TV(ttrg+Trct)|, where Trct

is a value determined empirically.

j) Integral distance: fid =
∫ ttrg+Trct

ttrg

∣

∣r
y
EV(τ)− r

y
EV(ttrg)

∣

∣dτ
which is used to capture the changes of the position

in the lateral direction during time period [ttrg, ttrg+Trct].

Here, the TIV-based feature ftiv is inspired by the TIV

safety metric which is commonly used to specify the

collision-avoidance requirements [21]. In general, a greater

TIV stands for a safer situation. We require a smaller cost

for a safer situation. Therefore, We take the reciprocal of

TIV as a feature. The distance-based features fsd, fed, and

fid are proposed to capture the characteristics between the

EV and TV in the lateral direction from the triggered time ttrg
to the end of the reaction. They are important for collision



avoidance between two vehicles. Note that only the TIV-

based feature ftiv is active through the entire trajectories. The

rest features, namely fsd, fed, and fid are only valid when

the two vehicles are sufficiently close to each other with the

concern of collisions raised. As shown in Fig. 1, a triggering

condition is set to activate these three features for ME-IRL,

which will be interpreted in the following subsection.

B. Triggering Condition

The triggering condition for the reactive features fsd, fed,

and fid is based on an elliptical index used to describe

the squared elliptical distance [22] between the positions

of the EV and the TV, which allows for a more accurate

approximation of the physical dimensions of a vehicle, i.e.,

se =
∆xt

2

la
2 + ∆yt

2

lb
2 (6)

where ∆xt and ∆yt are the longitudinal and lateral distances

between the EV and TV at time t. Here, the values of

parameters la and lb are the same as those in constraint (2).

Therefore,
√

se is the elliptical distance between the EV and

the TV scaled by la and lb. We set a threshold value λ for the

triggering condition se < λ which corresponds to an elliptical

region, referred to as a scaled ellipse. The reactive features

fsd, fed, and fid are activated when se < λ is satisfied for the

first time. This time is referred to as the triggering time ttrg.

The reactive features remain active for a duration Trct and

become inactive again at time ttrigger +Trct.

C. Feature Scaling

The features introduced in this paper are calculated over

different time periods. For example, ftiv is active during the

entire time, while fsd, fed, and fid are only active from ttrg to

ttrg + Trct. Therefore, the features calculated over a longer

time period tend to have greater feature values and have

a stronger impact on the cost function L(θ ,r) than those

over a shorter time period. To balance the influences of fea-

tures with different time periods, we scale their values [23]

using a matrix Ω = diag(ωax,ωay, · · · ,ωid) ∈ R
10×10, where

ωax,ωay, · · · ,ωid are empirical scaling coefficients. Thus, the

features are scaled by f(r) =[ωax fax,ωay fay, · · · ,ωid fid]
⊺ ∈

R
10. In this paper, we set ωil , ωel , ωsd , ωed , and ωid as 10

and the others (the features are calculated over the whole

time period) as 1.

D. Generation of Control Points

The original demonstration generated by SMPC is repre-

sented in discrete time using the states ξξξ t = [xt ,yt ,φt ,vt ]
⊺ of

the EV at each sampling time t. We re-represent the states by

a demonstration trajectory rD represented by piecewise quin-

tic spline segments. The spline segments are parameterized

using control points comprised of the positions, velocities,

and accelerations in the longitudinal and lateral directions.

We obtain the positions directly from the state vector. Ve-

locities vx
t and v

y
t can be calculated employing vx

t = vt cosφ
and v

y
t = vt sinφ , respectively. Acceleration ax

t and a
y
t are

approximated by ax
t =

vt+1−vt−1

2Ts
cosφ and a

y
t =

vt+1−vt−1

2Ts
sinφ ,

respectively, where Ts denotes the time interval between t−1

and t. For reproduced trajectories, we simply calculate the

velocities and accelerations using the following equations:

vx
t = ṙx

t , v
y
t = ṙ

y
t , ax

t = r̈x
t , and a

y
t = r̈

y
t .

IV. SIMULATION STUDIES

We examine the efficacy of the modified ME-IRL method

with our newly designed features in several simulation stud-

ies. The simulation is run on a laptop with an i7-10875H

CPU under 2.30GHz. The optimization problem in SMPC

is solved by employing the fmincon function embedded in

the NMPC toolbox [24] in MATLAB.

A. Simulation Setup

We consider a lane-changing scenario on a three-lane

highway, as shown in Fig. 2. The EV (red) starts in the

right lane (bottom lane) and will later move to the center

lane and accelerate. The TV (blue) starts and remains in

the center lane at a constant velocity 28m/s. The EV tries

to avoid colliding with the TV while moving toward the

center lane. The initial states of the EV and TV are ξξξ EV
0 =

[80,2.625,0,25]⊺ and ξξξ TV
0 = [60,7.875,0,28]⊺, respectively.

The target velocity of the EV is 30m/s. The widths of

all lanes are wlane=5.25m. The length and width of the

vehicles are lveh=5m and wveh=2m, respectively. Besides,

the distances from the vehicle mass center to the front axle

and to the rear axle are l f=2m and lr=2m, respectively.

Fig. 2: A two-vehicle lane-changing scenario.

We generate the demonstration trajectories of the EV using

SMPC with a risk parameter p = 0.7, a prediction horizon

N = 10, a sampling time Ts = 0.2s, and a total duration

T = 6.2s (31 time steps). The boundaries in the constraints

are specified as y ∈ [lveh,3wlane − lveh], φ ∈ [−0.05,0.05] rad,

v∈ [0,70]m/s, a∈ [−9,6]m/s2 and δ ∈ [−0.05,0.05] rad. The

safety ellipse is determined by the semi-major axis la = 15m

and semi-minor axis lb = 3m. The weighting matrices of the

cost function are Q= diag(10−6,0.2,50,0.2), R= diag(1,10)
and QN = diag(10−6,0.2,50,0.2). The trajectory of the TV

is specified in advance. The learning termination threshold

is ε̄ = 0.01.

B. The Demonstration Trajectories and the Trigger Time

In this subsection, we show the demonstration trajectories

of the EV and the TV, which reflect the reactions of the

EV to the TV while avoiding potential collisions. We first

illustrate the change of the scaling index of ellipse se

(or the elliptical index, defined in equation (6)) along the

longitudinal direction in the top subfigure of Fig. 3. The

demonstration trajectories of the EV and TV with the safety

and the scaled ellipses are shown in the bottom subfigure of

Fig. 3, where the ellipses are only displayed at the starting,



middle, and ending instants, namely the SMPC time steps 1,

16, and 31, for brevity. The positions of the vehicles at these

time steps are also shown as colored rectangles. From the top

subfigure, we can see that the elliptical index se decreases

from 80m to 170m since the two vehicles get close to each

other during this period (as shown in the bottom figure).

Then, from around 170m, se gradually increases since the

EV actively avoids the potential collisions with the TV, which

indicates the reaction of the EV to the potential collision with

the TV. The EV’s reaction can also be seen from the bottom

subfigure, where the trajectory segment between roughly

155m and 220m shows a different curvature than the one

before 155m. The triggering time of the reaction can be

determined as the first time when se < λ is satisfied, i.e.,

ttrg = 3s, where the threshold λ is empirically set to 1.82.

Fig. 3: The elliptical index se defined in equation (6) and the

demonstration trajectories of the EV and TV.

C. The Reproduced Trajectories

Given the demonstration trajectories of the EV and the

TV, we learn the driving style of the EV using the mod-

ified ME-IRL. Fig. 4 compares the learning performance

of the ME-IRL methods without (top subfigure) and with

(bottom subfigure) our novel features. Specifically, the learn-

ing performance is evaluated by the deviation between the

trajectories reproduced by the learned driving styles and the

demonstration trajectories. Besides, in each subfigure, we il-

lustrate the reproduced trajectories at iterations 1, 11, 21, and

the terminal iteration. We can observe that the trajectories

reproduced by the driving style with novel features better fit

the demonstration trajectory, although the one without novel

features is learned faster (26 over 37). Specifically, the ME-

IRL without novel features produces larger trajectory gaps

than the one with these features, especially between around

150 m and 220 m. This indicates that the conventional ME-

IRL can not fully learn the reaction of the EV to the TV, but

our modified ME-IRL can.

Similar conclusions can also be drawn from Fig. 5 which

displays the lateral-direction (y-axis) velocity and accelera-

tion of the EV in the learning process using our modified

100 150 200 250

0

5

10

15

Trajectories (without novel features)

demonstration
after 1 iteration
after 11 iteration
after 21 iteration
final after 26 iteration

100 150 200 250

0

5

10

15

Trajectories (With features)

demonstration
after 1 iteration
after 11 iteration
after 21 iteration
final after 37 iteration

Fig. 4: The reproduced trajectories of the EV using ME-IRL

without (top) and with (bottom) the novel features, compared

with the demonstration data.

ME-IRL method and the corresponding demonstration data.

Here, we only display the lateral direction since it is much

more important than the longitudinal direction for the lane-

changing scenario. It can be seen that the velocity and

acceleration in the lateral direction converge to those of the

demonstration trajectory, which indicates successful learning.

Fig. 5: The converging lateral-direction velocity and accel-

eration of the EV with iterations 1, 11, 21, and 37.

D. Simulation experiment in Off-the-shelf Software

To demonstrate the applicability of the proposed method

to practical autonomous driving systems, we conduct an

experiment in an off-the-shelf simulation environment,

the Siemens® Simcenter Prescan Software. The experi-

ment setup is the same as Sec. IV-A. The difference

is we use EV’s reproduced trajectory instead of its

demonstration trajectory in the experiment. This allows

us to compare the trajectory reproduced using our mod-

ified ME-IRL method and the demonstration trajectory.



The footage of this experimental study is published in

https://youtu.be/S672tUtHFyY, where both the

bird’s eye view from above and the first perspective view

from the TV are provided. The experimental results show that

the EV’s trajectory reproduced using the learned driving style

with novel features is very similar to the demonstration tra-

jectory generated in Sec. IV-B. This validates the efficacy of

our method. The successful experiment also demonstrates the

applicability of the proposed method in practical autonomous

driving systems.

V. CONCLUSION

In this paper, we extend a Maximum Entropy Inverse

Reinforcement Learning (ME-IRL) method to identify the

driving styles of an Autonomous Vehicle (AV) in a two-

vehicle system incorporating the reaction among the vehicles.

We propose novel features to capture the reaction-aware

characteristics that indicate the driving styles of an AV while

it actively avoids colliding with the nearby AV. An elliptical

index is proposed to determine the triggering time to activate

some reaction-aware features. Simulation in MATLAB and

experiment in Simcenter Prescan validate the efficacy and

applicability of our method. The novel features are designed

for a lane-changing scenario. In the future, we will incor-

porate the learned driving style into the decision-making of

AVs in multi-vehicle lane-changing scenarios based on real

datasets, such as INTEREATION [25].
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