
ITW2002, Bangalore, India Oct. 20-25, 2002

On Phase Noise Channels at High SNR
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Abstract — Lapidoth and Moser have recently
proposed a general technique for obtaining upper
bounds on channel capacity via a dual expression
in which the maximization over probability distri-
butions on the channel input alphabet is replaced
with a minimization over probability distributions
on the channel output alphabet. They have also
introduced the notion of “capacity achieving in-
put distributions that escape to infinity” in order
to study channel capacity at high signal-to-noise
(SNR) ratios.

In this partly tutorial paper we shall demon-
strate the use of these ideas by applying them
to the study of communication over discrete-time
channels impaired by additive Gaussian noise and
phase noise.

I. Introduction

Lapidoth and Moser [1] have recently proposed a gen-
eral approach to obtain upper bounds on channel capac-
ity. The approach is based on a dual expression for chan-
nel capacity in which maximization (of mutual informa-
tion) over the space of probability distributions on the in-
put alphabet is replaced with a minimization (of average
relative entropy) over the space of probability distribu-
tions on the output alphabet. While this dual expression
had been known for a while [2, Section 2.3], [3, Exercise
4.17], [4] it had been — to the best of our knowledge
— previously mostly used to derive a termination crite-
rion for iterative numerical calculations of the capacity
of discrete memoryless channels (DMCs) and to derive
connections between the redundancy in universal source
coding and channel capacity. In [1] it was proposed to
use this expression to derive closed form upper bounds
on the capacity of channels with infinite alphabets.

The key to the method is the inequality

I(Q;W ) ≤
∑
x∈X

Q(x)D
(
W (·|x)‖R(·)

)
, R ∈ P(Y) (1)

which upper bounds the mutual information I(Q;W ) be-
tween the terminals of a DMC W (y|x) under the input
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distribution Q in terms of the average (over Q) rela-
tive entropy D

(
W (·|x)‖R(·)

)
between the channel out-

put distribution W (·|x) corresponding to the input x and
some arbitrary distribution R(·) on the channel output
alphabet. Here X and Y denote the finite channel in-
put and output alphabets, and P(Y) denotes the set
of all probability distributions on the output alphabet
Y. While choosing R(·) to be the output distribution
(QW )(y) =

∑
x′∈X Q(x′)W (y|x′) that corresponds to the

input distribution Q will yield an equality in (1), other
output distributions may lead to more tractable expres-
sions. In [5] we extended this inequality to infinite al-
phabets and proposed that by a judicious choice of the
probability measure R(·) this inequality can lead to use-
ful upper bounds on channel capacity. The proposed ap-
proach was used in order to study multi-antenna fading
channels [1] [5] and in the study of constrained commu-
nication over finite state channels [6].

In [7] it was noticed that for many channels with power
constraints, capacity achieving input distributions escape
to infinity. Loosely speaking, this means that the asymp-
totic behavior of channel capacity can be achieved even if
the inputs are subjected to an additional constraint that
requires them to be bounded away arbitrarily far from
zero. This was then used extensively in order to study
the fading number of multi-antenna systems operating
over flat fading channels [8].

In this paper we shall demonstrate how these two ideas
can be used in the study of the asymptotic behavior
of channel capacity. We shall illustrate this approach
by studying discrete-time channels with additive white
Gaussian noise and phase noise impairments.

II. Channel Model

We study a channel whose time-k output Yk ∈ C is a
complex random variable given by

Yk = xk · eiΘk + Zk (2)

where xk ∈ C denotes the time-k power-|xk|2 channel
input, {Zk} is an IID sequence of circularly symmetric
zero-mean variance-σ2 Gaussian random variables, and
{Θk} is a stationary and ergodic phase noise sequence of
finite entropy rate

h
(
{Θk}

)
> −∞. (3)

We assume throughout that the process {Zk} is indepen-
dent of the process {Θk} and that their joint law does



not depend on the input sequence. The channel inputs
are assumed to be power limited so that in considering a
blocklength-n transmission we require

1
n

n∑
k=1

E
[
|Xk|2

]
≤ Es. (4)

Henceforth we shall assume σ2 = 2 so that the signal-to-
noise ratio (SNR) is

SNR =
Es

2
. (5)

If the sequence {Θk} is IID, we shall say that the phase
noise is memoryless and we shall drop all time indices.
If, in addition, Θ is uniformly distributed over [−π, π)
we shall say that communication is non-coherent. In this
case

T = |Y |2 =
∣∣xeiΘ + Z

∣∣2 (6)

is a sufficient statistic. Conditional on |x|2, the distri-
bution of T is a non-central chi-square distribution with
non-centrality |x|2 and two degrees of freedom. We there-
fore write

T
∣∣∣ (|X|2 = |x|2) ∼ χ,2

2 (|x|2) (7)

where χ,2
ν (λ) denotes the non-central chi-square distribu-

tion with ν ≥ 1 degrees of freedom and non-centrality
λ, i.e., the distribution that results from the addition of
the squares of ν independent unit-variance real Gaussian
random variables whose squared means sum to λ. For
future reference we note the mean, variance, and entropy
estimates of such distributions:

• Mean: ν + λ

• Variance: 2(ν + 2λ)

• Differential entropy:

h
(
χ,2

ν (λ)
)
≤ 1

2
log

(
4πe(ν + 2λ)

)
, ν ∈ N, λ ∈ R.

(8)

lim
λ→∞

h
(
χ,2

ν (λ)
)
− 1

2
log

(
8πeλ

)
= 0, ν ∈ N. (9)

III. Non-Coherent Case — Upper Bounds

The non-coherent channel can be viewed as a channel
whose output T takes value in R+. For such channels it
has been proposed in [5] to employ (1) with the choice of
the output distribution R(·) having the Gamma density:

tα−1e−t/β

βαΓ(α)
, t ≥ 0. (10)

Here α > 0 and β > 0 are parameters that will be opti-
mized later. (Somewhat tighter results can be obtained
by choosing the output law to be a modified Gamma dis-
tribution [5], but for our present purposes the above suf-
fices.) This output distribution and (1) lead to the bound:

I(Q;W ) ≤ α log β + log Γ(α)

− hQ(T |X) + (1− α)E[log T ] +
1
β

E[T ] , α, β > 0

where hQ(T |X) is the conditional differential entropy of
T given X when X is distributed according to Q and all
expectations are with respect to the law on T induced by
law Q on X. Choosing β = E[T ] /α leads to the bound:

I(Q;W ) ≤ α− α logα+ log Γ(α) + α log E[T ]
+ (1− α)E[log T ]− hQ(T |X), α > 0. (11)

Notice that (11) is not specific to our channel. It holds
for any channel W (·|·) taking value in the non-negative
reals.

Returning to our channel we note that to use (11)
we need an expression for hQ(T |X), which requires the
complicated computation of the differential entropy of a
χ,2

2 (λ) random variable. Fortunately, it can be shown
that the capacity of our channel can be achieved by in-
put distributions that escape to infinity. Hence, adding
the constraint

|X| ≥ xmin (12)

where xmin is any (possibly very large) positive number,
does not alter the asymptotic behavior of the channel
capacity as Es → ∞. Consequently, we may use (9) to
obtain

h(T |X = x) =
1
2

log |x|2 +
1
2
(log 8πe) + o(1) (13)

where the correction term o(1) tends to zero as xmin tends
to infinity.

As for the term E[log T |X = x] we use the exact ex-
pression for the expected logarithm of a non-central chi-
square random variable [5] to obtain

E[log T |X = x] = log |x|2 + o(1). (14)

With E[T ] = Es+2 we now have estimates of all the terms
in (11) and we thus obtain from (11), (13), and (14):

I(Q;W ) ≤ α log(Es + 2) + α− α logα− 1
2

log(8πe)

+ log Γ(α) +
(1
2
− α

)
EQ

[
log |X|2

]
+ o(1). (15)

Finally, upon choosing α = 1/2 and using (5), we obtain:

lim sup
SNR→∞

{
C(SNR)−

(1
2

log SNR− 1
2

log 2
)}

≤ 0. (16)

(The choice α = 1/2 is motivated by considering the max
min of the RHS of (15) over EQ

[
log |X|2

]
≤ log Es and

α > 0 respectively.)

IV. Non-Coherent Case — Lower Bounds

The proposed lower bound is again based on the
Gamma distribution, but this time applied as an input
distribution to the channel. We shall need the fact that
if the density of S ≥ 0 is

sα−1e−s

Γ(α)
, s ≥ 0, (17)



then
E[S] = α, E[logS] = ψ(α) (18)

h(S) = (1− α)ψ(α) + α+ log Γ(α) (19)

where ψ(α) = Γ′(α)/Γ(α) denotes the digamma function.
We now choose

|X|2 =
Es

α
S. (20)

Noting that by circular symmetry

log π + h(T ) = h
(
XeiΘ + Z

)
≥ h

(
XeiΘ

)
= log π + h

(
|X|2

)
we obtain the bound

h(T ) ≥ h
(
|X|2

)
= log

Es

α
+ (1− α)ψ(α) + α+ log Γ(α)

which combines with (8) to yield

I(X;T ) ≥ log
Es

α
+ (1− α)ψ(α) + α+ log Γ(α)

− 1
2
E
[
log

(
8πe(|X|2 + 1)

)]
. (21)

Noting now that by [5] the condition h(S) > −∞ implies

lim
Es→∞

{
E
[
log(|X|2 + 1)

]
− E

[
log(|X|2)

]}
= 0 (22)

we obtain

I(X;T ) ≥ 1
2

log Es −
1
2

logα+
(1
2
− α

)
ψ(α) + α

+ log Γ(α)− 1
2

log(8πe) + o(1)

where we have used (20) and (18) to compute E
[
log |X|2

]
explicitly.

The choice of α = 1/2 now demonstrates the achiev-
ability of

1
2

log SNR− 1
2

log 2 + o(1)

which combines with (16) to yield

C(SNR) =
1
2

log
(

1 +
SNR

2

)
+ o(1) (23)

where the o(1) terms tends to zero as the SNR tends to
infinity.

It is interesting to note that the choice of α = 1/2,
which at high SNR asymptotically achieves channel ca-
pacity, corresponds to choosing |X|2 to have a central
chi-square distribution of one degree of freedom. At high
SNR the choice of X as a zero-mean Gaussian so that
|X|2 has two degrees of freedom is thus sub optimal.

V. Memoryless Phase Noise

We now consider the case where Θ is not uniformly dis-
tributed over [−π, π). We assume that

h(Θ) > −∞ (24)

and that the distribution of Θ is fixed and does not vary
with the SNR. This latter assumption is reasonable when
the source of the phase noise is inaccuracies in the oscil-
lators, and perhaps less so when the source is Gaussian
noise in the phase recovery loop.

Since the mutual information across this channel is in-
variant under a rotation of the input distribution, and
since mutual information is concave in the input distri-
bution, it follows that there is no loss in optimality in
limiting the input distributions to circularly symmetric
input distributions. For such distributions X = |X| · eiΦ

where Φ is independent of |X| and uniformly distributed
we have:

I(X;Y ) = I
(
|X| ; Y

)
+ I

(
Φ ; Y

∣∣ |X|)
= I

(
|X| ; |Y |

)
+ I

(
Φ ; Y

∣∣ |X|)
≤ I

(
|X| ; |Y |

)
+ I

(
Φ ; XeiΘ

∣∣ |X|)
= I

(
|X| ; |Y |

)
+ I

(
Φ ; ei(Φ+Θ)

)
=

1
2

log SNR− 1
2

log 2 + log(2π)− h(Θ) + o(1).

This bound is actually tight because

lim
|x|→∞

I
(
Φ ; Y

∣∣ |X| = |x|
)

= I
(
Φ ; ei(Φ+Θ)

)
(25)

and because channel capacity is achievable by inputs dis-
tributions that escape to infinity so that we may limit
ourselves to inputs of such very large magnitudes.

VI. Phase Noise with Memory

We next address the case where the phase noise {Θk} is
not memoryless but rather a stationary and ergodic pro-
cess of finite entropy rate. Denoting by Xk the random
variables X1, . . . , Xk and similarly for Y we have

1
n
I(Xn;Y n) =

1
n

n∑
k=1

I(Xn;Yk|Y k−1)

Inspecting each of the terms on the right hand side of the
above separately we have:

I(Xn;Yk|Y k−1) = h(Yk|Y k−1)− h(Yk|Y k−1, Xn)

≤ h(Yk)− h(Yk|Y k−1, Xn)

= h(Yk)− h(Yk|Y k−1, Xk−1, Xk)

≤ h(Yk)− h(Yk|Y k−1, Xk−1,Θk−1, Xk)

= h(Yk)− h(Yk|Θk−1, Xk)

= I(Xk;Yk) + I(Θk−1;Yk|Xk)

= I(Xk;Yk) + I(Θk−1;Yk, Xk)

≤ I(Xk;Yk) + I(Θk−1; Θk).



Here the first term on the right corresponds to the mutual
information in the memoryless case, and the second term
approaches the difference between h(Θ1) and the entropy
rate h({Θk}).

A lower bound on capacity can be demonstrated by
considering IID inputs that achieve the memoryless chan-
nel capacity and that have large norms (with probability
one), thus guaranteeing that from past inputs and out-
puts one would be able to reconstruct the past phases
with arbitrarily high precision. With this approach we
obtain the asymptotic expansion:

C =
1
2

log
(

1 +
SNR

2

)
+ log(2π)−h

(
{Θk}

)
+ o(1) (26)

or

C =
1
2

log
(
1 + 2π2e−2h({Θk}) SNR

)
+ o(1) (27)

where the o(1) term tends to zero as the SNR tends to
infinity.

VII. Additional Remarks

From Shlomo Shamai(Shitz) we have recently learnt
that the non-coherent case — the case where the phase se-
quence {Θk} is IID according to the uniform distribution
on [−π, π) — has a long history. An approximation sim-
ilar to (23) appears in [9] where it is apparently derived
by postulating that at high SNR capacity is achieved by
the max-entropy distribution on |X| (subject to the non-
negativity constraint |X| ≥ 0 and the second moment
constraint E

[
|X|2

]
≤ Es). This distribution leads to a

central chi-square distribution with one degree of free-
dom on |X|2, which corresponds to the choice of α = 1/2
in our lower bound. It should, however, be noted that at
a finite SNR, the capacity achieving input distribution is
discrete [10].
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the manuscript by İ. E. Telatar are gratefully acknowl-
edged.

References

[1] A. Lapidoth and S. Moser, “Convex-Programming Bounds on
the Capacity of Flat-Fading Channels,” Proc. 2001 IEEE Int.
Symposium on Inform. Theory, p. 52, Washington DC, June
2001.

[2] I. Csiszár and J. Körner, Information Theory: Coding Theo-
rems for Discrete Memoryless Systems. Academic Press, 1981.

[3] R. G. Gallager, Information Theory and Reliable Communica-
tion. John Wiley & Sons, 1968.

[4] F. Topsœ, “An information theoretical identity and a problem
involving capacity,” Studia Scientiarum Mathematicarum Hun-
garica, vol. 2, pp. 291–292, 1967.

[5] A. Lapidoth and S.M. Moser, “Capacity bounds via duality with
applications to multi-antenna systems on flat fading channels,”
preprint 2002.

[6] P. Vontobel and D. Arnold, “An upper bound on the capacity
of channels with memory and constraint input,” in Proceedings
of the 2001 IEEE Information Theory Workshop, (Cairns, Aus-
tralia), pp. 147–149, September 2 – 7, 2001 2001.

[7] A. Lapidoth, “Capacity-achieving distributions that escape to
infinity and the fading number”, MSRI Workshop on Informa-
tion Theory, Berkeley, California February 25 – March 1, 2002.

[8] A. Lapidoth and S.M. Moser, “On the Fading Number of Multi-
Antenna Systems,” Proc. 2001 IEEE Inform. Theory Work-
shop, Cairns, Australia, Sept. 2001.

[9] Z. Jelonek, “A Comparison of Transmission Systems,” in Com-
munication Theory: Papers read at a Symposium on “Appli-
cations of Communication Theory” held at the Institution of
Electrical Engineers, London September 22nd–26th 1952, W.
Jackson (Ed.), Butterworths Scientific Publications, London,
1953.

[10] M. Katz and S. Shamai(Shitz), “On the Capacity – Achiev-
ing Distributions of the Discrete-Time Non-Coherent Additive
White Gaussian Noise Channel,” Proc. 2002 IEEE Int. Sympo-
sium on Inform. Theory, p. 165, Lausanne, Switzerland, June
30 – July 5, 2002.


